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The “diquark” constituents of elementary hadrons in topological particle theory are shown to be a
source of parity asymmetry. Electroweak-boson coupling to diquarks is unsymmetrical because of
the junction-line end within each diquark. Also a consequence of the junction line is a relation be-
tween electric charge and topological “color” similar to that proposed by Han and Nambu for stan-

dard color.

In the standard electroweak model,! a preferred status
is arbitrarily assigned to left-handed vector bosons, and in
all Lagrangian generalizations of the standard model the
breaking of parity symmetry continues to be ad hoc. To-
pological bootstrap theory also provides a standard-model
generalization,?> but from the bootstrap standpoint no as-
pect of nature is supposed arbitrary. This paper identifies
in topological particle theory a nonarbitrary orientation
asymmetry at the lowest level of the topological expansion
which, although producing no strong-interaction parity
violation, leads to unsymmetrical electroweak amplitudes.
The root of the asymmetry lies in hadron junction lines
and the coupling of electroweak bosons to “diquarks.”
Elementary hadrons are built from “quarks” and “di-
quarks,” and each diquark constituent of a hadron con-
tains the end of an unsymmetrical junction line which af-
fects electroweak coupling even though the junction line is
invisible in strong interactions. The asymmetry, in fact,
stems from this invisibility.

Topological particle theory elevates Feynman graphs to
a status more general than that of a Lagrangian and em-
bellishes the graphs so the flow of all particle properties,
not only momentum, achieves topological representation.
The bootstrap seeks a raison d'étre through consistency
for all features of all particles. Although achievement of
this objective remains incomplete, much of the usual arbi-
trariness in particle theory has by now been eliminated.
Every Feynman graph is embedded in a globally oriented,
bounded, two-dimensional “classical” surface* with graph
ends on the surface boundary. Other lines within the sur-
face or on its boundary carry spin, electrospin (similar to
the isospin of standard theory), baryon number, lepton
number, quark generation, “color,” and lepton generation.
Chirality is represented by local surface orientation.

Although we shall exhibit in Fig. 1 an example of all
topological structures except those corresponding to quark
and lepton generations and to quark color, the aggregate

may overwhelm a reader exposed for the first time to to- .

pological representation of particles. So, by way of intro-
duction, we call attention to a simpler but related scheme
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employed by ’t Hooft> in connection with U(N) Yang-
Mills theory—where each vector field is an N X N matrix.
It was found useful by ’t Hooft to associate each Feynman
line belonging to a vector boson with two oppositely
directed lines each carrying an N-valued index. A con-
served internal quantum number flows along these auxili-
ary lines in the same sense as quark flavor is carried along

meson

Junction (boson) line

————
——— fermion line
wrmanmsnsnase  electrospin line

momentum (Feynman) line
momentum-copy line

++-4++  poundary (not fermion line)

FIG. 1. “In”-baryon— ‘“out”-baryon zero-entropy classical
surface for coupling to a meson.
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lines introduced earlier by Harari and Rosner.’ Harari-

Rosner quark-line diagrams did not include a Feynman
graph to transport momentum, and ’t Hooft’s diagrams,
although implicitly including the Feynman graph, did not
include lines to transport spin, but the idea behind the de-
vices of both ’t Hooft and Harari-Rosner is maintained in
the more general structures of topological particle theory.

An extension is our interpreting as topological orienta-
tions those indices attached to auxiliary lines. The two-
valued index attached to our electrospin lines,® for exam-
ple, describes the local line orientation—compared to the
global orientation of the surface in which the line is em-
bedded. The “twoness” of electrospin (isospin) is then no
longer arbitrary and the source of both SU(2) symmetry
and of symmetry breaking lies in topological-orientation
reversals, as will be reviewed in what follows.

