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Confined quark systems, and state vectors with proper relativistic properties
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The three-momentum eigenstate which is usually used in the mean-field approach to confined
quark systems is modified so as to have proper relativistic properties. We investigate structures of
current matrix elements between the state vectors so constructed, which serves to clarify the mean-
ings of various models and approximate calculations previously proposed.

I. INTRODUCTION

The underlying theory of the hadronic strong interac-
tion is now widely accepted to be quantum chromo-
dynamics (QCD). Yet the present level of understanding
the confinement or the formation of confined quark sys-
teins is unsatisfactory. This gives a methodological sig-
nificance of various intermediate-step approaches to the
confinement, such as the NIT or SLAC bag models, ' the
mean-field approach, and the soliton bag model. s In
order to assert the phenomenological validity of such ap-
proaches, and also in order to extend the region of their
application to hadronic phenomena, it is necessary to cal-
culate related physical quantities in a relativistically in-
variant way.

The purpose of the present paper is to construct a for-
malism which allows a relativistically covariant evalua-
tion of matrix elements between hadron states which are
confined quark (and antiquark) systems. The basic idea
has been proposed about ten years ago. Nevertheless, we
think that it is now necessary to reexhibit the essential
part of the original work and also to extend our idea so
as to allow a wider application. It will help us to under-
stand systematically various methods which have been
proposed by many authors. '

Sections II and III are devoted to constructing the
momentum eigenstate of a confined quark system with
the proper relativistic properties, and in Sec. IV we dis-
cuss the meanings of various models and approximate cal-
culations previously proposed.

II. MOMENTUM EIGENSTATES
WITH LORENTZ BOOST

In order to recover the translational invariance in the
mean-field model, Bando et al. constructed the momen-
tum eigenstate by superposing states which are composed
of quarks (and antiquarks) confined in a certain central
potential as follows:

i p, P&'=&tt(p) f dSe" ' iS,P),
,where p means a set of quantum numbers necessary to
specify the state; S is the center of the confining potential.
This method is familiar in nuclear physics, and is often
called the "generator-coordinate method. "' If

i p, p) is
the low-lying baryon ( —,

'
), i

S,p) is assumed to be given

by

i
S,P)= g Czzcaz(S) az(S) ac(S)

~

h(S)), (2)
ABC

where a~(S) is the creation operator of a quark with a set
of quantum numbers A (its flavor and color part is denot-
ed by A ) and is given by

a~(S)= f dx U, „(x—S) i', „(x) .

tP ~(x) is the quark field and U z(x —S) is the ground-
state positive-energy solution of the Dirac equation of po-
tential 8'

a
Eg&4+ P —+ W(x —S) U ~(x —S)=0 .

Bx

a is the Dirac-spinor index. Cq~c s are appropriate SU(6)
numerical coefficients including the color degree of free-
dom.

~

h(S) ) is the "hadronic" vacuum, which satisfies
for arbitrary (not always ground state) A and 8

a„(S)
~

h(S) ) =b (S)
~

h(S) ) =0 .

bii(S) is the annihilation operator of the antiquark mode
8.

Note that Eq. (1) recovers only the rotational and
translational invariances in the three-dimensional space.
It is, however, not manifestly covariant under rotations
including the time axis. '"

Before entering into detailed considerations, it is
worthwhile to note a remark in order to clarify the follow-
ing arguments. We consider matrix elements of, e.g., a
current Jz(x) between two states written as
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(q E(/e(O)(p y) =Np(q)N„(p) f dye 'eve''r (r/2E f 1xe'" */e'(x 0) —r/2 y), k=q —p . (6)

In the "local approximation, " which has been adopted in most of our previous papers, we assume dominance of con-
tributions from cases where the two centers of the confining potential (or "bag centers") on the right-hand side (RHS) of
(6) coincide. (As to considerations without recourse to this approximation, see Refs. 15 and 16.) When we take the nor-
malization conditions as

(q,P ~ p, y) =(2m) 2EH(p)6(p —q)5Hr,

xUgx~Ugx = gg,

[a~(S),aii(S)tl =Agni,

and write

(7a)

(7b)

(7c)

NH(p )= [2EH(p) /UH(p) ]

we obtain

uH(p)= J dr (r,p~ r=O»)e

Hence, in the local approximation, we have

(6)=[2Ee(q)2Ev(p)]'r (r=O, E f dxe'"'*/ (x,O) r=O, y),
which leads to what has been examined in the usual bag-model calculations.

