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The phase shift in interferometry due to the space-time curvature is computed in nonIelativistic
and I'clatlv1st1c physics. Teals tIcatIIlcnt 1s appl1cd to Rn 1ntcrfcIOIDctcl analogous to thc pc1fcct crys-
tal interferometer used in the Colella-Overhauscr-%'erner experiment. with thermal neutrons, an in-
terferometer conslstlng of only horizontal mirrors, su1tablc fol ultI'Rcold ncutI'ons, and opt1cal lntcr-
ferometry. Experiments are proposed to detect the effect of the tidal forces of the Earth, Moon, Rnd
the Sun, for the first time in interferometry. The phase shift in neutron interferometry due to ter-
restrial objects is considered and an experiment is proposed with superAuid helium as the source of
gravity. This would provide, for the first time, direct evidence concerning the gravitational interac-
tion between two quantum-mechanical states. The possibility of detecting purely general-relativistic
cffccts dUc to cUrvaturcs by ITlcans of ncUtI'on interferometry, 1s Rlso cxploI'cd.

I. INTRODUCTION

An elegant experiment by Colella, Overhauser, and
Werner' (COW) has demonstrated the influence of gravity
ill thc llltcIfclcllcc of tllcI1Ilal IlclltloIls by uslllg R Lauc-
typc interferometer wlllcll was f list dcvclopcd by Bollsc
and Hart and applied to neutron interferometry by
Rauch, Treimer, and Bonse. This experiment, however,
detects only the effect of the acceleration due to gravity g
and therefore tests only the equivalence principle in
Newtonian physics at the quantum-mechanical level. The
phase shift due to gravity, in this experiment, has been
computed general relativistically. %hile these treat-
ments should, in principle, contain the higher-order
corrections, including curvature effects, no clear state-
ment of the lowest-order curvature effects are found in
the literature, to my knowledge.

These effects arc important because, as I shall show in
the present paper, if the interferometric experiment is
redone with ultracold neutrons * (UCN), or even with
thermal neutrons on a larger scale, then the curvature ef-
fects of the Earth, Moon, and the Sun will be of observ-
able magnitude. Such effects would represent genuine
gravitational effects in quantum interference as opposed
to a mere test of the equivalence principle.

At present, however, neutron interferometry is only sen-
sitive to the nonrelativistic component of the above-
mentioned curvature effects. I therefore obtain these ef-
fects in Sec. IIA, for a massive particle, using only

Newtonian physics. But unlike in the previous nonrela-
tivistic treatment, ' I obtain corrections to the CG% phase
shift to the fifth order in g, since these effects are com-
parable to the curvature terms when UCN are used. In
Sec. II 8, I shall then obtain the curvature effects within
the framework of general relativity for a massive and
massless particle, and discuss the relativistic contribu-
tions. For an experiment done with UCN, owing to the
extreme slowness of the neutrons (-6 m/sec), the effect
of bending of the beams which was utterly negligible for
the CO%' experiment' "would no longer be negligible.
This effect is considered in Sec. II C.

In Sec. III, the problem of bending of the beams is
overcome altogether by means of an experimental arrange-
ment having only horizontal mirrors. The phase shift due
'to gl'avlty fol' tllls pRrtlculRI' Rrrangcmcnt, 111cllldlllg clll-
vature effects and higher order effects in g, is then com-
puted.

In Sec. IV, I shall consider the phase shift in inter-
ferometry due to terrestrial objects, such as an iron ball,
which is observable. Such an experiment, in which the
curvature effects are not negligible, would provide the
first test of the inverse-square law of gravity at the
quantum-mechanical level for distances of the order of a
meter. An experiment is then proposed with superfluid
helium as the source of gravity. This has the remarkable
feature that it would provide the first experimental evi-
dence of the gravitational interaction between two
quantum-mechanical states. If the experiment would
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disagree with the result obtained here, using semiclassical
gravity, then it would give the first direct experimental
evidence of quantum gravity.

In Sec. V, neutron-interferolnetric experiments to detect
the curvature effects due to the Earth, Moon, and the Sun
are proposed. One of these proposed experiments, which

may be done on a satellite, has the advantage that no
correction needs to be made for the parabolic trajectories
of the neutron beams and, more generally, it eliminates all
effects that depend on g. In Sec. VI, the curvature effects
are again discussed from a general relativistic point of
view and it is concluded that neutron interferometry may
be very useful as a serious probe of gravity.

For simplicity, the phase shift due to the Earth's rota-
tion, which has been computed previously, is disregard-
ed in Secs. II—V and this phase shift must therefore be
added to the results given therein. But this effect is im-

plicit in the treatment in Sec. VI. Also the curvature ef-

fects due to the intrinsic spin of .the particle, computed
previously, are disregarded in the present paper since
they are negligible.

Then g is the acceleration due to gravity at the origin and

2 g 2

V=zg+ V + V +xzV (2.3)

From (2A), (2.5), and (2.3), we finally obtain the nonrela-
tlvlstlc p11asc shift

m psg m r sg m r sg

neglecting third and higher derivatives in V.
Ignoring, for the present, the effect of bending of the

beams, the phase shift is given by
(O, r) (s, r) (s,O) (s,r)

Sy= J '
«dz+ f '

«dx I—'
«dx J—

'
«dz.

