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A nonrelativistic constituent quark model is developed for baryons where the quarks are moving
in a deformable mean field. The deformation parameters in each state are determined by minimiza-
tion of the energy, subject to the constraint of volume conservation in the state. It is found that
while the ground state is spherical, the excited-state configurations are deformed. The deformation
increases with excitation energy. This is responsible for the observed low-lying states %{1440)~

and 6{1900)~ . The experimental states are grouped in rotational bands, and the deduced

moment-of-inertia parameter is shown to be consistent with the quantum-mechanical calculation. A
detailed comparison with experimental data is made.

I. INTRODUCTION

In an earlier paper' (hereafter referred to as I), it was
proposed that many of the observed features of the
excited-states spectra in the nucleon and the 6 could be
qualitatively explained if it is assumed that baryons,
spherical in the ground state, acquire deformation in ex-
cited states. It was pointed out that this phenomenon is
not uncommon in nuclei, where sometimes rotational
bands are found built on an excited-state configuration,
and not on the ground state which remains very nearly
spherical. Two of the striking features of the nucleon-b,
spectra are the occurrence of low-lying even-parity excita-
tions [such as the Roper resonance (1440)—, ] around the

+

same energy as the lowest odd-parity states, and also the
observed low-lying set of odd-parity states around 1900
MeV in the 6, which should have come at a much higher
energy in the spherical model. We shall demonstrate in
this paper that these and other aspects of the spectra can
be quantitatively reproduced assuming a simple nonrela-
tivistic constituent-quark model. In the ground state, the
quarks occupy the lowest orbitals of a mean field.
Excited-state configurations are obtained, as usual, by let-
ting one or more quarks occupy higher orbitals. The new
feature of our model is that the mean field for a given oc-
cupancy of orbitals is given the freedom to deform to
minimize the energy of the state. In a given state, the
mean field is allowed to deform only under the constraint
that the volume is conserved. It is then shown that
whereas in the ground state the mean field is spherical, a
shape transition takes place for excited-state configura-
tions, with the field getting more and more deformed with
increasing excitation energy. This has the desirable result
of explaining the spectroscopy of the baryons with a very
few parameters. Before proceeding with a detailed
description of the model, we shall discuss the two main
ingredients in the model —the onset of deformation with
excitation energy, and the concept of volume conserva-
tion.

In the MIT bag model, the nonlinear boundary condi-
tions can be satisfied for a spherical bag in the s ~&2 orbital

and in the first excited @~~2 orbital, but the bag has to de-
form for excited orbitals of higher angular momenta.
This is because the pressure exerted by the quarks in these
orbitals on the bag boundary is nonisotropic. This has in-
spired several authors to examine the single-particle states
in a deformed bag. In the constituent quark model, we
take the point of view that the mean field is generated in a
self-consistent manner through two- and many-body
forces between the quarks. In excited-state configura-
tions, the single-particle density of the quarks is noniso-
tropic, and this nonisotropy in turn reflects on the mean
field in a self-consistent Hartree-type calculation. The de-
formation of the shape is a result of the anharmonic as
well as the noncentral nature of the interquark interaction.

The next point is that of volume conservation. It does
not mean that the volume of the baryon does not increase
in excited states. What it implies is that for a given con-
figuration of orbitals in the mean field, the shape is al-
lowed to deform without changing the volume in that
state. This is a highly successful prescription in nuclear
physics, where it is known that nuclear matter is highly
incompressible. For baryons, we have calculated the
compression modulus recently, taking semirealistic
quark-quark interactions. It was found that baryonic
matter is more than five times incompressible than nu-
clear matter. One way of simulating this effect of inter-
quark forces in a mean-field calculation is to preserve
volume conservation in a given state when the shape is al-
lowed to deform. As we shall see, this has also the desir-
able effect that on minimization of the energy, the shape
of the density follows the shape of the mean field. In our
model, the volume of the baryon grows with the excitation
energy, the relationship being the same as in the spherical
oscillator model.

For simplicity of calculation and elimination of center-
of-mass motion, we assume the mean field to be a triaxial
oscillator. Upon minimization of the energy with volume
conservation, it will be shown that in the ground state
(with oscillator quanta %=0) this field is isotropic,
whereas for N= 1,2 and the lowest N= 3 excited states,
the potential shape is deformed with an axis of symmetry.
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In such a potential, the single-particle orbital angular
momentum 12 is no longer a good quantum number, but
its projection along the body-fixed symmetry axis, l„ is a
conserved quantity. %'e construct an intrinsic state by as-
signing the quarks in appropriate orbitals, and taking a
product of the deformed single-particle orbitals. These in-
trinsic states are not eigenstates of total L . It is again
known from nuclear physics that projection onto states
of good angular momenta from a deformed intrinsic state
generates the characteristic rotational spectrum. These
states have total angular momentum L=0, 2, 4, etc. , for
even-parity (prolate) states, and L= 1, 3, 5, etc., for odd-
parity excitations, which couple to the intrinsic spin
S = —, or S = —, to yield states of good J.