Spin, in topological particle theory, is carried by fer-
mion lines along the boundary of the classical surface.
The “twoness” of the Pauli spin index, just as for the elec-
trospin index, corresponds to local fermion-line orienta-
tion, but each fermion line divides at its midpoint into
two halves (usually associated with two different particles)
which can be independently oriented. Spin is therefore
not a conserved quantum number. Fermion lines are
nevertheless continuous and correspondingly carry a con-
served fermion number f, the direction of whose flow re-
flects the classical-surface global orientation, as will be ex-
hibited when we discuss Fig. 1. For strong-interaction to-
pologies, both halves of any fermion line share extra in-
herited orientations amounting to a flavor index; such fer-
mion lines thereby can be described as “quark lines.” But
we must be careful to distinguish the quark half of a fer-
mion line when the other half belongs to a nonhadron. A
fermion half line belonging to an electroweak boson lacks
any generation index and should not be called a quark.
An elementary electroweak boson in topological particle
theory includes the ends of two different fermion lines
with opposite-induced orientations® as well as the ends of
two electrospin lines.

“Quark flavor” is built from electrospin orientation in
combination with “quark-generation” orientations (not to
be discussed in this paper). Electric charge of topological
quarks connects to electrospin and, as on any half of a
fermion line, takes the values 0,1; development of an
effectively-fractional quark electric charge relates to
quark color and will be explained toward the end of our
paper. We defer discussion of color to that point.

Half a decade ago extension of Harari-Rosner quark-
line diagrams to baryons led several workers to the idea of
junction lines’ along which there meet three smooth
pieces of the classical surface.* Also appearing in the
classical surface are lines that control chirality>—in a
manner reviewed below. Junction lines, fermion lines,
electrospin lines, and momentum lines all end in clusters
in a pattern illustrated in Fig. 1—an example we propose

to examine in detail. A cluster of line ends, including a !

single momentum-line end which divides the remaining
line ends into two subclusters called “half” and ‘“an-
tihalf,” constitutes an elementary particle. Global orien-
tation of the classical surface is responsible for the general
feature that every elementary particle comes in two halves

of opposite orientation. This feature was already an
essential property of Harari-Rosner and ’t Hooft dia-
grams.

Junction lines have recently been renamed “boson” lines
because, by virtue of not dividing into two separately
orientable portions, they cannot carry spin. (We shall here
use the names boson line and junction line interchange-
ably.) Boson lines are continuous and correspondingly
carry one unit of a conserved “boson number” b in a
direction dictated by the classical-surface global orienta-
tion. As explained in Ref. 9, linear combinations of boson
and fermion number are identifiable as the familiar
baryon and lepton numbers: B =+f ++b, L= %f+-;—b.
(Readers are cautioned not to interpret b as “number of
bosons.” A baryon, for example, has b=—1 with
S=+3)

An arrow inherited from the classical-surface global
orientation can be placed on any fermion or boson line so
as to indicate the flow direction of f or . The head of a
line then carries + 1 unit of f or b while the tail carries
—1 unit. The global-orientation arrows are prominently
featured in Fig. 1. Elementary-hadron halves may be
characterized either as a fermionic quark (g) or a bosonic
antidiquark (d). The quark includes one fermion-line
head (f =+1) and no boson-line ends (b =0). The an-
tidiquark includes one boson-line head (b'=+41) and two
fermion-line tails (f = —2). This perhaps puzzling com-
bination will be explained by Fig. 1. Elementary-hadron
antihalves, § and d, have orientation reversed with respect
to halves.

Elementary hadrons then fall into the four half-antihalf
families ¢, qd, dg, and dd. In this paper we shall refer
to g as an elementary meson, to ¢d (d7) as an elementary
outgoing (ingoing) baryon and to dd as an elementary
“hexon” (six line ends in addition to the Feynman end).
Readers are cautioned that physical mesons and baryons
are only remotely related to their elementary counterparts;
details of the relationships are developed in Ref. 10. This
paper is concerned with elementary interactions of ele-
mentary particles—the analog of a Lagrangian for “bare”
fields. Even though lacking any corresponding local field,
our elementary hadrons have status similar to that of ele-
mentary leptons and electroweak bosons.