(2.4)

From (2.2),

m2V mV mV 5mV
A'«2A«2lri«0 S A'
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II. HIGHER-ORDER CORRECTIONS TO
THE CO%' EXPERIMENT

In the COW experiment, ' a beam of neutrons with fair-
ly well-defined energy-momentum is split at a point 0 and
the two beams travel along paths OAC and OBC around a
parallelogram OACB, by means of suitable reflections by
crystal planes, and interfere at C, in the presence of gravi-
ty. For simplicity, I shall assume OACB to be a rigid rec-
tangle in a plane with 08 vertical, as determined by a
plumb line. But the results that are obtained in this sec-
tion can easily be generalized to more general cases. Also
the relativistic treatment, given in Sec. II8, will be valid
for both massive and massless particles.

A. Nonrelativistic treatment

Assuming that the %KB approximation is valid, each
beam has a well-defined frequency co and wave number «
which satisfy

(2.1)

where m is the mass of the particle and Vis the gravita-
tional potential. Since 01 is constant for both beams, if
«=«0 and V =0 at 0 (the beam splitter), then

' 1/2
2m V

X=XO 1—
$2 2

(2.2)

Suppose that the interferometer is in the x zplane of a-

Cartesian coordinate system with O, A, B,C having coordi-
Ilatcs (0,0),($,0),(O, P), (s,r), 1'cspcctlvcly. Slilcc OB is
vertical, BV/Bx(0, 0)=0. I.et

O'V BV BVg:— (0,0), V =
2 (0,0), V—:

2 (0,0)

5m'r'Sg' 7m IOr'Sg'

SRs«07 SA10«09

[rV —sV +(s r)V~]j, —
2&2&o

(2.6)

neglecting higher-order terms The r. eason for expanding
to O(gs) will become clear in Sec. II 8.

The first term in (2.6) is the well-known COW phase
shift, hPcow while the next four terms are higher-order
corrections in g to this phase shift. The last term in (2.6)
is the nonrelativistic phase shift due to space-time curva-
ture. Now V = Vs + V„where VE is the Earth's gravita-
tional potential and V, is the centrifugal potential due to
the Earth's rotation. Since V, ~~ VE, we shall neglect V,
in evaluating the second derivatives of V. Therefore, if
the Earth's potential is idealized to be spherically sym-
metric so that Vz ———GM/R, where M and R are the
mass and radius of the Earth, then

(2.7)

B. Relativistic treatment

In the general relativistic treatment one must use, in-
stead of (2.1), the relativistic eikonal equation
g&„k"k"=m c /111, where g& is the pseudo-Riemannian
metric of space-time and the wave vector k" is defined by
k„=—B„P,where P is the phase of the wave function, in
the %KB approximation. Suppose that the gravitational
field is stationary and that the four-velocity field of the
apparatus is parallel to a Killing field P of the gravita-
tional field. Choose P such that A, —:Pg& is 1 at the beam
splitter. The eikonal equation can then be written as

V„,—= (0,0) .8 V
BxBz

~0 2 mC2

Ac2 A&2

(2 S)
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Hence,

mVgmVgmV(2mVg
K=K0 1 — 1+ +

g2K 2 2g2K 2 2%4Kp462Kp, 2c2

2V 4V
C2 4+ +0(V ), (2.9)

where
r

+Kp u2
/=1+ = 1—

m 2C2 C2

u being the speed of the beam at the beam splitter. In the
nonrelativistic limit, c~ oo so that g—+1 and the limit of
(2.9) is the same as (2.5).

If curvature effects are neglected, then K at the upper
beam is obtained by setting V=gr in (2.9). Then the
phase shift is

b,Pp ——(K—Kp)S

rngrsg mgrg mgrg
KO

1+
2g2K 2 2g4K04

2m2g r g
AK C

2gr 4 2r 2

2+ 4 +0(g). (2.10)

The 0(g) part of (2.10) is the sum of the COW phase
shift and the relativistic correction found previous]y. s

However, for an experiment in the Earth's gravitational
field, (2.10) would be grossly inadequate because the cur-
vature effects are larger than the higher-order corrections
to kljkcow in (2.10). It is therefore necessary to use (2.4)
again to obtain the phase shift, which would include cur-
vature contributions.

It is clear from the above considerations that the rela-
tivistic phase shift can be expanded in powers of the di-
mensionless parameters

2 2
m gr gr &Ko U

«2 2 2' P 2 2 2
72 Ko U Hl C C

y—= 2, 5—=—,and5=—R' ' R

where R is the distance of the interferometer from the
Earth's center. The nonrelativistic phase shift (2.6) de-
pends on a,5 and 5' with 5,5' determining the contribu-
tion due to curvature. The relativistic correction to this
phase shift is determined by p and y. Since we are here
concerned primarily with the curvature contribution, we
may terminate the power series when the terms become
negligible compared to 0(5) and 0(5') terms. The terms

where K is the "wave number" and cop is the "frequency"
at the beam splitter. Suppose K=Kp at the beam splitter

and A,=1+,with V=O at the beam splitter. This V2V
c2

fnay be interpreted as the Newtonian potential. It then
follows from (2.8) that, for a massive particle (m&0),

