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Effects of multiple Higgs bosons on tree unitarity
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The abundance of new Higgs bosons in many extensions of the electroweak theory motivate an in-

vestigation of their effect on partial-wave scattering amplitudes. For SU(2) &(U(1), tree unitarity is

shown to be valid for 8' and Z amplitudes provided three quartic couplings from the Higgs poten-
tial are small (

~ f i & 16tt). The mass spectrum of the Higgs boson is almost unconstrained but for
the simple requirement that at least one neutral scalar must have a mass M & 1 TeV. Similar results
are obtained in a general broken gauge theory for the scattering of arbitrary combinations of scalar
and vector bosons.

I. INTRODUCTION AND SUMMARY

In order to determine the effects of a very large Higgs-
boson mass, some years ago Lee, Quigg, and Thacker in-
vestigated the minimal SU(2) XU(1) model with a single
Higgs doublet. ' Any such theory satisfies exact unitari-
ty and thus has partial-wave amplitudes that satisfy

~
aJ i

& l. Unitarity holds for all values of the masses and
couplings. If, however, the theory is to be weakly cou-
pled, then one expects that the amplitudes computed in
lowest-order perturbation theory (i.e., tree approximation)
should satisfy

~
az

~

&1. This tree-unitarity property will
only be satisfied for certain ranges of the masses and cou-
plings and therefore provides a quantitative distinction be-
tween weak coupling and strong coupling. At high ener-

gy, the amplitudes that pose the greatest threat to tree
unitarity are those involving longitudinally polarized

gauge bosons ZL and 8'L or the Higgs boson H. Lee,
Quigg, and Thacker find, for example, in the tree approxi-
mation that

ao(ZL ZL, ~zl Zr ) ~ —3v 2GFM /16m'
s ))M2

where the Higgs-boson mass I is presumed larger than
Mz. Requiring

~
ao

~

&1 thus bounds the Higgs-boson
mass:

M &SmV 2/3GF .

In the minimal model, bounding M is equivalent to
bounding the quartic coupling in the potential

V= —,' p, at@+ 6 f(4 4—)— (1.3)

Since M =fv /3 and GF ——1/V 2v, where v is the vac-
uum expectation value, the bound (1.2a) is equivalent to

with one Higgs doublet. There are now many
SU(2) &&U(1) models that employ many Higgs multiplets
in an assortment of representations (singlets, doublets,
triplets, etc.). The motivations for this proliferation are
often quite reasonable: to solve the strong CP problem, to
predict fermion masses and mixing angles, to make parity
a spontaneously broken symmetry, to implement super-
symmetry or grand unification. Once there are many sca-
lar fields there is no longer a simple relation between the
various masses M and the various quartic couplings f, so
that it is rather difficult to anticipate how (1.2a) and
(1.2b) might generalize. The purpose of this paper is to
find the general conditions on scalar masses and couplings
necessary for a nonminimal theory to satisfy tree unitari-
ty.

The investigation is begun in Sec. II. The scattering of
longitudinally polarized 8 s and Z's are computed in the
center of mass. Terms of order n at all energies are ornit-
ted since they pose no threat to tree unitarity. Completely
arbitrary numbers and types of Higgs bosons P„with
masses M„can be exchanged in the s, t, and u channels.
Individual diagrams will often grow with energy like E
or E; however these terms cancel between diagrams and
leave amplitudes that are asymptotically constant at high
energy but proportional to various Higgs-boson massesI, . A typical example is

T(Z, Z, Z, Z, )

u
2u —M„

(1.4)

where s »Mz and M, »M, . The coupling Zzg„ is

f&16m . (1.2b) A„=2g (T3T3v)„/cos Hn .

If tree unitarity (1.2) is not satisfied, the bosonic sector
of the theory becomes strongly coupled. Considerable
work has gone into investigating the properties of such a
strongly coupled theory, 3 including resonance formation
and copious particle production. ~

The above analysis is specific to the minimal model

The asymptotic values (s~ao ) of this amplitude is con-
stant in energy and angle with a J=0 projection

t'

ao(ZL, ZL ~ZL, ZI. ) ~ —3 QM„A„64trMz" .
s ))M„2 8
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This reduces to (1.1) in the minimal Higgs model. Naive-
ly, each A„ is of order gMz so that (1.5) appears to be of
order GFg„M„. This would mean that any superheavy

Higgs boson would violate tree unitarity.
Remarkably, it turns out that making a Higgs-boson

mass M„ larger is automatically compensated by the
ZZP„coupling A„becoming smaller. This is guaranteed
by a sum rule

3+M„A„=4Mz f~, (1.6)

where f is a particular quartic coupling from the Higgs
potential. (In fact, it is just the self-coupling of the
would-be Goldstone boson that becomes the longitudinal
degree of freedom of the Z gauge boson. ) Because of this
sum rule

ap(ZLZL ~ZI Zl ) ~ —f /16m
s »M„

A necessary condition for tree unitarity is thus

fr&16m . (1.8)

M~;„&8mV2/3GF . (1.10)

Thus tree unitarity constrains only one scalar mass.
Furthermore, satisfying (1.10) does not guarantee tree uni-

tarity.
The analysis of ZI.ZI.~8'g O'L+, and 8'L, 8'L+,

~WL, Wz+ performed in Sec. II gives exactly analogous
results. Basically the complexities of the Higgs structure
are concealed by the theory. The point is emphasized fur-
ther if one evaluates the three amplitudes in the "low-
energy" regime Mz «s «M„.'