Now, in order to consider the covariant description, let us define first the state vector

~
pP)=~iv(p) f dSe'~' e ' '

U(v~)
~

r=O f3),

(10)

where P is the translation operator, U( v&) the Lorentz-boost operator; for simplicity we consider the nucleon state, and
the momentum p and the velocity vz are related to each other by

Pl Vpp=, m =nucleon mass .
(1 U2)1/2 '

The Lorentz boost considered here is

(12)

(x )~(x ) =(L ( v) ixi ) = xi) / (xll+UXQ), 2 1/2 (uxll+xQ)'
(1 U2)1/2 '

(1 2)1/2
(13)

where j. and
~ ~

mean the components of x perpendicular and parallel to v, respectively. Thus, the momentum and ener-

gy operators satisfy

(U(v)PqU(v) ')=(P2L(v)2 )= Pi, , (Pll —uPQ), » ( uPll+PQ)—'
(1 2)1/2 '

(1 2)1/2
(14)

The current matrix element ( q, P ~
J~(0)

~ p, y) is written as

&q»IJ, «)l p y&

=~v(q)~v(p) f dre 'e+v''rr(S=O, E U(ve) 'e'v'. 'rr f dxe'e'*/ (x,O)e'v''rrU(ve) S=O, y) .

For the Lorentz boost (13), we have
~ A

U(~) ibu K—.

(15)

(16)

and

U( v )g(X,O)U(V) '= T(V) 'it/(L (V)x) l,=Q= T(v) 1t(xi xllcoshb xllsinhb), (17)

where K is the generator of the Lorentz boost,

tanhb =u, T(v) =cosh(b/2)+u cisinh(b/2), U = v/u, a =i y4y (yz ——ye) .

For simplicity, we take q = —p =k/2 (i.e., the Breit frame). Then, for the quark current

J& (x) =1T/~(x)O&g Ii(x)-,
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we obtain in the local approximation

& q»l~p~ (0)
I
p= —q y&=2EN(q) f dxe""

( —g, — ) ( 23B23)
9Caa, a,CSa,a,

X (h(0)la~, a&, U(v~) 'U(v~)au, az, lb(0))

X U, g(xi, (coshbs)xII, O)T(vq) '0 T(vz)

X U ~(xi, (coshb~)xII, O)e
—2iED(sinhb )x~~ (18)

where Eu is the energy of the ground-state quark. To the first order of k/m, we obtain

(18)=2m f dx
(A —A, B—B) (A2 3B2 3)

9Cq&,~,Cj~,~, (h (0)
l aq, aq, U(vz) 'U( —vz)a~, az, l

h(0) &

X U z(x,o) I+ik x —i k. x Oz —
I
k.a, O&I U ii(x, o) .

m 4m
(19)

When we take J&
— to be the electromagnetic quark

current, we obtain as the nucleon magnetic moment the
same result as derived by Guichon, ' that is, —iEpk x/m
and —k.a/4m terms in (19) leads to the "retardation"
and the "spin-precession" contributions, respectively, in
addition to the ordinary one coming from the +ik x
term in (19).