1/22 2
PIC ~

~ Ko
K= A, 1+ —1

m 2C2

that are kept, of course, would depend on the relative
values of a, p, y, 5 and 5', which, in turn, are determined

by the experiment being performed. Suppose that r,s =10
cm for the interferometer. For the thermal neutrons used
in the COW experiment u=2. 74X 10 m/sec. Hence
a=1.3X10, p=8.3X10 ", y=1.lX10 ', and
5=1.6X10 =5'. For ultracold neutrons, u=6 m/sec,
so that a=2.8X10 and p=4X10 ', while y, 5, and 5'

are the same as above.
It therefore follows that, for thermal neutrons,

b.P/b, P„„may be expanded to 0(a) and 0(5), since
0(p) and 0(y) terms are negligible, i.e., the relativistic
corrections are negligible. Since

A' Kp

hP is then expanded to 0 (a ) and 0 (5). This b,P is then
the same as (2.6) with 0(g ) terms neglected. For ul-
tracold neutrons b,P/b, P«„may be expanded to 0(a )

and 0(5), since again 0(p) and 0(y) terms are negligi-
ble. Then b,P contains terms up to 0(a ) and 0(5), i.e.,
it is the same as the b,PNR of (2.6). To summarize, the
relativistic corrections to the COW phase shift are negligi-
ble if one is interested only in the lowest-order curvature
contribution. Hence the above treatment fills an impor-
tant gap in the earlier treatments which took the rela-
tivistic corrections into account, but which did not treat
the curvature effects obtained above.

But it should be noted that in the above treatment the
effect of spatial curvature was neglected. The contribu-
tion to the phase shift due to this general relativistic effect
is -Kphl, where b, l is the difference in the path lengths of
the interfering beams due to the spatial curvature, l denot-
ing the typical linear dimension of the interferometer
(r,s-l). Then the ratio of this term to the first term in
(2.6) is

a-(R Kp bl/m gl )=(u /gl)(hl/l) .

But

(b,l/l)-(GMl /R c )=gl /Rc

in the Earth's gravitational field. Therefore, a-(u /
c )(l/R). But the curvature contribution in the last term
in (2.6) is smaller than the first term by the factor -l/R.
Hence the contribution due to spatial curvature is smaller
than the above curvature contribution by the factor
-(u /c ) and can therefore be neglected in neutron inter-
ferometry. But it cannot be neglected for interferometry
with massless particles for which u =c.

For a massless particle, the phase shift can, in principle,
be obtained from. (2.8) by setting m =0. Then cop=cKp
and K=Kp/V A, which, of course, represents the "gravita-
tional red-shift. " Therefore,

V 3V 5V
K=Kp 1 — + — +0(V ) .

C 2c 2C

This result can also be obtained from (2.9) by taking the
limit m~0, so that m g/A' Kp ~l/c . By taking the
same limit in Eq. (2.10), we get the corresponding result
for a massless particle:
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KpgrS~0o=-
c2

3gr 5gr
2c 2 c

+O(g'),
co = —BP/Bt and a2= k k, where k =VP. This gives

(2.12)
where curvature effects have been neglected. However,
y/5=g/Rc =1 7X. 10, where y and 5 are defined
above. Hence, O(g ) term is negligible compared to the
curvature contribution. The relevant phase shift can
therefore be obtained by substituting ~=~0(1—V/c ) in
(2.4), with V given by (2.3). This gives, assuming the in-
terferometer to be a. rectangle,

KpgrS KprS
b,P= —

z
—

2 [rV~ —sV~+(s r)V~—) .
c 2c

(2.1 1)

But, in general, the interferometer would fail to be a rec-
tangle due to spatial curvature which, as already men-
tioned, makes a contribution to the phase shift which is
comparable to the second term in (2.11). However, as seen
below, curvature contributions are negligible in optical in-
terferometry and it is therefore not necessary to compute
this contribution.

It is clear that the phase shift (2.11) is smaller than the
phase shift (2.6) for thermal neutron by —(faoo/
rnc )(u/c)-10 ' for visible light. Hence there seems to
be no hope of detecting gravitational effects in optical in-
terferometry, unless the experiment is done on a large
scale, say, by using laser beams between satellites that
form the corners of an interferometer or by using long op-
tical fibers. Even then, only the first term in (2.11) can at
present be detected.

C. Bending effects

The above treatment has ignored the effect of bending
of the beams due to gravity which could be important if
the higher-order effects due to gravity are to be tested by
means of neutron interferometry. As already mentioned,
the relativistic corrections, in this case, are negligible com-
pared to curvature contributions. Also the contribution to
the bending effect due to the curvature is higher order
compared to the lowest-order curvature contribution ob-
tained above. Hence, the bending effect can be treated
nonrelativistically, neglecting also the curvature contribu-
tions to it.

It is easy to obtain the general form of the lowest-order
contribution due to the bending of the horizontal beams.
If there is no bending then the phase difference along the
lower horizontal beam is Ky. Since the bending results in
the wave fronts moving parallel to themselves to first or-
der in g, the change in phase of this beam should be
O((gs) ), i.e., it should be proportional to sos(gs) .
Hence the phase shift due to bending, which should be di-
mensionless, should be

Kogl mgl3

~unbending

P 4 A' Kp

where p is a dimensionless number which must be deter-
mined by a more detailed calculation and l is the distance
between successive crystal planes in a Laue-type inter-
ferometer.