Amplitude (1.4) is
negligibly small (i.e., order a) for these energies, but the
remaining two are of order G~s. These yield the isoscalar
and isotensor amplitudes

ap
= '(s) Gps/8~v 2,

s«M ~

This is also shown to be sufficient to guarantee tree uni-

tarity for nonasymptotic energies and for all other partial
waves az.

The necessary and sufficient condition (1.8) for tree
unitarity is the appropriate generalization of (1.2b). It is
also interesting to ask what happened to the mass condi-
tion (1.2a). The answer is that from the sum rule (1.6) one
can derive an inequality

M;„2&f /3V 2G~

for the mass of the lightest, neutral scalar boson. This
bound holds whether or not tree unitarity applies. If tree
unitarity does apply, then because of (1.8) we have

strong coupling limit a bound state I=0 scalar boson will
arise regardless of the number of elementary scalars.

Section III examines the scatterings in which the exter-
nal particles are various mixtures of gauge bosons and
scalars. This is most easily done in a general broken
gauge theory, not specifically SU(2) &&U(1). There are five
classes of amplitudes: PP~PP, AIP~PP, AIAI ~PP,
AI Ar —+AI, P, and Ar, AI. —+AL, AL, . Because of the con-
nection between longitudinally polarized vectors and the
would-be Goldstone bosons, the last four amplitudes turn
out to be just projections of the fundamental amplitude

$2n 34n ]3ne 24n
T(NAz~AP'4) = fi234—g— , +

s —Mn t —Mn

].4n 23n+ 2u —M„
(1.12)

f & 577/JY, (1.14)

where N is the total number of scalar-exchange diagrams
allowed by the quantum numbers. If tree unitarity is
satisfied for (1.12) then it is automatically satisfied for the
four other classes of scattering involving various numbers
of longitudinal gauge bosons. Section III lacks the
elegance of Sec. II, but the fundamental result is the same:
Small quartic couplings guarantee unitarity for boson-
boson scattering. No additional restrictions on masses or
cubic couplings are necessary.

The appendixes contain results that may be useful in
other applications. Appendix A derives various sum rules
of which (1.6) is a very special case. Appendix B proves
in an arbitrary gauge the well known theorem relating
amplitudes for longitudinally polarized gauge bosons to
those for would-be Goldstone bosons. Appendix C proves
the bound (1.13) on cubic couplings.

II. O' AND Z SCATrERING IN SU(2) &( U(1)
WITH ARBITRARY HIGGS MULTIPLETS

At infinite energy this is pure J=0 and satisfies tree uni-

tarity if
~ f&234

~
& 16m. At finite energy the amplitude is

controlled by the cubic couplings e;Jk. Unfortunately,
there is no elegant sum rule for these couplings. It is pos-
sible to prove that

e,jk & 5 fmax(M(, MJ, Mk ), (1.13)

where f is the maximum quartic coupling in the theory.
From this one can show that (1.12) will satisfy tree unitar-
ity in the relativistic regime

s & 5max(M (,Mp, M3, M4 )

provided

a(')
= '(s) ~ —GFs/16av 2 .

s «M

Because of various identities, all details of the Higgs
structure again vanish so that (1.11) is precisely the same
result as obtained by Lee, Quigg, and Thacker' in the
minimal model. Because the isoscalar amplitude (1.11) is
attractive and grows with energy, it suggests that in the

In order to investigate an SU(2)XU(1) theory with
many Higgs multiplets of various types, it is convenient to
assemble all the real spinless field into a single multiplet
PJ(x). The Hermitian matrices T&, T2, T3, and I' that
act on the Pz are antisymmetric and pure imaginary. Vac-
uum expectation values vk = (Pk(x) )p acquired via spon-
taneous symmetry breaking produce vector-meson masses
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Mz'=g'uj [(T3)'])kvk Icos'es, ,

M~ ——-'g v [T(T+1)—(T3) ] kuq

(2 1)

and keep the photon massless (Qjkuk ——0). Without loss of
generality we will work in the basis in which the sca1ar
mass matrix is diagonal

a'Vga'„ay„), „=M„'5„„.
The shift P„(x)=v„+P„'(x) produces a trilinear coupling
of P„' to two vectors given by

~cubic —
2 ZpZ ~nPn + ~p ~ ~n0n

+ ( W„+Z"C„P„'+H, c. )

+( 2 8'q W"+D„P'„+H.c.),

A„=——
2 [(T3) u]„,

cos Ow

B„=g [[T(T+1)—(Tg) ]u]„, (2.2)

g'v 2 g' Mz' co'sOw
C„=—— (T T3v)„——,(T u)„,

cos $f' +231w

— D„=g (T T v)„.
Note that 3„and B„are real but C„and D„are complex
because T is complex; A„and B„are orthogonal to the
neutral Goldstone-boson direction ( T3v)„; C„ is orthogo-
nal to the charged Goldstone-boson direction,
C„(T+u)„=0. Combining (2.1) and (2.2) implies that
~n~n = ~z ~ ~n "n =2~8' ~ Cnon 0~ an Dion

All amplitudes are computed in the center of mass at
s &&Mz . The partial-wave decomposition of the scatter-
ing amplitude is

FIG. 1. The three types of diagrams that contribute to
ZI.ZI. ~ZI.ZI. in (2.4).