Figure 1 represents an elementary interaction between a
97 (meson), a dq (in baryon), and a gd (out baryon). There
is a single boson line but four separate fermion lines. The
qq consists of two oppositely-directed fermion ends to-
gether with its Feynman end, while the gd consists of
three fermion heads and one boson tail. Each fermion or
boson end has an accompanying electrospin end.

Arrows on fermion and boson lines reflect global orien-
tations of each separate smooth sheet of the classical sur-
face, these orientations being coordinated so as to induce
the same orientation of any junction line that unites them.
A single overall global orientation then controls all in-
duced fermion and boson arrows. In Fig. 1 the global
orientation of each separate sheet may be read from the
arrows along its boundary—induced arrows on fermion
lines and on the junction line. Each sheet is divided into
locally oriented patches which we discuss later.

Figure 1 also shows the division of a gd (outgoing
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baryon) by its Feynman (momentum) line into quark half
plus diquark antihalf. The fermion head isolated on one
side of the momentum line (the lower side as drawn) is the
quark half, while the collection of two fermion heads and
one boson tail, lying on the other (upper) side of the
momentum line, constitute the diquark antihalf.

Because the focus of this paper will be on diquarks, we
call attention to the lightly dashed lines within the di-
quark feathers of Fig. 1, which are labeled as
“momentum-copy” lines. These lines were introduced in
connection with chirality? and will be important to our
story. In spite of their name, momentum-copy lines do
not carry momentum, but their location on a diquark
feather parallels that of the gd momentum line on the
quark feather. Notice that each fermion line begins and
terminates at the end either of a momentum line or of a
momentum-copy line.

Figure 1 presents an example of a topology without
complexity—a characteristic described as “zero en-
tropy”—but many of its features persist in topologies of
arbitrary complexity. Each oriented electrospin line, in
particular, always connects the head of a fermion or boson
line to the tail of a fermion or boson line. Reference 6 has
characterized the electrospin orientation as ¢ (“charged”)
if it agrees with its associated fermion or boson orienta-
tions. When there is disagreement, the electrospin orien-
tation is designated as n (“neutral”). As illustrated in Fig.
1, any fermion end can be either ¢ or n, but hadronic bo-
son ends are always c (Ref. 4). This latter feature relates
to the invisibility of boson lines in strong interactions, as
discussed below and is responsible for the breaking of
SU(2) fermionic electrospin symmetry.® Let us now re-
view the broken-SU(2) story as an introduction to the
breaking of parity symmetry.

For all strong-interaction topologies and for interac-
tions among nonhadrons, electrospin lines with one end

fermionic invariably have the other end also fermionic. .

This condition is required by consistency at the lowest
levels of topological complexity and then is perpetuated
by the connected sums which generate higher levels. A
two-valued fermion electrospin may then be defined,
which comes with a c<>n (discrete) symmetry [which im-
plies a continuous SU(2) symmetry].® This symmetry is
broken by any topology containing an electrospin line
with one end fermionic and the other belonging to a had-
ronic boson end, because the orientation of such an elec-
trospin line cannot be reversed; it is frozen at c. The fer-
mion end of such a line cannot participate in a general
fermionic c<>n inversion.

Why must there be any fermion-boson electrospin con-
nection? The observed electric charges of baryons, span-
ning the interval 2, 1, 0, —1 rather than 3, 2, 1, 0, imply
that photons couple to bosonic electrospin as well as to
fermionic, and we show in this paper how such coupling
can occur. From the bootstrap standpoint one requires a
reason why such coupling must be present. We do not at-
tempt here to provide such a reason. The photon end of
an electrospin line being fermionic, it follows that fer-
mionic electrospin symmetry is broken by the coupling of
electroweak bosons to diquarks. This paper will demon-
strate how such coupling also breaks parity symmetry.
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How does parity appear in topological theory? Each
fermion end carries, besides electrospin, a two-valued
chiral degree of freedom.! In the Weyl basis for Dirac
four-spinors associated with fermion lines, the two upper
components, with projection operator 5(1+ys5), are desig-
nated “ortho,” while the two lower components, projected
by 5(1—vs), are “para.” The choice between ortho (o)
and para (p) depend on the local orientation of that
classical-surface patch which touches the fermion line
near its end. As shown in Fig. 1, o (p) means agreement
(disagreement) between local and global classical-surface
orientations. For strong interactions and for interactions
among nonhadrons there is a global 0<>p symmetry corre-
sponding to parity invariance: Simultaneous reversal of
all patch orientations in contact with fermion lines, to-
gether with inversion of all three-momenta, leaves an am-
plitude unchanged. Parity reverses all fermion chiralities.