The single-particle wave functions are determined
analytically from the mean field. The model Hamiltonian
also contains a spin-spin hyperfine interaction of zero
range, and a residual central interaction U. The latter is
taken only to first order in diagonal matrix elements, as in
spherical calculations of Isgur and Karl and Forsyth and
Cutkosky. Diagonalization of the hyperfine interaction
causes mixing between the various intrinsic states. The
parameters of the model are (a) the constituent quark
mass (same for u and d) =330 MeV, (b) the single oscilla-
tor parameter b (defined in Sec. II)=0.463 fm, (c) the
strong coupling constant 0., =0.92, which yields the right
N-6 splitting with our choice of b, and (d) the residual in-
teraction U, whose diagonal matrix element in the ground
state is taken to be —220 MeV; in other states the matrix
elements can be computed from the wave functions.

It is to be noted that the parameters (a), (b), and (c) are
about the same as those used by Isgur and Karl in their
calculation with the spherical model. Our parameter (d) is
of about half their strength, presumably because deforma-
tion of the mean field is already accounting for much of
the anharmonicity. In spherical calculations, Forsyth and
Cutkosky have carefully examined the N=3 odd-parity
states, and they require an additional parameter in the
symmetric states to bring them down in energy. %'e do
not need any such parameter. The deformations of the
mean field in various configurations are obtained through
minimization of energy, and are not additional param-
eters. This is somewhat like the bag model, where the ra-
dius 8 of the bag in each state is determined by mini-
mizing the energy.

In Sec. II, the model is formulated and the equilibrium
deformations are determined for various intrinsic states.
In Sec. III, the intrinsic deformed states with proper sym-
metry are constructed. Some of these states are not
orthogonal, since they have been generated through mean
fields of different shapes. The diagonalization of the hy-
perfine interaction with such nonorthogonal states is
described in Sec. IV. These intrinsic energies cannot be
directly compared with experiment. To this end, the
band-head energies are first estimated in Sec. V by calcu-
lating the moment of inertia of the deformed shape, and
then forming the rotational spectrum on each band head.
A very important result, already well known in nuclear
physics, " is that the quantum-mechanical calculation for
the moment of inertia of such intrinsic states is the same
as the rigid moment of inertia at equilibrium deformation.

Finally, in Sec. VI, a detailed comparison is made with
the experimental data. It is also pointed out that a num-
ber of experimentally observed states that are difficult to
explain in the conventional spherical quark model are ob-
tained naturally through deformation.

II. THE MODEL

%"e consider a nonrelativistic constituent quark model
in which each valence quark is moving in a deformed os-
cillator potential"

V(r)= —,m(co„x +coy y +co,z ), (2.1)

where r = r(x,y, z) denotes the position of the constituent
quark in a body-fixed frame. The mass of the quark is
denoted by m, where

Pl = Plg =Hid (2.2)

for u- and d-type quarks (we are interested only in the
strangeness-zero sector). For a set of occupied orbitals, an
intrinsic state is defined, and volume conservation in the
state implies that

3
co~coycoz =coo (2.3)

where coo is a constant. The oscillator frequencies in the
x, y, and z directions can then be parametrized as

co~ =cooe, co~ =cooe, co, =cooep —(a+p)

The single-particle eigenenergies are then given by

(2 4)

where p; and r; denote the momentum and position of
the ith quark. Taking out the center-of-mass (c.m. ) part
we can rewrite the Hamiltonian A 0 as

~0= (p~'+pi')+ —,m g co (p +&i ), (2.7)
2m

l =X,y, z

where

p= (ri —r2), A, = (r, +r2 —2r, ),v 2 v'6 (2.8)

and p& ( pi ) denotes momentum conjugate to P ( A, ).
Thus we have effectively two oscillators in p and A, coor-
dinates. The corresponding energy of the three-quark sys-
tem is

E=Acoo[e (N„+I)+e~(Ay+1)+e ' +i"(&,+1)],
(2.9)

e = ( n + i )fico„+(ny + i )finny +(n + i )fico, (2.5)

where the n; denote the number of excitations along the
three different directions.

To begin with we assume the three quarks to be nonin-
teracting, with each quark moving in an average deformed
mean potential given by Eq. (2.1). The unperturbed part
of the Hamiltonian, A 0, is then a sum of the single-
particle Hamiltonians, i.e.,

3 2

+—m(co„x; +co& y; +co, z; ), (2.6)
2@i 2
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aE 0 aE 0
Ba '

BP
(2.11)

The equilibrium deformation parameters are then given
by

where we have used the parametrization of Eq. (2.4) and

N„=(n& +n~ ), N~=(nz +n~ ), N, =(nz +n~ ) .