2. ZgZL, ~O'L $VL+,

For ZI ZL, -+8'L, O'I+ the 8'-+ exchange graph and the
contact graph shown in Fig. 2 all grow like E . After
cancellations among these three graphs the remainder
grows like E:

g cos Ow ~z2
Mw'

Exchanges of neutral scalars in the s channel and charged
scalars in the t and u channels give

:1 S 2

T =- —— --~ Wasc81Rf 4~ 2~ 2 ~ Pl 5

u2

J

The E growth of this amplitude is canceled by the vector
exchange because of the identity

T (s,cos0) = 16m g (2J + 1)ai(s )Pq(cosg) (2.3) g(A„B„—i C„l )=g cos Og Mz /Ms (2.5)

normalized so that the eIastic cross section is

d 1

64m2S

The final result is

A. Computation of amplitudes

ZL, Zl. ~ZL, ZL,

The simplest tree-approximation amplitude for scatter-
ing longitudinally polarized gauge bosons is ZL Zi
~ZLZL. No exchanges of gauge bosons are possible.
Only the three Higgs-boson-exchange diagrams shown in
Fig. 1 contribute. The E growth of each diagram cancels
between the three because s + t +u =4Mz and the result
is

2 2 t tT(ZI ZL ~ZI Zr ) 2+ 2s —m„'
).

W W W

/" 3
Z Z Z Z

w+

yo

W

+ , (2 4)
u —M„

FIG. 2. The diagrams that contribute to ZI.ZL, —+8'~ O'L+.

The high-energy growth of the 8' +—-exchange and contact
graphs cancels against that of the scalar-exchange graphs to
give (2.6).
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2
+ M„

T(ZLZL~WL WL )=—g 2 A»B»
n 4M''M $ n

t u
2 M 2 (2.6)

3. 8'L, O'L+, —+ Wl. 8'g+

The computation on 8'L 8'L+~8'L 8'&+ is similar to,
but slightly more complicated than, the previous case.
The two Z-exchange graphs, the two y-exchange graphs,
and the contact graph shown in Fig. 3 all grow like E at
high energy but cancellations among them eliminate this
and leave a remainder that grows like E:

2

T„„„,= 4(3Mz cos 8n 4M—n )u .
4M'

Exchanges of neutral scalars in the s and t channels and
of charge 2 scalars in the u channel give

—1 2
Tscalar g g II»

4M'
s t

s —M„2 t—

u

u —M„

The physical amplitude is then

The E growth of the vector and scalar contributions can-
cel because of the identity

g( —8„+
I
D»

I
)=g (3Mz cos 8n, —4M', ) . (2.7)

M
T(WL WL+~WL WL )= —g 8»

4M'
s u

s —M„ t —M„,+, +ID. I

u —M„
(2.8)

B. Asymptotic values

J. Lou energy

At energies below all Higgs-boson masses
(Mz «s «M„) the amplitudes (2.4), (2.6), and (2.8)
have the limits

T(ZL ~ZLZL ) ~ QA»
1 2

s«M Z

T(ZLZL~WL WL+)

z z g(A„B„—
I
c„

I
)s,

«M„'4M''Mw' .
T( WL WL ~WL WL ) ~

4 g(&»' —
I
Dn

I

'»
~

g «M„4M'
I

Using Q„A„v„=2Mz and the Schwartz inequality, one

can show that the first of these is less than 2ma/p (where
p=Mn, /Mzcos8n ) and is thus negligible since terms of
order a have already been dropped. Because of the identi-
ties (2.5) and (2.7) the remaining two amplitudes can be
written

T(ZLZL ~WL WL+) ~ 2V 2GFs/p
s «M„2

(2.9)
T(WL WL+~WL WL+) —+ v 2GFs(l+cos8)(4 —3/p ) .

s «M„2

Experimentally p=1, so that all details of the Higgs
structure disappear and the results are identical with those
of the minimal model. The J=0 projections of (2.9) in
the isospin channels I =0,2 are given in (1.11).

2. Infinite energy

At infinite energy the three amplitudes (2.4), (2.6), and
(2.8) all approach constants:

W W

W W W T(ZLZL —+ZLZL) —+ 3+M» A» /4Mz
S~ao

T(ZLZL —+ WL WL+)

(2.10a)

w w+ w- w+

w w+

I go
@0

W W

W+ W w+

gM„'(A„B„+2—
I C„ I

')/4Mz'M ',
S~ ao

(2.10b)

T(WL WL+ —+WL WL+)

FIG. 3. The diagrams for 8'& 8'L+, ~8'~ O'L+, . The high-
energy growth to the Z-exchange, y-exchange, and contact
graphs cancels against that of the scalar-exchange graphs to
give (2.8).

XM»'(2&»—'+ IDn I
')/4M''

S~ ce

(2.10c)

Since these asymptotic values are independent of angle,
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the J=0 partial wave amplitudes are

a 0 ( oo ) =T( u) ) /16m

Similarly, if 8 =8 =gT and 8~=8r =gT+ then

QM„Z(2B„+
~ D„~ 2) =4M~4f (2.15c)

and the J &0 amplitudes all vanish at s = Oo. The ques-
tion of whether

~
au

~
is less than unity then rests on how

large the sums are in (2.10). Naively, one would estimate
that the couplings (2.2) are of order g v so that each term
in (2.10) would be of order M„ /v -M„Gz.