What about classical patches touching junction lines?
Strong-interaction topologies are all built by connected
sum from zero-entropy surfaces such as that of Fig. 1,
where each fermionic oriented patch is isolated from
boson-line contact by either a momentum line or a
momentum-copy line.'!! Quark fermion lines are isolated
by the former, while diquark fermion lines are isolated by
the latter. This isolation of fermion patches from boson
lines is shown in Ref. 8 to persist throughout all strong-
interaction topologies and allows the parity-symmetry
operation to ignore classical patches that touch boson lines.
For purely electroweak topologies—describing interaction
among nonhadrons—a similar boson-line isolation occurs,
parity inversion again being definable for purely fermionic
patches. In this latter case, a Feynman line always
separates boson patches from fermion patches.

Reference 8 proposed not locally orienting classical
patches that touch boson lines (e.g., the three central
patches of Fig. 1), but electroweak diquark interactions
render such a rule untenable. Electroweak bosons are
built from a pair of fermion-antifermion ends, and we
shall show that a patch touching an electroweak boson
sometimes will also touch the bosonic constituent of di-
quark. Now, as discussed in Ref. 4, the rules of zero en-
tropy preclude any hadronic degrees of freedom being at-
tached to boson lines. All hadron selection rules must re-
side in attributes of their fermion (quark) constituents. In
other words, boson constituents of hadrons must be invisi-
ble at zero entropy. We must assign, once and for all, a
fixed orientation to classical patches that touch hadronic
boson lines, in the same sense that electrospin lines at-
tached to hadronic boson lines have a fixed orientation
(c). We adopt the rule that hadronic boson lines invari-
ably carry an o label; that is, as in Fig. 1, classical patches
that touch hadronic boson lines are always locally orient-
ed in agreement with the global classical-surface orienta-
tion. Whenever a fermion line and a hadronic boson line
touch the same classical patch, parity symmetry is broken
because the o-p degree of freedom of the fermion end can-
not be reversed. The fermion end can only have o chirali-
ty.
y We shall find it is maintenance of meaning for hadron
electric charge that requires fermion and boson lines to
touch the same classical patch. If the total electric charge



1582 G. F. CHEW AND V. POENARU 30

of a hadron is to be the sum of its constituent charges, the
topological expansion must contain exactly one term cou-
pling any ¢ hadron constituent to a cc vector electroweak
boson (both of whose electrospin ends are c¢).!*> The pho-
ton is such a boson and c¢ can be read as “charged” be-
cause the photon couples to electric charge. The photon
cannot couple to an n constituent; hence such a constitu-
ent carries zero electric charge. A total baryon charge is
the sum of three fermion (quark) charges, each of which
may be O or 1, plus a boson charge of —1. (Figure 1
shows why the boson orientation opposes the three fer-
mion orientations.) How can the topology provide exactly
one photon coupling to each ¢ constituent and no more?
A preliminary consideration is that the classical sur-
face, in order to allow coupling to all four constituents,
must be more complex than that of Fig. 1, where the
Feynman line is accessible to the quark but not to the fer-
mion constituents of the diquark—these lying on feathers
different from the feather carrying the Feynman graph.
We require a single-sheeted surface as discussed in Ref.
13, but it has recently become appreciated that the propo-
sal of Ref. 13 is inadequate. The reason is that a
fermion-line boundary segment must pass continuously
from the electroweak boson to the hadron in order to
“transfer” the electroweak-boson spin and chirality. We
illustrate this latter requirement in the lower portion of
Fig. 2, which shows the “quark half” of the baryon. This
portion is unchanged from Ref. 13 and is the same as a
meson half. It is the “diquark half,” to be discussed
below, that requires modification. Only fermion lines are
involved in the lower part of Fig. 2, and there is mainte-
nance both of parity and electrospin symmetry. Reference
2 has pointed out that an electroweak boson is a vector