To obtain a more exact procedure that would give this
bending effmt, take the gradient of (2.1), while noting that

III. INTERFEROMETRY WITH
HORIZONTAL AND VERTICAL MIRRORS

An idea which not only gets around the problem of the
bending of the beams due to gravity, but which actually
takes advantage of it, is to use only horizontal and ver-
tical mirrors. Then, assuming that the collision at each
mirror is elastic and neglecting curvature effects,

~
k„~ is

constant for each beam, where the x axis is horizontal
while the z axis is vertical and the interferometer plane is
in the x-z plane. Hence, if each beam travels the same
horizontal distance then the phase shift, in a stationary
situation, is

hP= f k dr= fk,dz, (3.1)

where the integral is around the interfering beams. Also,
when curvature effects are neglected, k, is a function of z
only. Hence the problem of computing hP is purely one
dimensional, so that the bending of beams causes no addi-
tional problem. Interferometers having this feature have
been considered by Steyerl et al. and Chiu and Stodol-
sky. " Such an interferometer is particularly well suited
for UCN for which the bending effects are huge because
of their low velocity (-6 m/sec). However, the previous
treatments have ignored the curvature effects which, as al-
ready seen, are certainly significant for UCN.

We sha11 therefore compute the phase shift, including
the curvature effects for a simple interferometer of the
above type in which only three horizontal mirrors Mp,
Mi, and Mz are used (Fig. 1). Also the treatment here
will be nonrelativistic because, as shown in Sec. IIB, the
special relativistic correction is negligible compared to the
nonrelativistic lowest-order curvature contribution. The
incoming beam is split into two by Mp and the two
beams, after reflections at Mi and Mz, are recombined at
Mp again. Suppose that M& is at a height H~ above Mp

—iit' = (k V)k+mVV.
Bt m

Hence, on substituting the velocity v:tiki—m,

dv BU

dt dt
+(v V)v= —VV=g .

Hence the integral curves of v or k are just the classical
trajectories for a particle freely falling in a Newtonian
gravitational field. It is then straightforward to determine
them and the phase difference for a given geometry of the
interferometer. But it is, of course, necessary to take into
consideration the reflection conditions at the crystal when
cotnputing the phase shift.

The change in the interference conditions within the
crystal'z due to gravity results in a phase shift of order g,
according to a recent study. ' This must be added to the
O(g ) phase shift due to the bending of beams between
the crystal slabs to get the total phase shift due to bend-
ing. In Secs. III and V, we shall discuss ways of getting
around the bending effects so that it is not necessary for
us to compute the phase shift due to bending explicitly.
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m
k, =k,o — (2gz+z2V ),

where k,o is a positive constant. This, of course,
represents conservation of energy under the above as-
sumptions, with k, =k,o at the origin. Hence

m z' m4g'z'
kg=+kgo 1— . I gz+ Vm —

4 4

5m'g'z' 7m "g'z'
3.5

Sask.,s gr"k„"

FIG. 1. Schematic diagram of an interferometer wi.th only
horizontal mirrors Mo, M~, M2, which would be suitable for
detecting gravitational effects using ultracold neutrons.

and Mz is at a height Hz below Mo. Fmm (2.12), for a
stationary situation (Bk/Bt) =0),

(k.V)k =— B„v=— V„+xV +zV, (3.2)

(k.V}k.= — a, V=—m2 '

Vg +xV~+zV~, (3.3}

(k V)k =0, (k.V)k,=— I (g+zV ) . (3.4)

Hence k„ is constant for each beam and therefore (3.1) is
valid. Also, from (3.4),

m
k, B,k,=— I (g+zV ),

which, on integration, yields

V =8 V(0}, V, =8,V(0)=g,
V =B„~v(0), V =8 O, v(0),

V =Q, 'V(0), the origin 0 is chosen to be thc point wh«e
the incoming beam strikes Mo and the»gher-o««
derivatives in the Taylor expansion in (3.2) and (3.3) are
neglected. Since the Oz axis is vertical (as determined by a
Plumb line), V =0. Also from (2.7) V = V~=0. For
simplicity, we shall consider an experiment in which the
lllconllllg bca111 18 Ilcarly vcrtlcal so that 'thc llorlzo11tal

distance x traveled by the beams is negligible compared to
the vertical distance. This also has the advantage that,
since the area enclos& by the interfering beams is very
small, the Sagnac phase shift due to the Earth's mtation is
negligible. A vertical incoming beam can be obtained, of
course, by suitably reflecting the horizontal beam that
comes fmm the reactor. Then (3.2) and (3.3}become

where the + sign in front of k, o corresponds to the direc-
tion of the beanl being up or down and in the power series
expansion in g, only the terms that are significant com-
pared to the curvature term containing V~, for UCN, are
retained. Hence, from (3.1), the phase shift is

5$=2k,o(H I —Hz )— H II+ HI
A k,0

m'g'
3Irl k,o

m'g'
4IIlsk, o

m V~

3fPk, o

6 3H' —H' — g H'+H'
4r'k„' . '

r

7m 10 5
$ H 5 m g

24elok„' . '

Hg —Hg3 3 (3.6)

By varying Hl and Hz, (3.6) can be experimentally veri-

fied, in principle.