Since many theories (e.g., grand unified models) have
enormous scalar masses M„, it would appear that

~
ao

~

will easily exceed unity. Remarkably, this is not the case
because whenever a particular M„ is very large, the corre-
sponding couplings A„, B„,C„, and D„are automatically
small, contrary to the naive estimate. The proof of this
relies on a sum rule derived in Appendix A. The scalar
potential V is invariant, before spontaneous symmetry
breaking, under infinitesimal transforrnations

P„(x) P„(x)+e 0„~$&(x),

where .8 is the antisymmetric matrix representation of
any symmetry (e.g., T+, T, T3, or F). Although the
symmetries are spontaneously broken, the Higgs-boson
masses will automatically obey

QM„[(8 8~u)„(8"8 u)„+(8 8"v)„(8~8 u)„

+(8 8 u)„(8~8rv)„]

=fijki(8 v);(8 u)j(8"u)k(8 u)» (2.11)

These sum rules guarantee that whenever any of the
Higgs masses M„become large, the corresponding cou-
plings to gauge bosons ( A„, B„,C„, and D„) automatical-
ly become small. The asymptotic values (2.10) are

I

T(zi.zL, ZI.ZL, ) f—
S—+ oo

T(ZLZI ~WI w~+) ~ f-
S~ oo

T ( Wl WL+ ~WL W~+ ) —+ f-
S~ oo

(2.16a)

(2.16b)

(2.16c)

C. Tree unitarity

It is now necessary to examine
~

aq
~

for nonasymptotic
energies.

J =0 amplitudes

The J =0 partial wave projections of (2A), (2.6), and
(2.8) may be written

Tree unitarity is satisfied (i.e., ~au
~

&1) provided the
three Higgs couplings are small (i.e.,

~ f ~
& 16m.). Thus,

for s = oo, the gauge bosons are weakly coupled if and
only if the Higgs bosons are weakly coupled: the Higgs-
boson masses, per se, are not the determining factor.

where f is the quartic Higgs coupling in v:

I'= 2'4f &kid 0iAA+. (2.12)

To apply this to (2.10) it is useful to define two unit vec-
tors

z; =g(T3u);/M cos8gr, z; z; =1
(2.13)

w;=g(T u);/Ma V2, w,'w;=1.
These are Goldstone-boson eigenvectors of the scalar mass
matrix. Of course, because of the Higgs mechanism there
are no scalar field excitations in these directions; instead
the gauge bosons Z and W propagate as massive, three-
component particles. The self-couplings of the would-be
Goldstone bosons are

ao(ZL, Zg ~zl Zl ) = f~Fi (s)/—16m, .

ao(ZLZI ~WL WL+)= f Fz(s) /16~—,

ao( WL WL, ~WL Wr, ) = f F3—(s)/1—6 i-r,

where

Fi(s) = QM„A„[p„(s)+2q„(s)],n n n

F2 (s) = QM„[A„B„p„(s)+2
~ C„~ q„(s)],5 7l 5 ll

F3(s)= QM„[B„p„(s)+(B„+iD„ i )q„(s)] .
N3

(2.17)

(2.18)

fern =fij klzi Z&zkzi,

f~~ =figvazizj wk wi

f~~=fijkiwi~j wi wi '

All energy dependence is contained in the two functions

M
q„(s)=1— -ln 1+ . (2.19)

M„

The normalization constants N; are

3+M„'A„'=4Mz4f (2.15a)

A specific application of (2.11) results from choosing

8 =8j =8r=8s=g~2T3/cos8„

and yields

Xi ——3+M„A„

X,=+M„'(A„B„+2
~
C„~ '),

n

X,=+M„'(2B„'+
~
D„~ '),

(2.20)

Choosing 8 =8i =g& 2 T3/cos8a but 8r =gT+ and
0~=gT produces

gM„'(A„B„+2
~ C„~ ') =4Mz'M~'f „.

so that it is necessary to use the sum rules (2.15) to verify
(2.17). Obviously

Fi(s) -+ fori=1, 2, 3.
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10 10

S
M„

10

FIG. 4. The magnitude of the functions p and q that deter-

mine the energy dependence of the partial-wave amplitudes ao
in (2.18).

2. J ~ 0 amplitgdes

For J p0 the partial-wave projections of (2.4), (2.6),
and (2.8) are

aJ(ZLZL —+ZLZL)= -QM„A„[l+(—1) ]
16+%)

XrJ „(s),

aJ(ZLZL ~WL WL ) XMn'
I c. I

'[1+(—1)']

The function p„diverges at s =M„, but at any non-
resonant energy Fig. 4 shows that

I p„ I
and q„are nearly

always less than 1. Thus, away from resonances

I
F;(s)

I
(1 or equivalently

(2.21)

Consequently, small Higgs-boson couplings (
I f I

(16m)
guarantee tree unitarity (

I
ao

I
& 1) for all nonresonant en-

ergies.
At s near M„ the amplitudes should include the finite

decay width of the Higgs mesons. The decay of a Higgs
meson into pairs of longitudinal gauge bosons restores
elastic unitarity and ensures that

I ao I
& 1 even at reso-

nance.

)05

M

FIG. 5. The functions rz that determine the energy depen-
dence of the higher-partial-wave amplitudes (2.22) and (3.30).

at all energies. Thus, tree unitarity is even more easily
satisfied for the higher partial waves than J=0.

III. TWO-BOSON SCATTERING
IN ANY BROKEN GAUGE THEORY

In the previous section the external particles were al-
ways 8 s and Z's. One would like to consider reactions
in which some (or all) of the external particles are spinless

Higgs bosons. For example, can the reaction
ZLII ~H+H satisfy tree unitarity in a theory which
allows the exchange of many heavy Higgs bosons? Once
one generalizes the Higgs sector there are very many al-
lowed scatterings of 8 s, Z's and H's. To keep the dis-
cussion concise, it is most convenient to generalize the
gauge sector as well. Consequently, we adopt the notation
of Weinberg9 for discussing a general broken gauge
theory.