(2.10)

We define N= N„—+N» +N„where N denotes the total
number of excitations, and hereafter refer to a and P as
the deformation parameters. Minimizing the energy E
with respect to the deformation parameters a and P yields

COx COy Mz COO (2.14)

The corresponding wave function will be completely sym-
metric, which couples to the 56 representation of the
SU(6) spin-isospin group. The N= 1 excitation turns out
to be axially symmetric with one of X»Xy,X, equal to
unity. Thus if we choose X„=O, Xy=0, and X,=l, we
have, from Eq. (2.13),

cpz =cp& =2coz =(2) cop, (2.15)

which describes an axially symmetric prolate shape. The
appropriate wave function here will have mixed-symmetry
coupling to the 70 representation of SU(6).

The N=2 configuration once again turns out to be axi-
ally symmetric, with two possibilities: (a) N„=Nz ——0,
X,=2, which leads to a prolate shape with

(2.12)
cpz =cd& =3coz =(3) cop . (2.16)

(N, + 1)(N„+1)
(Xy+ 1)

This minimization condition may also be written as

cp„(N„+1)=co~(%~+1)=rp, (N, + 1) . (2.13)

The corresponding wave function can either be fully sym-
metric which couples to the 56 representation of SU(6) or
have mixed-symmetry coupling to the 70 representation of
SU(6). (b) N„=Nz ——1, N, =0, which leads to an oblate
shape for the potential with

Interpreted physically, the condition (2.13) implies that
the density of the baryon follows the shape of the poten-
tial. 4

In Table I we have given the equilibrium configurations
and energies corresponding to N=0, 1,2 and the lowest
%=3 excitations of the quark orbitals. We note that as a
result of the condition (2.13), the N=O excitation remains
spherical with

cpx —cp& —
2 coz —(2) cpp . (2.17)

co„=rp~ =4', =(4)'~ cop, (2.18)

The wave function in this case turns out to be completely
antisymmetric which couples to the 20 representation of
SU(6).

The lowest N =3 configuration corresponds to
Xz Xy:0 Ez 3 which leads to a prolate shape with

TABLE I. The intrinsic states in terms of the oscillator excitation quanta N =N, +Ny+N, . A
given set of N„,N~, N, defines an intrinsic state, the first few of which are listed in the first column.
The spin-isospin multiplet structure to which it can couple is shown in the second column. The equi-
librium shape is shown in the third column. The corresponding eigenenergies of A p [Eq. (2.6)] at
minimum are listed in the fourth column. The moment of inertia W& ( =W) is evaluated from Eq. (5.4),
and the factor fi /~ for each intrinsic state is shown in the fifth column. The last column lists (L2),
evaluated from Eq. (5.6).

Number of

excitations, N

Multiplet
structure

(parity)

Equilibrium

configuration

Intrinsic

energy

N=O
N„=Ny ——N, =0

56+ CO~ =CO& =CO~

(spherical)
3i6cop

N=1
N„=Ny ——O, Ng ——1

co„=co~ =2',
(prolate)

3.780Acop 0.126fuup

N=2
N„=Ny ——O, N, =2

56+,70+ ~„=co„=3',
(prolate}

4.327ficop 0.072Acup

N„=Ny ——1,N, =0 20+ CO~ =CO& =
2

(oblate)

4.762ficop 0.159ficop

N=3
N„=Ny ——O, N, =3

56,70 co„=co„=4',
(prolate)

4.762Acop 0.047%cop 15
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and the wave function could be symmetric or have mixed
symmetry, with corresponding couplings to 56 or 70 rep-
resentation of SU(6). We could also construct states with
N„=O, N» = 1, N, =2 (triaxial), and N„=N» =N, = 1

(isotropic). But these states come very high in energy and
therefore we exclude them from our analysis.

TABLE II. Single-particle eigenfunctions of a deformed os-
cillator in Cartesian coordinates, with n„=n~=0 and n, =n.
The last column lists the appropriate Hermite polynomials
H„(a„z), which should be multiplied by the common factor

(a„a»a, !m /2)'/ exp[ —(a„x +a»2y +a, z )/2] to get the nor-
malized wave function f„„„.Here a; is given by the relation

Z P Z

a; =mes;/A.

III. CONSTRUCTION OF INTRINSIC STATES n„ ny H„(o.„z)

We construct the "intrinsic" wave functions of three-
quark bound states starting from single-particle oscillator
eigenfunctions P„„„ listed in Table II. The intrinsic

Z J7 Z

states are not eigenstates of the total I. , but contain a su-

perposition of states with various I. values. However
these intrinsic states do possess a definite permutation
symmetry and are eigenstates of parity for a given N, the
parity is even when X is even and odd when N is odd.