IV. GRAVITATIONAL INFLUENCE OF TERRESTRIAI.
OBJECTS ON NEUTRON INTERFEROMETRY

AND GRAVITATIONAL INTERACTION
BETWEEN QUANTUM-MECHANICAL STATES

Any experiment that is sensitive to the effects of the
Earth's tidal force may also be expected to be sensitive to
the gravitational influence of terrestrial objects. This can
be realized by noting that the tidal force per unit mass on
the apparatus is -2GMl/R ——,

'
mGpl where M, p, and R

are the mass, density, and the radius of the Earth and I is
the relevant linear dimension of the apparatus: In the
case of the neutron interferometer I is the separation be-

tween two of its arms. The Newtonian gravitational force
per unit mass on the apparatus due to a nearby iron ball,
is —GMI /Rl ', n GpIRI wh—e—re—MI, pI, and RI
are the mass, density, and radius of the ball. Hence the
ratio of the two forces is plRI/2pl. Since (pr lp}=1.4, it
follows that the two forces are comparable when

(RI/l)-1.
An experiment to measure the gravitational force due

to terrestrial objects, such as an iron baB, in neutron inter-
ferometry, and thereby test the inverse square law of grav-
ity at the quantum-mechanical level, has been proposed
previously. ' A more precise value for the phase shift
than the one given previously, can be obtained from (2.6)
or (3.6), where obviously the terms in g of second and
higher order are negligible. But the curvature terms are
not negligible and, in fact, it may be necessary to extend
(2.6) or (3.6) to include terms that depend on the third-
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and higher-order derivatives of V, for this type of experi-
ment, which is easily done using the general procedure
given. For an iron ball of radius 1 m and an interferorne-
ter with r=0.2 m, s=0.2 m, the phase shift, from (2.6), is
about 3.5)&10 radians for thermal neutrons and for
Hi ——Hz ——0.2 m, from (3.6), it is OA6 radians for UCN,
if the interferometer is almost at the surface of the ball.
In both cases, this effect may be observable, as will be
seen from the limits on sensitivity discussed in Sec. V. In
performing this experiment, the ball may be vibrated
(shaken) with known frequency, so that the corresponding
phase shift, which varies in time with the same frequency,
can be easily isolated.

However, in this and all other proposed gravitational
experiments, as well as the COW experiment that has been
performed, the source of gravity has been "classical, " i.e.,
the atoins constituting the source (e.g., the Earth, iron
ball) are in different mixed states that are so localized that
each atom may be treated as classical as far as the gravita-
tional field it produces is concerned. We shall therefore
consider the case of the gravitational field produced by
quantum fluids. For instance, if some superfluid helium
is brought near the interferometer then, since each helium
atom is in the same pure quantum-mechanical state
{spread out over macroscopic distances), the resulting
phase shift would provide information about the gravita
tional interaction between turo quantum-mechanical states,
namely, that of the helium atom and the neutron.

This phase shift can be immediately computed if it is
assumed that semiclassical gravity, described by

G"'=8~G (4
~

T""
)

%' ) (4 1)

is a good approximation in this case, where 6& is the

Einstein tensor found using the classical metric g&, T
is the quantum stress-energy tensor operator, and

~

%') is
the quantum-mechanical state of the superfluid helium.
Then the treatment given in Secs. II and III would apply
to this experiment with the mass of the superfluid replac-
ing the mass of the Earth. If superfluid helium-4 (densi-
ty=122 kg/m ) is contained in a sphere of radius 1 m
then the phase shift for an interferometer of linear dimen-

sion 0.2 m is 5.5 X 10 for thermal neutrons and
7.2X10 radians for UCN. The latter phase shift is of
observable magnitude, as will be seen in Sec. V.

It is interesting to note that Page and Geilker' have
performed an experiment that refutes (4.1) in the Everett
interpretation of quantum mechanics. Nevertheless, intui-

tively (4.1) appears to be a very good approximation in the
above experiment. Indeed, any violation of the prediction
of (4.1) in the experiment proposed above would provide
the first direct evidence of quantum gravity. This would

imply that the gravitational field of a macroscopic "classi-
cal" source of gravity that seems to obey Einstein's field
equations is only an approximation to the gravitational
field of quantum-mechanical states. One could look for
such a quantum-gravitational effect by doing the experi-
ment, described above, with superfluid helium and then
heating the liquid helium until it becomes normal fluid.
If this results in a phase shift then that would mean that
the gravitational interaction of the neutron with the
quantum-mechanical state of superfluid helium is dif-

ferent from its interaction with the normal fluid, which is
a classical- source of gravity.

V. DETECTION OF THE TIDAL FORCES
OF THE EARTH, MOON, AND THE SUN
USING NEUTRON INTERFEROMETRY

If the COW experiment is performed using a Laue-type
crystal interferometer, ' for which r-10 cm and s —10
cin, then the last term in (2.6) due to the Earth*s tidal
force, on using (2.7) is 1.4X10 for thermal neutrons
(K0 4.35 X 10' m '). At present a phase shift of
2.5X10 radians can be observed and a sensitivity of
4)&10 radians is achievable. ' Hence to detect the
above predicted effect, either the sensitivity has to be in-
creased by an order of magnitude and/or the interferorne-
ter must be built on a larger scale. The biggest possible
perfect crystal interferometer that can be built is about 50
cm X 50 cm (Ref. 17) which we shall assume to be the case
from now on. The above phase shift is then 1.7X10
radians which is observable. For an interferometric exper-
iment with UCN (x0=9X10 m ') for which r-50 cm,
s-50 cm, the above phase shift due to the Earth's tidal
force is 0.82 radians, which is also observable.