The Lagrangian density for the bosons is

P = —
4 FI4+ '""+ ,' (D„p);(D"p—);—V(Q), (3.1)

F„„=a„A,—a~„—C»A j'A r (3 2)

where C are the real, antisymmetric structure con-
stants of the gauge group. The group need not be simple
[e.g. , SU(2)XU(l)] and the independent coupling con-
stants are included in the C». The scalar fields are or-
ganized into a single real multiplet P;(x), which will
transform reducibly under the gauge group. The gauge
covariant derivative is

XrJ „(s), (2.22) (D„4tJ);=B„P;+iA„e,JPJ, (3.3)

aJ(WL WL+~WL WL+)
where e is the matrix representation (including coupling
constants) of the uth group generator:

[e.,ej'] =ic.»er . (3.4)

where all energy dependence is contained in

2M ZM
rJ „(s)= QJ 1+—

s S
(2.23)

These matrices are antisymmetric because the P; are real:

0))+0,~ —0 . (3.5)

The value of the P; which minimizes the potential is v;.
After shifting, P;(x)=v;+P,'(x), the potential for P' is

and QJ are the associated Legendre functions.
Figure 5 shows that rJ &0 lfor all s/M.„.Because of

this, (2.22) implies that each of the amplitudes satisfies

ZM J4 NJ+ 6ejkP 0j4k+ 24f JkJP 4 &Pi. .

(3.6)

I aJ
I

& (0.1)
I f I

/16m. (2.24) Note that there can be no terms linear in P' because the
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minimum of V occurs at (P'; ) =0 by definition. Without
loss of generality one may assume that a basis has been
chosen in which the scalar-boson mass matrix and the
gauge-boson mass matrix are both diagonal:

T(ALP, PkPl)

—1
8jn enkl

Ia
s —M..2 2

J t —Mk

s —M„' t —M„
+ knenj l

2"= -. .2
fJ
~QgJMJ

u;(8'8~)u, =5 ~p '

A. Computation of amplitudes

(3.7)
t u —Ml

e ~e+ lg nj k
u —M„

At infinite energy,

(3.11)

All two-boson amplitudes are calculated in the limit
s )yp~ . Since we are interested in the effects of large
Higgs masses, it is assumed that M„2~&p ~ (for all P„
and AL ). No assumption is made about the relative size
of s and the various M„. As in Sec. II the computations
require combining vector and scalar exchanges in each
channel. After cancellations any contributions to the am-
plitudes that are of order 8 -a are dropped since they
constitute no threat to tree unitarity.

A11 these amplitudes turn out to have the property that
at infinite energy they approach a constant T( oo ) that is
independent of angle. For s = ~ the partial-eave ampli-
tudes are

ag( oo ) = 5J 'OT ( oo ) /16m. (3.8)

and will satisfy tree unitarity if
~
T(co)

~
&16+. The

behavior at finite energy a&ill be discussed in a later sec-
tion.

I. P;t~l~PkP!

Six exchange graphs and one contact graph combine to
g)ve

r

e,z„eke„elk„eJ.
T(0 4&~kkbl) fijkl g'2 +

, s —M„2 t —M„2

e)(~p~+
u —M„

Q CE a a
T(ALkj ~kkkl) ~ g 8jnenkl+8knenjl+ 8!nenjks~ to P+

This limit looks rather intractable because of the presence
of the cubic couplings enk!. However, the identity (A3)
proved in Appendix A allows this limit to be expressed as

T(ALp ~/kit!l) ~ f klu-;"
S~ oo

where u; is the unit vector

(3.12)

(3.13)

S. AL Ag-+Pk P!

The six possible exchange graphs and one contact graph
sum to

T(AL AL 4k4l }

=- -- —g h„&e„„
PnPll,

'; +8k.85P.(r)
s —M„

This vector points along the direction of the would-be
Goldstone boson that became- the longitudinal component
of A . Tree unitarity is again satisfied at s = ~ provided

( f;lkl ~
(16'.

The infinite energy limit of this amplitude,

Ikey) fk!—~ ce

obviously satisfies tree unitarity if
~ f ~

&16m..

2. Arfj~kkk,

(3.10)

+8k~„8„lp„(u)

h„~=——,
'

( I 8', 8~I U)„,

P„(r)= [rM„'——,
' (r+M„')(M„'+M!')

+Mk Ml ]/(r —M„) .

(3.14)

(3.15)

Kith one external gauge boson, no contact graph is pos-
sible. The six exchange graphs give

The function p„depends on the nth exchanged meson

only through its mass M„. In thp infinite-energy limit

T(ALAE~Akkl) ~ g[hn enkl+(8kn8nl+8kn8n!)(Mn TMk 2Ml )]
s —+oo ppp

Because of identity (A4), this limit may be written

T(ALAL AA) f;,k, u; uj. . —
S—+oe

{3.16)

AL', AE ~AA!

Here there are six exchange diagrams that yield

Tree unitarity is satisfied at s = 00 if the quartic couplings
a«sm»1(If~, k! ~

(16~).

T(ALAL ~ALP, )= — g[hn 8«on-(s)+h„8nllrn(r)
PaPPPr n

+hsr8„)o„(u)], (3.17)
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cr„(s)=(sM„——,sMl ——,
' M„Ml )/(s M—„).