Consider first the state with X=O. This state comes
the lowest in our scheme and is undeformed. Here only a
symmetric (under permutation) configuration is possible,
given by

0000( r I W'000( r 2 ) ((000( r 3 )

denoted as (l(tooo) . The normalized symmetric even-Parity
N=O state after removing the c.m. part is given by

1

V 2a,z

(2a, 2z2 —1)2. '
2 2

V3a,z 1 — ' z'
3

Pl COp

ap ——
g2

(3.2)

The parameter b is the oscillator parameter.
Consider now the state with %=2 corresponding to

N„=N„=O, N, =2. We can construct both symmetric
and mixed-symmetry configurations, taking care that the
c.m. part of the wave function is in the ground state. The
symmetric state is then given by the combination

where

2

2
(p'+ &') (3.1) &2/'3(4000) 4002 —&1/'34000(fooi) (3.3)

and symmetrizing it between r&, r2, and r3. Eliminating
the c.m. part of the wave function, this may be written as

where

A CX

3/2
( 3 )2/3

2

2(3)2/3„,[3(p&'+~&')+(p.'+~.')] (3A)

Pj. =Px +Py ~ ~X =~x +~y2= 2 2 2 — 2 2 (3.5)

Here we have used Eq. (2.16) to relate the oscillator parameters at equilibrium in the x, y, and z directions. In the same
manner, the %=2 mixed-symmetry state is obtained by taking the combination

&I/'3(0000) (4002)+&2/'oooo(fooi)

2

2(3)2/3,/, [3(pt'+ &g')+(p, '+&, ')]

2

2( 3 )2/3, , [3(p,2+ A,,2)+ (p, 2+ A,,2) ]

which automatically eliminates the c.m. part. Thus we have

3 2
exp 20!p

%z
=

(p, A)= p, A,, exp
. 3

3 2

(3.6)

(3.7)

(3.g)

(3.9)

where the subscripts p, A, refer to the two possible ways of constructing the mixed-symmetry state. Note that all the wave

functions given above, Eqs. (3.1)—(3.8), have A=0 where A is the projection of the total angular momentum L=Lz+L2
along the body-fixed z axis.

While the N, =2, N„=N»=0 states constructed above correspond to a prolate deformation (co„,co» ~to, ), the
N„=N» = 1, N, =0 state corresponds to an oblate deformation (co„,co» & co, ). The shapes of course refer to the equilibri-
um configuration. The oblate state can have projection A=2,0,—2. In the absence of a spin-orbit coupling the states
corresponding to different A remain distinct. In our analysis we shall consider only those states' with A=0. Thus the
%=2 oblate state turns out to be antisymmetric and is given by

2

%g= (p, A,)=, (p A, + —p+)j. )exp —,/3 [(p~ +A, t )+2(p, +A,, )]3/2 2 21/3 2(2) 1/3
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where we have used Eq. (2.17) and

p~ =(p~+lp» )~ A+ =(Ax+EX») (3.10)

2(2)2j3„,[2(p, '+&,')+(p, '+~, ')]

corresponding to p, A, types.
The N=3, N„=N»=0, N, =3 state can be constructed by having all the three quarks in (goo~), or one each in

goo] Qoo2 QQQ3 or two quarks in oooo and one in foo3 state. The relevant superposition to eliminate the c.m. dependence in
the polynomial of the symmetric state is

We now turn to the odd-parity configurations. The N= 1 (N„=N» =0, N, =1) odd-parity state, corresponding to an
axially symmetric prolate shape, can be constructed by having two quarks in the oooo state and one in the goo~ state. The
symmetric combination here gives just the wave function corresponding to an excitation of the c.m. and hence is not
relevant. The mixed-symmetry combination yields

CX

(3.11)

1 3 1 1

~~ (4ooi) —
~~ Pooofooifoo2 ~~ (oooo) Poo3 ~

The N=3, prolate symmetric state with 4=0 is then given by
r

CX
3 2

(p, A, )=
3&2 k, + —3p, A,,—V3p, A,, exp — [4(pz +A,z )+(p, +k, )]

(3.12)

(3.13)

We could also construct the mixed-symmetry N=3 state
in a similar manner. However, as the mixed-symmetry
state always comes higher in energy than the symmetric
state, we shall restrict our attention only to the symmetric
part of the N=3 excitations at present and reserve our
comments on the position of the N=3 mixed-symmetry
states to the concluding remarks.

The triaxial (N„=O, N„= 1, N, =2) and the isotropic
(N„=N» =N, =1) N=3 states correspond to intrinsic en-
ergies 5.45coo and 6~O. From Table I it is easily seen that
these states come at least 400 and 700 MeV above the
lowest N=3 state when coo-550 MeV. Hence these levels
can only be of academic interest at present as there are
very few observed levels in this region of energies.