It is worthwhile to note the following properties of
l p, P &. Equation (11) is rewritten as

l p, P& =~&(p)(2m. )'5(P —p)U(v )
l
r =0,P&,

(20)

which shows directly that
l p, P & is the momentum eigen-

state. The condition for the energy eigenvalue to be
E(p) =m /(1 —uz )'~ is proved to be

Therefore,

Po
l p»& = l v P+«p)(1 —u, ') 1 I p P &

=E(p)
l p, P&. (Q.E.D. ) (24}

l p»»=U(v~)
l
p=O, m, P&&, (2&)

where
l
p=O, m»» is the state vector with momentum

and energy eigenvalues (O, m);
l p, P» has the eigenvalues

This suggests that, under the condition (21) and with an
appropriate choice of ~&(p), the state vector

l p, P& has
the proper transformation properties under the Lorentz
boost. In order to make the situation more clear, we con-
sider in Sec. III what relation the state vector

l p, P& has
to

Po l
r=O, P&=M

l
r=O, P& (21)

(p =m v~/(1 —
u~ )'~,E(p)) .

with M =m.
Proof. By using (14) and (21), U(v~) is shown to satis-

mU(vz)
l
r=O, P&=U(vz)P&

l
r=O»&

=(PL ( vz ) )o U( vz )
l

O,P &

1

(1—u~ )
2 1/2 ( "i' ll+

In the above consideration, we assume that we can con-
struct the state satisfying Eq. (21) approximately well in
the Hartree-Fock approach. The reason for demand-
ing the condition Eqs. (21} or (24), as opposed to the
weaker expectation-value requirement of Refs. 2 or 12,
will be explained in Sec. IV.

from which one obtains

P0U(vz}
l
r=O, P&

XU(v )
l
0»&, (22)

III. RELATION OF
l p, P) TO

l p, P))

Let us take
l p, =O, m, P» to be

l
p=o, P) (or

equivalently
l p =0»& ), which is allowed so far as the

condition (21) is satisfied. Then,
l p, P» is given by

l p, P»=m~(0)U(vp) f dse 'P s
l

r=o, P& . (26}

=[v~ P+E(p)(1 u~ )]U(v~) l
r=O, P—& . (23) The RHS is easily rewritten as
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RHS=M)v(0)(1 —u~
)'~ f dS exp[ —i(P —v~Po) S]U(v~)

I

r =O,P) [from (14)]

=M~(0)(1 u—
~

)' f dSexp[ —iP& Si i—(P~~
—p~~)(1 u—t, )S~~]U(vt, )

I
r=O, P) [from (23)]

A ~(0)
(1 2)l/2 ~ ( )

(27)

Thus we see that, when we set

~~(p) =~~(0)/(1 —
uq )'

( q, P I p, y) =(2~) 2E(p)5( q —p)5ttr (29)

and set

Mbt(p) =(2E(p)/V~(p))' (30)

we have

&b (p) = &~(0)(1—u~')'~' . (31)

I p, P) ) which is obtained by boosting a certain superpo-
sition of the "bag" states with different centers, is
equivalent to the state

I p,g) which is obtained by boost-
ing first the bag state with its center at the origin of coor-
dinate and then taking the projection to the momentum
eigenstate, Eq. (20). It may be superfluous to add that
when we take the normalization as

IV. DISCUSSIONS AND FINAL REMARKS

We have investigated the Lorentz boosting of hadron
states composed of quarks (and antiquarks) with the aim
of constructing the relativistically covariant description.
Once we know the general structure of the state vector
(11),we have an overall view which makes transparent the
meanings of various formalism s and approximation
methods previously proposed concerning effects due to
c.m. motion and/or Lorentz boost. ' ' ' We have al-
ready mentioned in Sec. II an example on this point in
connection with recoil corrections to the magnetic mo-
rnent. We will further add three examples.