(total spin 1) if its momentum line is a patch boundary,

i.e., if one of its fermion ends is o and the other p, being
right- (left-) handed if its fermion head (at the head of a

“‘out'’ baryon

— —— — momentum (Feynman) line

Anman~~n~~  electrospin line

~——p—— fermion line

FIG. 2. (Lower) Electroweak-boson coupling to quark.
(Upper) Passive diquark according to Ref. (13). (Figures in Ref.
13 show momentum-copy lines in “active” location.)

fermion line) is o (p), while its fermion tail is p(0). The
two ends touch patches of opposite local orientation.
When these two patches have the same orientation, both o
or both p, the electroweak boson carries zero total spin
and has “scalar” coupling to the quark: +(1+ys) if
0o and +(1—ys) if pp. [Vector couplings are 7#-;—( 1+75)
if op and y#%( 1—ys) if po.]

The diquark topology proposed in Ref. 13 is unable to
accommodate electrospin coupling to the boson constitu-
ent because this constituent cannot absorb the spin and
chirality of the electroweak boson. As in Fig. 2, there
must be continuous fermion lines with one end in the elec-
troweak boson and the other end in the hadron. The spin
chirality of the electroweak boson, when coupling to a di-
quark, must always transfer to one of the fermionic con-
stituents, regardless of which constituent supplies the elec-
trospin. The full story here involves hermiticity (i.e., uni-
tarity) and will be exposed elsewhere. Let us here simply
take as a postulate that any elementary particle involved
in an electroweak interaction shall have a fermion-line
(boundary) connection to an electroweak boson.

The single-sheet baryon-current topology of Ref. 13 (see
Fig. 2) is planar with a single connected boundary for the
classical surface after a cut is made along the junction
line. A single boundary component remains after any in-
sertion of the electroweak boson according to the forego-
ing rule. Given the principle that electrospin lines do not
cross Feynman lines it is then impossible for electrospin
lines to connect the ends of the diquark’s boson line to the
fermion ends within the electroweak boson. The simplest
diquark topology able to do the job is that of Fig. 3(a),
where there are rwo disconnected boundary components
after a cut along the junction line. (The three displayed
segments of junction line are to be identified with each
other.) The two “fermions” within the diquark are here
distinguished from each other, one being disconnected
(when a cut is made) along the junction line from the sin-
gle fermion on the other side of the momentum line. No-
tice that the topology of the passive “connected fermion”
in Fig. 3(a) is locally the same as in the zero-entropy to-
pology -of Fig. 1. Because no fermion lines in Fig. 3(a) lie
in a patch that touches the junction line, there is no viola-
tion of parity symmetry, although c<>n (fermion) elec-
trospin symmetry has been broken: only cc electroweak
bosons can couple to the boson-line electrospin.

Figure 3(b) couples the electroweak boson to the elec-
trospin of the “disconnected fermion” within the diquark.
Here both parity and electrospin symmetries are main-
tained. The passive connected fermion remains as in Fig.
3(a), and the junction line now also is passive.

How does the electroweak boson couple to the connect-
ed fermion within the diquark, which so far has remained
passive? The disconnected fermion and the junction line
now are both passive. Remembering that the momentum
line of a vector boson separates patches of opposite local
orientation, we achieve through Fig. 3(c) or Fig. 3(d) a
unique topology for right- or left-handed vectors, respec-
tively. By reversing orientation of the patch that does not
touch the boson line, Fig. 3(c) or Fig. 3(d) also can accom-
modate an ortho-ortho electroweak scalar boson (the bo-
son momentum line now separates patches of the same lo-
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FIG. 3. Electroweak-boson coupling to diquark. (a) Electro-
spin coupling to junction line (spin-chirality coupling to discon-
nected fermion). (b) Electrospin (and spin-chirality) coupling to
disconnected fermion. (c) Electrospin and right-handed spin-
chirality coupling to connected fermion. (d) Electrospin and
left-handed spin-chirality coupling to connected fermion.

cal orientation), but neither topology allows para-para, so
parity symmetry is violated. There is a 1+ys “scalar”
coupling to the connected fermion, but no 1—¥s5 coupling.
Parity violation has arisen because a fermion line and a
boson line touch the same patch.