We are now in a position to construct the fully antisym-
metric three-quark wave functions. Since the color part is
always antisymmetric, it is sufficient to construct states
symmetric in space, spin, and isospin coordinates. In the
following we list these wave functions in which the intrin-
sic spatial wave function (qi) is coupled to the eigenfunc-
tion X with spin S= —, or —', and to the eigenfunction P
with isospin I= —,

' or —,'. They are classified according to
the number of excitations N, the multiplet representation
of SU(6)SO(3), the spin 5 ( —,

' or —,
'

), and isospin I ( —,
' or

—,
'

) of the state. All these states are color singlets.
(1) Even parity, I= —,':

iS6+,N=O, S=—,',I= —,
' &= (X g+X'P")e,„=',

2

(3.14)

~

70+,2, —,, —, ) = (Q%' -'+P %„" ')X', (3.17)
3 l 1

~

20+,2, —,', —,
' ) = (X»y" —X'P)e"„='.

2

(2) Even parity, I = —,':
~

56+,0, , , —, ) =0',
y X'Pg, —

~

S6+,2, —,, —, ) =e,»~

(3.18)

(3.19)

(3.20)

~

70+,2, —,, —,
' ) = (X»O"='+X 'Pg =')Pg . (3 21)

(3) Odd parity, I = —,:

f
70 , 1, ,', ,' ) = ,' [-(X~/—'+—X'g-)P,"=

+(X~+—X P )+~
= ], (3.22)

~

56-,3, —,', —,
' ) = (X~++X'P")P",„=,

2
(3.23)

(3.24)

(4) Odd parity, I = —,:

~70, 1, —,', —,
' )= (X~'ll ='+X +g

=
)Pg, (325)3 1

~

56,3, —,, —, ) =0',
y X'Pg . (3.26)

The spin (X) and isospin (P) wave functions for the states
with maximum projection are given by

~

56+,2, —,', —,
'

& = (X~~+X"y")~~=',
v'2 (3.15)

1
(TLT —HATT),

2

~

7()+ 2 ~

&
~ [(XP~~+X~~)~~=2

+(X~+—X'P')%', ='], (3.16)

x+]/2 (TLT+lTT —2TTl)
6

++3/2

(3.27)
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where t(1) denotes the single-particle spin state with pro-
jection + —,

'
( ——,

'
) and

fg=uuu

(udu —duu), P~ = (udu +duu —2uud),

(3.28)

where u and d denote the up and down quarks. The
states with less than maximum projection are obtained by
using step-down operators in spin and isospin.

IV. DIAGONALIZATION

3

m=3m+m, +m, + g U(re)+b, , (4.1)

We follow a two-step procedure to obtain the spectra of
X(3 baryons. First, we diagonalize the full Hamiltonian
in the space of intrinsic states and obtain the intrinsic en-

ergies as well as mixing among the various intrinsic states.
Second, we assume that the states when projected onto
states of good L yield the characteristic rotational spectra
built on the appropriate band head. This assumption is
valid when the states are sufficiently deformed, as in our
case, and when the collective rotational motion of the
state as a whole does not perturb the internal motion. The
different total angular momentum states are then obtained

by coupling a particular L to a given total spin S. These
states are, however, degenerate when they are obtained
from the same L and S.

The form of the Hamiltonian is chosen to be

between the N(1440), which is mostly symmetric, and the
N(1710) which is mainly a mixed-symmetry state. Such a
splitting can only be achieved by a weak, attractive, possi-
bly short-range central interaction. Without any loss of
generality we can choose U( r;J ) to be

3

g U(r,j)=3U(~2p)= —A5(p), (4.6)

where A denotes the strength. %'e could have chosen a
more general form for U(r,j), which will effectively in-
volve matrix elements of an operator" Q„P„(p.p)".
However, some of these matrix elements can be taken care
of by redefining the oscillator parameter coo as an effective
Q. ' ' As far as first-order perturbation involving only
the diagonal matrix elements is concerned this generaliza-
tion leads to essentially the same results as in the case of
an attractive 5-function force. This equality breaks down
when the mixing among various intrinsic levels due to the
off-diagonal matrix elements is considered. We stick to
the first-order perturbation with the form given by Eq.
(4.6). This is partially justified in our model since (a) we
have chosen a comparatively weak U(r,z), and (b) the
off-diagonal matrix element is zero in most cases due to
spin-isospin orthogonality except between the states with
same permutation symmetry, spin, and isospin like the
N=O, 56+ and N=2, 56+ states. Also the effect of off-
diagonal matrix elements cannot be completely estimated
unless we have a larger space of basis states.