The major problem in detecting the above effect, in
both experiments, is that the remaining part of the phase
shift that depends on g is much bigger. Of course, the
detection of the higher-order terms in g would itself be in-

teresting. The 0 (g ) term in (2.6), for instance, is
4.8X 10 radians for thermal neutrons which is observ-
able. However, for UCN it is 5X10 radians which is
huge. Hence, in order to detect curvature effects, it would
be necessary to compensate for the effect that depends on

An elegant way of eliminating the effect that depends
on g, to all orders in g, is to do the experiment on a satel-
lite that is not acted upon by any force other than the
gravitational field. Then the center of mass C of the sa-
tellite would move along the geodesic to a very good ap-
proximation. So if the interferometer described in Secs. II
or III is placed in the satellite with 0 at C then the effec-
tive g =0 at 0, so that only the last term in (2.6) is
nonzero. Of course, in this case also there is no contribu-
tion due to the bending of beams. As the interferometer is
now rotated about an axis through 0 (e.g., Ox or Oz), there
would be a variation in phase shift which is predicted by
the last term in (2.6). Also as the interferometer is
translated so that 0 is at (X,Y,Z) with respect to coordi-
nate axes centered at C, then g (at 0) becomes

2

B+BJp By
2

BxBz ByBz Bz2

to the lowest order, where all derivatives are evaluated at
C. Hence there would be a phase shift due to this g
which is given in (2.6) for a special choice of axes.
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8 V, 8 V,

Ox' ByBz

8 V, =0.
BzBx

Therefore the tidal acceleration, due to the Sun at a point
(x,y,z) on the earth's surface, is

8 V, 8 V, 8 V,

x2 y
gy2 gz2

GM,
(x,y, —'2z) .

R,

We shall assume, for simplicity, that the experiment is
performed during spring or autumn when the Earth's axis
of rotation is perpendicular to the line joining the centers
of mass of the earth and Sun, i.e., the z axis. We shall
then choose the y axis along the Earth's axis of rotation.
If the apparatus is at latitude ((, then the unit vector along
the radius through the apparatus is n = (cosg sing,
sing, cosg cosP ), where P is the angle through which the
Earth has rotated from the position in which the ap-
paratus is closest to the Sun, for which x =0. Also, then

GMsR

Rs
(cosP sing, sing, —2cos1(t cosP),

where R is the radius of the Earth.
Therefore, as the earth rotates, the component of g,

along the y axis is constant while the interferometer,
which is fixed with respect to the Earth, also gets rotated
about the y axis. It would therefore be convenient to
orient the Laue-type interferometer so that two of the
arms are parallel to the y axis. A unit vector which is
perpendicular to these two arms in the plane of the inter-

Another advantage of doing the experiment on a satellite
is that it eli'minates the problem of the influence of terres-
trial objects on the phase shift. It would be desirable to
make the satellite spherically symmetric so that no correc-
tion needs to be made for the influence of the gravitation-
al field of the satellite in interference.

I now show that the phase shifts in neutron inter-
ferometry due to the curvature effects of the Sun and the
Moon are also measurable. In this case it is not necessary
to put the interferometer in a satellite. It will be sufficient
to keep it fixed on the Earth and look for a phase shift
that oscillates in time with periods of about half a day,
since obviously this phase shift is correlated with the
direction of the Sun or the Moon relative to the Earth.

Since the center of mass of the Earth is freely falling to
a good approximation, only the tidal forces due to the Sun
and the Moon, with respect to the center of mass of the
Earth, would contribute to their phase shift. The gravita-
tional potential due to the Sun is V, = —GM, /R, where

M, is the mass of the Sun and R, is the distance from the
Sun. Now choose coordinate axes with origin at the
center of the earth so that the z axis is toward the center
of the sun. Then, at the center of the Earth,

a'V, a'V, Gm, a'V,
x2 gy2 R 3 gz2

and

ferometer is m=(sin(P+P), O, cos(P+P)), where P is the
angle between the plane of the interferometer and the z
axis when /=0. Hence the part of the phase shift that
varies as the earth rotate's is

A' Vp

m AGM, R
cosg[2 cosP cos(P+ P)

A' aoR,
—sing sin(P+P)], (5.1)

to lowest order, where A is the area enclosed by the in-
terfering beams. When the interferometer is in a vertical
plane, P=O. Then the difference between the phase shifts
at noon (/=0) and sunset or sunrise (P=+n./2) is
(3m AGM, R cosP/h' aoR, ). This is —10 cosg radians
for thermal neutrons. For UCN, on substituting g, m in
the g in (3.6), this phase shift is 1.1 cosf radians for
Hi H2 ——5——0 cm. Hence, in both cases, the phase shift
due to the tidal force of the Sun is measurable.

A calculation analogous to the above, for the tidal force
due to the Moon, shows that the corresponding phase
shift varies during a quarter of a day by about 2.6&(10
radians if thermal neutrons are used and about 2.5 radians
if UCN are used. The effect in both cases is measurable.
The tidal forces due to the Moon and the Sun can be
detected quite simply by fixing the interferometer with
respect to the Earth and looking for a phase shift that
varies with time, with a period of about half a day and
then repeating the experiment for different values of the
angle P that was defined above.