At infinite energy,

T(ALAi~~AEitil ) ~
s~ ao P,~jtu &

~g(j „'e&,+I „re„',+j g'6„;)

X(M„'—-'M ')

T(ALAL~AEstsl) ~ fIklu—; uj ug,
S—+ ro

and will satisfy tree unitarity if
~ f ~

& 161r.

(3.18)

Because of (A5) the right-hand side is equal to the projec-
tion of the quartic coupling along the Goldstone-boson
directions,

Similarly one can show by using Appendix A that for any
S~

T(ALAL ~Nkvd'I ) T(difj'~4'kkl )ui uj

T(ALAL ~AEpi) = T(itslstii~pkitpi)ui uj ug,

T(ALAL ~AEAL ) = T(p;itsj ~itikpl )ui ui ugul .

(3.21b)

(3.21c)

(3.21d)

The underlying reason for these relations is a theorem
due to Cornwall, Levin, and Tiktopoulos which states
that in any high-energy reaction

T(AL, . . .)=T(p, , . . . )u; +O(p, l~s) . (3.22)

C. Tree unitarity

The proof of this given by I.ee, Quigg, and Thacker, ' for
the 't Hooft —Feynman (/= 1) gauge is generalized in Ap-
pendix B to an arbitrary g gauge.

5 AL AE~ AEAL5

One contact graph plus six exchange graphs combine to
give

T(ALA) —+AEAL )=
M—1

~n ~n
aP d n

p~lauriuS „s—M„'

tM„2
+h„'h +

t —M„

uM„+I 'j "8 ll 2u —M„

(3.19)

+I 9&+j"I»)
Because of the identity (A6) this limit is equal to

T(ALAL~AEAL) —+ fjklui uj uvul-a P 5 cz P 5 (3.20)

The amplitudes discussed in Sec. II [viz. , (2.4), (2.6), and
(2.8)] result from specializing this to the scattering of W's

and Z's. At infinite energy

T(ALA( +AEAL) ~—
s ~ P(4 lS yP5

)&gM '(j„l'I „"

It is quite tedious to analyze the partial-wave projec-
tions of the five amplitudes in Sec. IIIA. Fortunately,
this is not necessary. A11 the amplitudes involving longi-
tudinal gauge bosons can be obtained from T (P;Pj.
—+pkpl) because of (3.21). These identities apply to the
amplitudes considered as functions of s, t, and u. Of
course, a particular value of t will correspond to different
c.m. scattering angles in two reactions that have different
external masses. (For example, piti~pp vs ALitp~piti. )

This is a severe problem for nonrelativistic scattering, but
once the particles are relativistic the relation between t
and c.m. scattering angle becomes mass independent:

t = —,'s( —1+cos8} .

Thus, for relativistic particles, relations (3.21}imply rela-
tions between the c.m. partial-wave amplitudes such as

uJ(ALA, 601)=ir~(0;NI Nkk)u;,

corresponding to (3.21a). The restriction to relativistic
scattering means only that the c.m. energy be larger than

Mj,Mk, Ml (The masse. s of AL and the Goldstone mode

P;u; are already negligible. ) No assumption is made
about the relative magnitude of the c.m. energy and the
masses M„of the exchanged particles.

It is thus only necessary to examine the partial-wave
amplitudes for the fundamental process p;pj~pkiI}l. To
avoid a confusion of subscripts it is convenient to label
the process its, p2 —+$3/4.

and will satisfy tree unitarity if
~ f ~

& 16m..

T(ALPJ ~Cital )=T(p; QJ. ~itskltil )ui, (3.21a)

where u is the unit vector (3.13) along the Goldstone-
boson direction corresponding to the 0.th gauge boson.
[At s = oo this reduces to the previous result (3.12).]

B. A theorem for 1ongitudinal gauge bosons

Before computing any partial-wave projections, it is
very useful to recognize that all five of the above ampli-
tudes are related. By using (Al) —(A3) one can show that
for any s,

1. J=0 amplitudes

The J=0 partial-wave transform of (3.9) is

f1234—
uo(0142 4304) +QR„(s),

16m

16rrR„(s ) = 2s —M„

1 S+«».e24. +e14.eZ3. }—» 1+
S M„

(3.24)
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At s = 00, R„=O and the amplitude satisfies tree unitari-

ty if
~ fi234 ~

&16m. For finite s it appears that small
quartic couplings will not guarantee tree unitarity because
of the possibility of very large cubic couplings e;Jk.

Remarkably, these cubic couplings are also bounded.
Denote by f the maximum quartic coupling in the poten-
tial:

f=max IfOkI I
~

Then the cubic couplings are bounded by f and a Higgs-
boson mass:

10

-1
io

fo I

10
I

10
S

M

I

10
i

104 10

e;;k &(
"
, )f m—ax(M,',M, ,Mk') . (3.25)

This result is proved in Appendix C.
To make use of this it is convenient to define M as the

largest mass of the external particles:

FIG. 7. The bound (3.27) in the relativistic regime s &5M
for various values of the exchange-scalar mass M„&M . For
each value of M„ the bound is constant at the value 3 at ener-
gies below the resonance pole s =M„.

M =max(Mi, Mp, Mg M4 ) .

Then (3.25) implies

~
R„(s)

~

&max(M, M„) 1

s —M„

(3.26)
of the P„boson exchanged in the s channel will, of course,
guarantee elastic unitarity at the resonance energies and
allows us to ignore the pole structure in Fig. 7.