Two questions could be raised at this point:

(1) Why did we not insert the disconnected portion of
boundary and junction line into a patch isolated from any
fermion line? The answer is that two equivalent such
patches are available [see Figs. 3(c) and (d)] so we would
fail to achieve a unique vector coupling, and electric
charge would lose meaning for baryons.

(2) Why do we insist on coupling scalar as well as vec-
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tor bosons to hadrons? Here we recall the bootstrap
reasoning of Ref. 3 which related a scalar boson having
vacuum quantum numbers to a small violation of unitari-
ty within the strong-interaction S matrix. It was essential
that such a scalar couple to hadrons, the coupling con-
stant being of order e, and no way was found to introduce
the scalar except as one member of a boson multiplet that
includes vectors. Such reasoning gives more urgency to
hadronic scalar-boson coupling than to hadronic vector-
boson coupling.

The diquark electroweak couplings proposed in Fig. 3
amplify the notion of topological color introduced in Ref.
4. Color 1 was there assigned to the fermion constituting
the quark half of a hadron, while colors 2 and 3 were as-
signed to the two fermions of a diquark half. Although
the shorthand notation of Fig. 4 places color 2 “close” to
the boson line, within strong-interaction topologies colors
2 and 3 have symmetrical status. The electroweak propo-
sal of this paper now breaks the 2-3 color symmetry, it be-
ing natural to designate by color 2 the disconnected fer-
mion within the electroweakly interacting diquark. The
connected diquark fermion then carries color 3.

Electroweak vector-boson couplings to hadronic fer-
mions with color 1 and 3, have the same electrospin-
symmetry form as their coupling to nonhadronic fer-
mions. But cc vector bosons (both halves carry a c¢ label)
couple anomalously to color 2. Here two topologies must
be added, one normal but the other controlled by boson-
line electrospin which is always ¢ at both ends regardless
of the electrospin carried by the color 2 fermion line. The
opposite boson orientation furthermore, gives a minus
sign to the anomalous coupling. A normal cc vector-
boson coupling to a (;) fermion can be characterized as
proportional to (}), while the anomalous coupling is pro-
portional to (=}). Thus the total photon coupling to color
2 has the form

1
0

—1
-1

0
—1

~+

b

while the coupling to colors 1 and 3 is (). Such a scheme
was long ago suggested by Han and Nambu'* for other-
wise standard quarks. Under circumstances where an
average is to be taken over all three colors, the result is an
effective coupling (/3 ) to each hadronic fermion.

Scalar electroweak bosons, when cc, also couple
anomalously to color 2 but further exhibit parity-violating

“'Color”’ 1 —-
SR ——
2 >—
3 —

FIG. 4. Shorthand representation of topological color for the
three fermion constituents of a baryon.
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coupling to color 3 regardless. of their electrospin. Ele-
‘mentary vector bosons do not violate parity through direct
couplings, - although interaction with scalars ultimately
will cause physical vector bosons to distinguish left from
right.

Given the significance of junction lines and the fact
that standard field theories lack analogous ingredients
(quark fields are recognizably analogous to the ends of
quark lines), it is appropriate in conclusion to recall the
bootstrap raison d'étre of junction lines. Once fermion
lines are located along the boundary of a classical surface,
a unitarity consideration uncovered by Stapp!’ makes
junction lines unavoidable. In the absence of junction

lines and consequently with a smooth classical surface, all -

elementary particles would consist of a Feynman end plus
two oppositely directed fermion-line ends; all elementary
hadrons would be mesons. But then at the lowest level of
topological complexity—the zero-entropy level where all
Feynman graphs are planar and o-p labels are con-
served—each closed Feynman loop is accompanied by a
single fermion loop which comes with the minus sign
characteristic of fermi statistics. The contraction of
closed loops, an essential characteristic of zero entropy,
would then be inconsistent. There would be conflict at
the base of the topological expansion with the positivity
requirements of unitarity.