VI. ON THE POSSIBILITY OF TESTING
GENERAL RELATIVISTIC EFFECTS

From a general relativistic point of view the curvature
effects discussed in Secs. II—V are due to the "electric"
components Ro;0~ of the curvature. For a stationary,
spherically symmetric gravitational field, Ro;OJ ———(1/
c )8 V/Bx'Bxj in an appropriate coordinate system, to
leading order, where V js the Newtonian potential. Thus
the proposed experiments of Sec. V would measure these
curvature components Ro;OJ. However, the confirmation
of these effects in neutron interference would not consti-
tute a test of general relativity since the same effects can
be obtained for a massive particle using Newtonian phys-
ics as shown in Sec. IIA. On the other hand, the phase
shift for light obtained in Sec. II B cannot be obtained us-

ing Newtonian physics; so the detection of the above cur-
vature components, using optical interferometry, may be
regarded as a test of general relativity. However, as al-
ready concluded, it would be very difficult to do such an
experiment.

But the detection of the magnetic" components Rpfjk
or the components R,zkI, which have not been discussed
above, using neutron interferometry, would constitute a
test of general relativity, since these components have no
Newtonian analog. To discuss, systematically, the contri-
butions due to all the curvature components, it is con-
venient to use the proper reference frame of the inter-
ferometer, which is a generalization of the Fermi-normal
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coordinate system that undergoes acceleration and rota-
tion. In this coordinate system, the metric coefficients
are, ' to second order in the spatial coordinates x',

g~ ——1+ a x'+ (a JxJ)'+ (Qjx j)'
c2 j c4 c2

02
k+Rp pkx'x2 J

k & j k
gp& —6&jk

—
3 Rpj&kx x

c
I mgtj= —~tj+ 3 Ragmx x

(6.1)
I

where a' and 0' are the acceleration and angular velocities
of the apparatus relative to the local inertial frame. If the
apparatus is fixed with respect to the Earth, then —a' is
the acceleration due to gravity and 0' is the angular ve-

locity of the Earth. If the apparatus is fixed with respect
to a freely falling satellite that is made nonrotating by
means of gyroscopes then a'=0 and Q'=0.

On defining h&„=g&„—g&~ where i1&„——diag(1, —1,
—1,—1), the change in phase along each beam due to
the gravitational field to first order in h&„ is '

—,
' fh+„p"(dx "/dt )dt where p" is the "energy-

momentum" and the integral is along the unperturbed
classical trajectory. It follows then from (6.1) that the
contribution of R~zk to the phase shift is decreased by
O(v/c) while the contribution of R,zkt is decreased by
O(v /c ) compared to the contribution of Rp;pj, where v

is the velocity of the interfering particle. In the case of
optical interferometry, however, since v =c, all three
types of curvature components will contribute equally to
the phase shift. If the Earth s gravitational field is ap-
proximated by the Schwarzschild metric, then the nonzero

components of Rp;pj and Rjkt have the same order of
magnitude. But the contribution of the latter is much
smaller than the contribution of the former to the phase
shift of neutrons because v /c is 8.4X10 " for thermal
neutrons and 4&10 ' for UCN.

According to Mashhoon and Theiss' there is a surpris-
ingly large contribution to the Rp;pj components, in a
frame that is parallel transported along a geodesic in the
gravitational field of a rotating spherical object, due to the
angular momentum of this object. This effect, due to the
Earth's gravitational field, can be detected in principle as
follows: Suppose that a satellite is freely falling around
the Earth in a near Earth circular orbit of radius R whose
plane makes an angle a with the equatorial plane.
Ox'x x is a Cartesian frame at the center of mass 0 of
the satellite, which is assumed, to follow a geodesic.
There are gyroscopes along the axes Ox', Ox, Ox so that
the Cartesian frame is parallel transported along the
world line of 0. Also a clock at 0 measures proper time ~.
Suppose that when ~=0, Ox ' points away from the center
of the Earth and Ox is in the direction of motion of 0.
The interferometer may be placed on the Ox axis at a dis-
tance D from 0 which is much bigger than the size of the
interferometer. Suppose also that the interferometer is in
the Ox 'x plane, symmetrically about the Ox axis, so that
the phase shift due to the usual tidal acceleration of a
spherically symmetric gravitational field would be con-

stant in time. But there would then be, at the interferom-
eter, according to the results in Ref. 19, an additional tidal
acceleration gM-(3DJcop/MR )sinasincorcoscopr to the
lowest order in G, in the Ox ' direction, where
cop ——(GM/R )'~, to=top(1 3G—M/c R) '~ and M,J are
the mass and angular momentum of the Earth. If D = 10
m and a =m /2 radians (polar orbit), then

gM
———5.4X10 [sin2cppr +2(co cp—p)icos cops], neglect-

ing O((co —cop) ). The phase shift due to g~, to low-
est order, is m gMA/iii imp

——8X10 [sin2copr+2(co
—cpp)'7 cos copr] radians for thermal neutrons, where m, irp

are the mass and the wave number of the neutron and the
area 2 enclosed by the beams is assumed to be 0.25 m .
For UCN, if Hi Hq ——0.5 m——in (3.6) then the phase shift
is 0.37 [sin2copr+2(co —cop)1 cos cop~] radians. Both phase
shifts are of observable magnitude; however it would be
difficult to isolate the part of the phase shift proportional
to sin2cop1 from the Newtonian tidal force effects which
also have the same frequency 2cop. Indeed, it is necessary
to orient the axes at &=0, as described above, to an accu-
racy of less than 0.02 radians in order that this term is not
masked by a component of the Newtonian tidal accelera-
tion. If this accuracy cannot be achieved, then one can
only hope to detect the part of the phase shift proportion-
al to (ai —cop)r. But since (co —top)=1. 3X10 ' sec
one has to wait for a time interval r-10' sec in order
that this secular term is of observable magnitude for
thermal neutrons. One can also use other accelerometers,
instead of the neutron interferometer, in the experiment
described above.