We can summarize the results of Figs. 6 and 7 in the
crude bound

2 S+—ln 1+ M„'

(3.27)

If all four external particles have the same mass, then
kinematics requires s&4Mz. If one particle is much
heavier than the other three then the kinematic minimum
is s &M . In addition, we want s large enough that we
can neglect external masses and use (3.23). In the follow-
ing we keep s & 5M .

The bound (3.27) is plotted in Fig. 6 for various values
of M„ /M between 1 and 10 . The bound falls with
energy like M /s. At the lowest energy s =5M it is
roughly (0.4)ln(5M /M„) for M„«M . However,
since only scalars with masses larger than M~ and Mz
have been kept, the exchanged mass M„must be at least
100 GeV. For M„ /M =10, the external mass M is
already 10 GeV.

The same bound (3.27) is plotted in Fig. 7 for various
values of M„ /M between 1 and 10. For s below the
resonance mass M„ the value is 3; above the resonance it
falls with energy like M„ /s. Inclusion of the finite width

10

10

~R„(s)
~

&3.

Actually this is too crude. The value 3 arises because in
passing from (3.24) to (3.27) we have assumed a worst-
case scenario in which a particular scalar P„has appropri-
ate quantum numbers to be exchanged in the s, t, and u
channels. Actually, the value 3 should be replaced by the
number of channels (3, 2, 1, or 0) available to P„. From
(3.24) ao is a sum over the various R„so that

I &o(gi42 A&44)
~
&~f/5~, (3.28)

where N is the total number of scalar-exchange diagrams
allowed by the quantum numbers. Tree unitarity is
guaranteed if

~ f ~

&S~/X. (3.29)

2. J & 0 amp/itudes

The partial wave projection of (3;9) for J & 0 is

QJ(fife +Ijk3$4) = g[e i3 ep4 + ( 1 ) e i4 ez3 ]
1 J

16m

1X,rj,„(s),
M„

(3.30)
2M 2M

rJ „(s)= Qq 1+
s s

and Qq are the associated Legendre functions. To bound
this one can use the inequality (3.25):

I

)0
I

10
I

io'
I

to4
max(M, M„)

~
&J($1/2~$3/4)

~
& y 2 2', (~)

S
M

FIG. 6. The bound (3.27) in the relativistic regime s & 5M
for various values of the exchanged-scalar mass M„(M'.

(3.31)

where the factor 2 comes from assuming that both r and
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u channels contribute.
Again there are two cases. For small values of

M„ /M each term in (3.31) has a similar energy depen-
dence to Fig. 6. The maximum occurs at the minimum
energy s =5M and is roughly (0.4)ln(SM /M„) for
M„&&M just as before.

For large values of M„ /M each term in (3.31) is just
2r~ and as shown in Fig, 5, rJ &0, 1 at all energies. Thus,
in either case the bound (3.28) generalizes to higher partial
waves

i
s(4A'z

where E is now the total number of t or u channel
scalar-exchange diagrams that are allowed by the quan-
tum numbers. From this and (3.21) it follows that all

scatterings of scalar and vector bosons have small partial
waves provided the quartic Higgs couplings are small.
There is no additional assumption necessary about the cu-
bic couplings or the scalar mass spectrum.

o=av/ay, [„, M',,=a'v/ay, ay, ~, ,

e.j„=a'v/ay, ayjay, ~, „,
fJki=a'V/W W, a0kWt I, .

After shifting the fields by u, P; =u;+P,', the potential ex-
pressed in terms of (t

' may be written as (3.6). However,
because the original fields P; have simpler gauge transfor-
mation properties it is more convenient to stay with them.

V is invariant under p; —+p;+d'8;„p„. Consequently,
the function

IV =(av/ay, )e,„y„
has the property that W' =0 for any value of p. Evaluat-
ing

alv'/ayj, a2vv /ay, ay, , a'w /ay, ay, ay,

at the point P=v gives
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M;j(e u);=0,

[8 M']jk=e;,k(e u);,

ejnenkl+ekn njl+ein'enjk fijkl(e V)i

(Al)

(A2)

(A3)

APPENDIX A:
COUPLING-CONSTANT SUM RULES

The various sum rules used in Secs. IIC and IIIA are
based on the gauge invariance of the potential V. The
first four derivatives of V define the masses and cou-
plings:

Result (Al) is Goldstone's theorem that M;j has an
eigenvector with zero eigenvalue for each symmetry of the
potential that is spontaneously broken (8"&0). All three
results were derived by %'einberg.

From these, several other identities follow. Multiplying
(A3) by (8Pu)j and symmetrizing the result in (a,P) yields

X[I( Ie ~e j )nenkl+(ek ennl+ek e nl)(nMn 2 Mk p Ml )]= fijkl(e v)l(e u)j (A4)

in the basis where the scalar mass matrix is diagonal. If this is multiplied by (8 u)k and then symmetrized (a,p, y) the
result is

g[—,'(Ie,epju)„crt+ —,'(je, e ju)„e„i+—,'(Ie epj r)„ve„ )(lM„—, Ml )=f;ki(e —v);(epv) (er)k . (AS)

Multiply (AS) by (8 u)k and symmetrizing in (a,P,y, 5) yields

yM„—,[(Ie,epj )„(Ie,e j )„+(Ie,e"j )„(Iep,e j )„+([8,8 j )„(Iep,e j )„]=f;, (8 );(ep )j(e ) (8 )

(A6)

Identities (A3), (A4), (AS), and (A6) are used in obtaining
the s~ oo limit of the amplitudes for AP~PP, AA ~PP,
AA —+A/, and AA~AA in Sec. III. Result (A6) is
necessary in Sec. II for the special case of 8' and Z
scattering.