We thus obtain

where A 0, given by Eq. (2.7), is the unperturbed part of
the Hamiltonian whose eigenstates now form the basis for
diagonalizing A . The spin-spin contact force A, is given
by

g (N =1,70
l (J

i
U(r,, )

i
N =1,70-) =—,

2
'

g (N =0,56+
i
U(r; )

i
N =0,56+ ) =5,

l (J
(4.7)

(4.8)

16',m

A, = g S; Sq 5 ( r,q ),c
9 2 / J /J (4.2)

where

r/=r/ rJ ~

S/= go/

(4.3)

(4.4)

and a, is the strong coupling constant. Utilizing the sym-
metry of the wave function under the exchange of space,
spin, and isospin coordinates we can rewrite A, as

4v 2a, ~
Si S25 (p) . (4.5)

3m

The matrix elements of A, among intrinsic states are
given in Table III. The U(r;J) in Eq. (4.1) effectively
takes care of any short-range two-body interaction that
might have been excluded from the mean field. The
necessity to introduce U(r;J) arises for the following
reason. If we start with the intrinsic Hamiltonian A 0, the
%=2 symmetric and mixed-symmetry states are degen-
erate. The degeneracy is split by the spin-spin force.
However, any spin-spin interaction, whose strength is ad-
justed to obtain N(940) and b, (1232) mass difference, can-
not at the same time reproduce the difference in masses

g (N =2,56+
i
U(r; )

i
N =2,56+) = —,5,

l (J

g (N =2,70+
i
U(r;~) iN =2,70+) = —', 5,

l (J

g (N =2,20+
i
U(r, q. )

i
N =2,20+) =0,

l (J

g (N =3,56
i
U(r ~) i

N =3,56 ) = —,",5.
l (J

(4.9)

(4.10)

(4.11)

(4.12)

Hereafter, we shall treat 5 as a parameter which elim-
inates the need to determine the strength A of U(r,j).
The overall constant 6 in Eq. (4.1) is fixed at —1276 MeV
to give the mass of the nucleon ground state to be 940
MeV. The spin-orbit interaction is neglected for reasons
explained in I. The tensor coupling is also ignored as
there is evidence to believe that it is small. As a result of
this assumption, there is no mixing between states of
5 = —,

' and S =—', . If this assumption is not made, then
one can construct a strong-coupling model for the de-
formed states, as was done in Ref. 13.

The set of intrinsic states given by Eqs. (3.14)—(3.26)
provide the basis for diagonalizing A . Not all these
states are however mutually orthogonal; the X=O symme-
try state is not orthogonal to its nodal excitation X=2
symmetric state, when the spin and isospin are the same.



158 MURTHY, DEY, DEY, AND BHADURI 30

TABLE III. Matrix elements of the spin-spin contact potential ~, [Eq. (4.5)] between relevant intrinsic states [given in Eqs.
(3.14)—(3.26)] in units of V za, /3m V zr. Here we have used the parameters P~ and y~, defined by the relations
P~z=(X+ 1)y~ =(%+1)'/ uo, with ao =mozo/fi. The four matrices displayed are for the even-parity nucleon and 6, and the
odd-parity nucleon and 5 states, respectively.

~

s6, o, —,', —,
'

& (7O', Z, —,', —,
' )

~

70+,2, —', , —,
' )

Po'y—o

2V2P2 Po Y2yo

(P 2+P 2)(y 2 ~y 2)3/2

2V2P2 Po Y2YO

(P 2+P 2)(y 2+ y 2)3/2

—
4 Pz'rz

4P2 Po Y2 Yo

(P 2+P 2)(y 2+ y 2)3/2

1

2 2~Pz yz

~

s6+, o, —,', —,
' )

~

s6+, z, —,', —,
' )

4Pz'Po'yz'yo

(P 2+P 2)(y 2+y 2)3/2

0

1~Pz rz
2

0

—
8 Pz'yz

8 Pz'rz,

i
7O+, Z, —,', —,

' )

~

7O+, Z, —,', —,
' )

2.
~

56+,0, 2, 2 ) (56+,2, —', , —', ) ~7O+, Z, —,', —', )

zv 2Pz'Po'rzro'

(P 2+P 2)(y 2+y 2)3/2

0

2~&Pz'Po'y zyo'

(P 2+P 2)(y 2+y 2)3/2

4 Pz'yz

TP2 rz
3 2

~

s6+,o, —,', —,
' )

i

s6+, z, —,', —,
' )

)70+,2, —,', —,
'

&

~

7O-, 1, —,', —,
'

& ~7 0, 1, ,2—)2 ~56,3, 2, 2)

Pi'y i

2

6~PP P y y3

(P 2+P 2)(y 2+ y 2)5/2

Pi'y i

2

6~2P 2P 2y 2y 4

(P 2+P 2)(r 2+ r 2)3/2

3, P3'y3—

i
70, 1,—,—)