First, Tegen et aI. have proposed a mean-field ap-
proach to the confinement, and used a wave function
which describes hadrons as confined systems and has a
separated c.m, part. It is easy to find the relation between
the nucleon wave function used by Tegen et al. and ours
by introducing an appropriate "x representation" of the
state (1) for the nucleon,

I
N, p,P) . This can be done as

fojklows:

the x representation of
I
N, p,g) —=4(S, I xaA I I

N, p, P)

3 0—:h (S) g g, „(x,,O)'+' N, p, P
j=1

(32a)

a&A &, a2A 2, a3A 3

CIs e e 5 g b g b Nti(p)(2%)
J

3 3 3

X f g d p„5 —g p,+ p exp i g p, x, + po. S
3

g Ub, ii„(Pk) vb(po)
' k=1

(32b)

where itj, q(x)'+' means the positive-energy part of the

quark field; e(:::)is the sign function; Ube(p) and

ub(p) are defined by

(35)

Ubii(p)—:(2n. ) fdxe 'u'", Ubs(x), (33)
which is formally equivalent to the one obtained from (1).
Using the normalizations (7a) and

vb(p)—= f dxe ' i"(h(x) Ih'(0)) . (34)
(S=O,P I

S=O,P) =1,
one obtains

(36)

If vt (po)=(2~) 5(po) i.e., (h(r) I
h (0) ~ =1 (32b)

reduces to the wave function given by Tegen et al. [Eq.
(5) in Ref. 6(a) and Eq. (10) in Ref. 6(b)].

Second, a remark should be given on the wave-packet
formalism proposed by Donoghue and Johnson. ' They
expand the bag state as

which allows us to calculate physical quantities as "expec-
tation values" with effects corning from c.m. motion. We
cannot, however, convert

I p, P) defined by (11) into the
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one corresponding to (35), and the condition (21) contra-
dicts in general with (35), because (35) cannot be an eigen-
state of Po, but has only the expectation value of Po as

( S=0,p i Po i
S=0,p &=, I d p v t3(p)El3(p)

(2m )

(38)

Here, as mentioned in the last paragraph of Sec. II, we
will comment on the meaning for demanding the condi-
tion, Eqs. (21) or (24). In usual treatments such as in
Refs. 2 or 12, the on-shell relation between momentum
and energy is realized as a relation between expectation
values. But, when we wish to calculate matrix elements of
physical quantities beyond the static properties, where the
motion of hadrons plays an essential role, we must
prepare the momentum and energy eigenstates ( q, y ~

and

~ p, P & satisfying Eq. (24). We see from considerations in
Secs. II and III that the simplest condition leading to

Po
~
p=O, P&=m

~
p=O, P&

with rn =relevant hadron mass (39}

is to assume the bag state r, P& satisfies Eq. (21), and

I

that the state (25)

has the form of Eq. (11), useful to understand the mean-
ings of investigations proposed in other papers. It is an
important problem how to realize Eqs. (21} and (39} ap-
proximately well; this will be shown to be possible if the
Hartree-Fock (HF) approach well describes behaviors
of the ground-state quarks bound in hadrons and the HF
potential is suitably chosen, which is to be explained in a
forthcoming paper.

Lastly, after the main part of this paper had been
completed, we noticed the interesting paper written by
Betz and Goldflam, " who considered the boosting prob-
lem in the soliton bag model. Their calculations are based
on the assumption that the usual static-bag wave function
can be identified with the zero-momentum eigenstate.
But in our case, we impose the condition (21) on

~

r = O, P &, and after projecting the zero-momentum state,
take the boosting, i.e., U( vz)5(P)

~

r =O,P&. We obtain,
however, results similar to those obtained by Betz and
Goldflam" in the local approximation; e.g., the current
matrix element is written in our formalism as (15), which
is rewritten in the local approximation as

(15)=[2Ee(q)2Ev()e)]'v (S=O,E U(ve) ' f dxe' '*2 (x,O)U(ve) S=0,) )
. (40)

This corresponds to Eq. (50) in Ref. 11. The same logical
relation as the one between (6) and (10) exists between (15)
and (40).

Details of the formalism on the basis of the Hartree-
Fock approach and general treatment of calculating ma-
trix elements and investigations of their structures will be
considered in a forthcoming paper.
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