APPENDIX 8:
THE LONGITUDINAL-GAUGE-BOSON THEOREM

Here is a simple proof of the theorem (3.22) for an arbi-
trary g gauge. To the Lagrangian (3.1) one must add a
gauge-fixing term

w, ,=-,'gg a"a„+—y, ejvj~ ~

The resulting vector and scalar propagators areg~„(1—g)k k„
2+k —p (k —

iM )(gk —p )

(epv );(cpu),
D; (k)=

k —M. p k (gk jl,p2)—J

The T matrices computed from these are g independent.
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The gauge-fixing term induces the constraint

8"A„= p;8;~uj. . (82)

V= —,'M r + ,'er—+,', f—r",

2 — 2. .M =M;)n;nj,

(C2)

To compute a scattering amplitude T(Ar, . . . ) one
must amputate the external leg of the Green's function
G(A, . . . ). Since

e =efJknI nJnk

f=frjw&r"g&k&l

(C3)

(k p~ —)eI D~„=eI„,
Expression (C2} must be positive for any r~0. For the
choice r = 2elf—,

where eL, (K)=(
~

k ~,Ek)lp, the appropriate reduction
formula is

V=2 M
3f

e
(C4)

T ( AI, . . . ) = (k p~ )eI G—( A ~, . . . ) .

At high energy (s »p~ )

(83) For this to be positive requires

e &3fM (C5)

eI. ——k /p +O(p /~s) .

Since the vector propagator (Bl}has the property

(gk —p }k D,=k, ,

(83) can be replaced at high energy by

From the inequality we can obtain a bound on individu-

al couplings e;Jk. It is convenient to work in the basis in
which M,j is diagonal and to focus on a particular sub-

space spanned by $„$3,p3. Let S = [ 1,2, 3, I and define

f=m»If&ki IS

T(AL, . . . )=(gk —p ) G(A, . . . ) .
Pa

The constraint (82) in momentum space is

k ~A = P; H,qu—q,

so that (84) is equivalent to
r

2 p (eu);
T(AI„. . .}= k2 — G(p;, . . . )

Pa

Since the scalar propagator has the property

(84)
M =max(M; ) .

S

Then (C5) implies the weaker result

(e~kn;n&nk ) & 3fM

where n =(n&, nz, n3) is an arbitrary vector satisfying

n~ +n2 +n3 ——1 .2 2 2

For n~ ——1, n2 ——n3 ——0 this yields

e&]~ & 3fM

(C6)

{C7)

(C8)

(C9)

2

k — (8 u);DJ =(8 u)J,

(85) is precisely the reduction formula for the Goldstone-
boson field:

and similarly for e222 a d 333

To obtain bounds on mixed couplings e$22 e$23 etc.,
takes more work. We write our (C7) for eight different
unit vectors (+n &, +n 3, +n 3 ) where all signs are chosen
independently. The sum of these inequalities is

(P'u );
&(AL, , )=7 (p;, . . . ) (86)

(e)))n( +3e)23n2 +3e)33n3 )n) +(1~2)+(1~3}
+ (6e '[$3ll $112n3 ) & 3fM . {C10)

APPENDIX C: BOUNDS ON CUBIC COUPLINGS

The upper limits on the partial-wave amplitudes in Sec.
III C are obtained from the bounds on the dimensionful
cubic couplings to be derived here. The potential ex-
pressed in terms of the shifted fields P', where
4};(x)=u; ~P,'(x), has the farm

V = 2M'igloo 4j+—6,kb'0jA++f JMN'4j0t A' . (Cl)

The shifted field is defined by the property {PI ) =0.
Therefore, the minimum value of V is zero. This means
that e,jk cannot be too large or else V will become nega-
tive for some values af P,'.

It is convenient to let P,' =n;r, where g, n; =1. The.n

This theorem holds for each longitudinal gauge boson and
thus explains the observations (3.21).

Since the left side is a sum of positive terms, it implies

(6ei23n&n3n3) &3fM

for all n;. The choice n ~
——n2 ——n3 ———, yields

e)23 & ',fM— (Cl 1)

(eely]+68]22) & 81/M (C12)

There are three possibilities to consider. Case I: e&~] and
e&22 have the same sign. Then (C12) implies

e)33 & ,fM- (C13a)

To bound mixed couplings of the form e;JJ we deduce
fram (C10)

(e~~~n~ +3eg32~2'+3ef33~3 ) ~1 &3fM'.
To bound e»2, choose n~ ——

3 n2 3 n3
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Using (C9) yields the bound

e i22 & —( 14+3% 3 )fM (C.13b)

Case III: e» &
and e &22 have opposite signs and

6~ e»,
~

& ~e», ~. Then (C9) immedia«ly yields

Case II: e ~ ~ ~ and e ~22 have opposite signs and
6 [ ei22

~
&

~
ei~~

~

. Then (C12) implies

6
I e1221 &

I e»i I +9f '"M

e&z2'& „f—M' . (C13c)

e;,.k'& —", fmax(M, ',MJ', Mk ) (C14)

for any choice of i,j,k

The coefficients on the right-hand sides of (C9), (Cll),
(C13a), (C13b), and (C13c) are all less than —, . Conse-
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