~

7O-, 1, —,', —,
'

&

~

S6-,3, —,', —,
' )

4. (7O-, 1, —,', —,
'

& 56, 3, ,2—)2

P2y 2

2

0 + 32 P3'y3

~

7O-, 1, —,', —,
' )

)56,3, 2, 2)

This is due to the fact that the N=O and the N=2 states
have been generated through mean fields of different
shape. To overcome this problem we rewrite the unper-
turbed part of the Hamiltonan A o as

(56,0,S,I
i

A o i
56,2,S,I )

= —,(Eo+Ez)(56,0,S,I
i
56,2,S,I),

where

(4.14)

~o= —(~o+~o), (4.13) (56,0,S,I
~

56,2,S,I)= —0.3172 . (4.15)

where the direction of the arrow indicates whether A 0
operates to the right or to the left. The diagonal matrix
elements of A 0 are unchanged by this prescription and
the corresponding energies are given in Table I. Note that
these energies have been obtained after eliminating the
c.m. contribution. A o has a nonzero off-diagonal matrix
element only between the N=O symmetric state and its
nodal excitation %=2 symmetric state, given by

det(A, i EN;J )=0, — (4.16)

where A;J denotes the (i,j)th matrix element of A and

(NJ) is the overlap matrix. If we had neglected the

The eigenvalues and eigenvectors of A are found by us-
ing the standard method' of diagonalization from a
nonorthogonal basis. The eigenvalues are found by solv-
ing the determinantal equation
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TABLE IV. The normalized intrinsic wave functions and the corresponding energies after diagonali-
zation of Pi [Eqs. (4.1) and (4.16)]. Note that the amplitude of a state may exceed unity in a nonorthog-
onal basis.

Intrinsic
energy
(MeV) %Pave function

940

1786

1989

2076

2333

1.038

0.111

0.153

0.174

0.939

—0.089
—0.415

0.906

0 0
0 0
0 0
1 0
0 1

~

56+ 0 —' -')

~20+, Z, —,', —,
' )

1230

2059

2076

1.055
—0.009

0.344

0.997
~

56+,0, —,', —,
' )

~70+, 2, —,', —,
' )

1579

1769

2164

0.986

—0.167

0.167

0.986

1769

2164

nonzero overlap between 56 N=O and N=2 states, (Ni~)
would reduce to the unit matrix (5,J ), and Eq. (4.16) then
is the simple eigenvalue equation.

The results of the diagonalization are given in Table IV.
The energies quoted correspond to the intrinsic energies of
the states with respect to which A assumes a diagonal
form. For the N=O state, however, the intrinsic energy
itself corresponds to the physical mass since it is spherical
in our model. The parameters of the fit are the constitu-
ent quark mass m, the oscillator parameter b (or 1/ao),
the strong coupling constant a„ the overall constant A.
The quark mass is chosen to be 330 MeV as suggested by
magnetic-moment calculations for proton and neutron in
the nonrelativistic constituent quark model. The oscilla-
tor parameter b and the strong coupling constant n, are
fixed at 0.4631 fm and 0.92, respectively, to yield the nu-
cleon ( N =0) and b, ( N =0) mass difference to be approxi-
mately 300 MeV. The corresponding %coo is about 550
MeV, which yields the %=1 odd-parity states at about
the right energy. The overall constant b is fixed so as to
get the nucleon (N=O) mass at 940 MeV. It turns out
that 6= —1276 MeV.

Note that because our U(r;J ) is rather weak, we find a
substantial mixing between the 56 N=2 and 70 %=2
states. This mixing seems to be essential if we have to ex-
plain the radiative decay strengths for
N(1440)~N(940) + y and N(1710)—+N(940) + y as dis-
cussed in Ref. 1.

V. ROTATIONAL SPECTRA

L=1,3,5, . . . in the odd-parity prolate or even-parity ob-
late states. With intrinsic states sufficiently deformed,
projection onto states of good L generates the charac-
teristic rotational spectrum built on a particular band
head. The energy of the band head (i.e., the state with the
lowest L) is obtained using the rotor model as

X'(L')
(5.1)intrinsic

for the even-parity prolate bands, and

$2
E(L =1)=E;„,„„„,+ I2 —(L ) I (5.2)

in each band. Note that the effect of removing
fi2(L ) /2Jz is to eliminate any contribution coming from
the intrinsic state to the rotational energy. The moment
of inertia (about an axis perpendicular to the symmetry
axis) of the particular band is denoted by W„and a
quantum-mechanical expression for W~ can be obtained
starting from the independent-particle approximation,
given by'

(ni~+ni. )'