The way out is to include the possibility of a positive-
sign bosonic “diquark loop,” which requires junction

" G. F. CHEW AND V. POENARU 30

lines.* As noted above, the “chiral” and “electro” orienta-
tions of hadron junction lines must be “frozen,” and this
freezing we have seen here to break parity as well as elec-
trospin symmetry.

Although this paper has focused on electroweak-boson
coupling to diquarks when quark lines undergo no switch
in color (i.e., 2—2, 3—3), it is necessary, also to accom-
modate electroweak coupling as quark color switches
(2—3, 3—2).1' The classical surface then remains as
described here, but charge-conjugation symmetry as well
as parity symmetry becomes broken. The color-diagonal
electroweak couplings described in this paper do not
violate charge-conjugation symmetry. :

ACKNOWLEDGMENTS

Extensive contributions from J. Finkelstein are reflected
in the contents of this paper. We also acknowledge useful
discussions with D. Issler and B. Nicolescu. This work
was supported in part by the Director, Office of Energy
Research, Office of High Energy and Nuclear Physics,
Division of High Energy Physics of the U.S. Department
of Energy under Contract No. DE-AC03-76SF00098. A
portion of the work was carried out at the Laboratoire de
Physique Théorique des Particules Elémentaires, Univer-
sité Pierre et Marie Curie, the hospitality of whose Direc-
tor, R. Vinh Mau, is most gratefully acknowledged.

*Currently on leave at Université Pierre et Marie Curie, Labora-
toire de Physique Théorique des Particules Elémentaires, 4
Place Jussieu, 75230 Paris Cedex 05, France.

1S. Weinberg, Phys. Rev. Lett. 19, 1964 (1967); A. Salam and J.
C. Ward, Phys. Lett. 13, 168 (1964).

2@G. F. Chew and J. Finkelstein, Phys. Rev. Lett. 50, 795 (1983).

3G. F. Chew, Found. Phys. 13, 217 (1983); Phys. Rev. D 27, 976
(1983).

4G. F. Chew and V. Poénaru, Z. Phys. C 11, 59 (1981).

SH. Harari, Phys. Rev. Lett. 22, 562 (1969); J. Rosner, ibid. 22,
689 (1969); G. ’t Hooft, Nucl. Phys. B72, 461 (1974).

6G. F. Chew and J. Finkelstein, Phys. Rev. D 28, 407 (1983).

7G. C. Rossi and G. Veneziano, Nucl. Phys. B123, 507 (1977);
K. Konishi, ibid. B131, 143 (1977); H. P. Stapp, Nuovo

Cimento 46A, 37 (1978); F. J. Capra, Phys. Lett. 68B, 93
(1977).

8G. F. Chew and J. Finkelstein, Z. Phys. C 13, 161 (1982).

9G. F. Chew, J. Finkelstein, and D. Issler, Report No. LBL-
17189, 1983 (unpublished).

10G, F. Chew, D. Issler, B. Nicolescu, and V. Poénaru, Orsay
Report No. IPNO/TH 84-24 (unpublished).

113, Finkelstein, Z. Phys. C 13, 157 (1982).

12G, F. Chew, J. Finkelstein, R. E. McMurray, Jr., and V.
Poénaru, Phys. Rev. D 24, 2287 (1981).

13G. F. Chew, J. Finkelstein, and V. Poénaru, Z. Phys. C 14,
363 (1982).

14M. Y. Han and Y. Nambu, Phys. Rev. 139, B1006 (1965).

I5H. P. Stapp, Phys. Rev. D 27, 2445 (1983); 27, 2478 (1983).