The Earth's gravitational field also has nonzero Rp;ji,
components because of its Lense-Thirring field. The
phase shift due to these components is one contribution to
the phase shift ( mc /iit') IIigp;dx

' in ' neutron inter-

ferometry, where the integral goes around the interfering
beams and gp; are given by (6.1). But this, is too small to
be detected. However an experiment was proposed by the
author'" to detect the Lense-Thirring field of the Earth by
placing the interferometer on a platform which is made
nonrotating relative to the distant stars by means of tele-
scopes. Then the interferometer is rotating relative to the
local inertial frames with angular velocity Q (say). Ac-
cording to general relativity, '

Q = —(1/2c ) f X u —(3GM/2r c ) r X u

+(GI/r c )[QE (3QE r/r )2], —
which must be substituted into (6.1), where M, R, I and

Q@ are the mass, radius, moment of inertia, and angular
velocity of the Earth, r is the position vector, and u is the
velocity of the interferometer relative to axes fixed to the
center of the Earth and f is its acceleration relative to lo-
cal inertial frames. The first two terms in Q are due to
the Thomas precession and the geodetic precession,
respectively. The last term is due to the Lense-Thirring
field. The phase shift in neutron interferometry due to
the gp; components, to the lowest order, is 2mQ„A/ft,
where 0„ is the component of 0 normal to the plane of
the interferometer. The contribution to the phase shift
due to the last term of gp; in (6.1) is negligible compared
to the above contribution.
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For an experiment performed in the laboratory, r =R,
u=QEX r, and f = —g, where the acceleration due to
gravity g= —(GM/R )r. Then

Q = (8—GM/5Rc )Q~+(4GM/5R c )QEsingr,

where tP is the latitude. The phase shift is

(8GMmA/Mc R)( —2Q@„+Q~singcos8),

where 8 is the angle between the normal to the plane of
the interferometer and the vertical and QE„ is the com-
ponent of QE normal to the interferometer plane. If the
experiment is performed at the South pole (g= ir/—2) or
the North pole (g=ir/2), then there would be no contri-
bution due to the Thomas precession or the geodetic pre-
cession, since v=0. Then the corresponding phase shift

EPACT
—— (8G—MmQ@„A/5' R) is entirely due to the

Lense-Thirring precession. When A =0.25m, b,/AT
=3.2X10 radians, which is three orders of magnitude
smaller than the currently observable phase shift.

If the experiment is performed in an orbiting satellite,
then f =0. Also for a circular orbit

~

u
~

=(GM/r)'
Suppose, again, that the interferometer is placed on a plat-
form which is made nonrotating relative to the distant
stars by means of telescopes. For a polar orbit, if the
plane of the interferometer is parallel to the plane of the
orbit, then only the geodetic precession will contribute to
the phase shift, which is then APG-3(GM/
r) ~ (mA /Arc ). For an orbit at an altitude of about 500
km, and for an interferometer with A =0.25m,
hpG ——8.5 X 10 radians. If the interferometer plane is
perpendicular to the orbital plane, then there would be
only the Lense-Thirring phase shift (4GMIA /
5fic r)( QE„+3 Qs—Ei gncso)8. If the plane of the inter-
ferometer is perpendicular to the Earth's axis of rotation
(Qs„——Q@,8+P=rr/2) then this phase shift is 1.6
X 10 ( —1+3 sin g) radians for a near Earth orbit
(r=R)

An important feature of this proposed experiment is
that the use of the telescopes makes it nonlocal. It is for
this reason that the above phase shift, due to 0, is much
bigger than the contribution from the curvature com-

ponents Ro,jk. This phase shift is independent of the ve-
locity of the beam relative to the interferometer, apart
from relativistic corrections that are negligible for neu-
trons. But this experiment may be done with UCN on a
larger scale than if thermal neutrons are used. Also by us-
ing a higher intensity beam, e.g., interferometry with heli-
um atoms, ' it may be possible to increase the'sensitivity.
The high intensity of the beams which is possible in opti-
cal interferometry, enables a phase shift —10 radians to
be detectable. But the above phase shift gets reduced for
light by the factor (fico/mc )-10 . The performance of
the proposed experiments in Secs. IV and V, which can be
done much more easily than the experiments proposed in
this section, would enable a fresh assessment of the feasi-
bility of the latter. Also, the former feasible experiments
to detect the curvature effects, together with a test of the
equivalence principle in a relativistic context, can be re-
garded as an indirect test of general relativity at the
quantum-mechanical level. Recently, tests of the relativ-
istic equivalence principle were proposed for charged par-
ticle interferometry in the presence of the electromagnet-
ic and gravitational fields. The latter effects seem to be
too small to be measured in electron interferometry. It is
desirable to develop a proton interferometer, using which
the new effect in the presence of the electric and gravita-
tional fields may be measurable.

In conclusion, it may be noted that the results of this
paper suggest that the COW experiment is just the first of
a series of experiments that can be done to detect the in-
fiuence of gravity, which would make interferometry a
serious probe of gravity and not just an amusing example
of the application of quantum mechanics to the gravita-
tional field.
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