2'&COz (co& —coz )

for odd-parity prolate bands and the N=2 oblate band.
The states of higher L are obtained by noting that the en-

ergy increases as

$2
L(L+ I)

The intrinsic wave functions outlined in Sec. III contain
a superposition of states of orbital angular momentum
L =0,2,4, . . . in the even-parity prolate states and

(CO& —COz )
(Ny+N, +2)

CO& +COz

(5.3)
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where the moment of inertia is defined with respect to the
x axis. At equilibrium the expression (5.3) for the mo-
ment of inertia reduces to

(X,+1) (&y+1)+- '
Nz COy

(5.4)

L=Lp+Lg, (5.5)

turns out to be independent of the oscillator parameter
and is purely a function of the deformation. For an axial-
ly symmetric solution at equilibrium deformation, the ex-
pectation value of (L ) is given by the simple expression

( L ) = ( co ) /co & ) —1, (5.6)

where co& (co&) is the larger (smaller) of co& (=co„=co~)
and co, . The ratio (co&/co&) is an integer at equilibrium,
and the corresponding value of (L ) for various intrinsic
states are listed in Table I.

VI. COMPARISON WITH EXPERIMENTAL RESULTS

The results of our fits to baryon masses are given in
Figs. 1—4. We have employed the spectroscopic nota-
tion' to identify levels. The full circles in the figures cor-

By symmetry we can easily write down the expression for
moment of inertia about other axes. However, all the
cases we are interested in possess an axial symmetry (ex-
cept N=O which is isotropic), in which we have chosen
the z axis to be the axis of symmetry. In such cases,
W=W~ ——W2, and W3 will be undefined. This is easily un-
derstood since any rotation around the symmetry axis
leaves the system invariant. Thus the rotational spectra
correspond to collective rotations about an axis perpendic-
ular to the axis of symmetry. We also observe that at
equilibrium the moment of inertia given by Eq. (5.4) is
identically equal to the rigid moment of inertia. The mo-
ment of inertia in terms of coo is explicitly given in Table
I.

The expectation value (L ), where

respond to the nominal masses of the states used for iden-
tification while the range is denoted by vertical bars.
Wherever the bars are not shown it should be assumed
that it is a weak (one or two star) state. The theoretical
predictions are shown by horizontal lines.

Figure 1 shows the even-parj. ty I= —, spectra. The ex-
perimental levels are grouped according to the proposed
rotational bands. ' The N=O nucleon state is fixed at 940
MeV by the choice of the overall constant 6, and is not
shown in the figure. The %=2 excitation spectrum is di-
vided into four bands, a symmetric 56 band coupled to
S= —,

' [Fig. 1(a)], a mixed-symmetry 70 band coupled to
S = —,

' [Fig. 1(b)], and S = —, [Fig. 1(c)], and an antisym-
metric 20 band coupled to total spin S = —, whose band
head is shown by a dashed line in Fig. 1(c). The agree-
ment in the symmetric 56 band between the theoretical
and experimental levels is fairly good, though the L=4,
F17 state is yet to be found. In the mixed-symmetry
S = —, and —, bands only two states P» (1710) and
Fj7(1990) have been established with certainty, and their
observed masses are in reasonable agreement with our
model. The weak E&5 state at 2000 MeV can be included
in either of these two mixed-symmetry bands. Similarly
the weak P&& state at 2100 MeV can be included either in
the mixed-symmetry 70, S = —, band or in the antisym-
metric 20, S= —,

' band. Such ambiguities as these cannot
be resolved at present. Note that the 20+ states do not
mix with either the 70+ or with the 56+ states through
spin-spin interaction. In fact, even the diagonal matrix
elements of H, and U( r,j ) are zero for a 20+ state. This
is precisely the reason why the band head with L= 1 for
the 20+ comes at about 2250 MeV. Since the parameter
fi /~j for this band is about 87 MeV, the next member
of the band with 1.=3 is pushed up by 870 MeV.

The relatively fewer number of states seen in the even-
parity mixed-symmetry configuration is due to the fact
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FIG. 1. Even-parity %=2 nucleon spectra {a) symmetric,
S =

2 band, (b) mixed symmetry, S =
2 band, (c) mixed sym-

metry, S = z band. The lowest L =1 band head of the 20+ an-

tisymmetric band is shown by the dashed line in (c). The nomi-
nal masses (Ref. 15) of well-defined states are shown by full cir-
cles, while the masses of the weak states are shown by open cir-
cles. The position of the intrinsic state is also shown for each
band.

I iP

~ 4 - (a) Sym S=3/2 (b) MSS=V'2

FIG. 2. Even-parity %=2 5 spectra, (a) symmetric, S= 2

band, {b) mixed symmetry, S= 2 band. The notation is the

same as in Fig. 1.
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that these couple weakly to the m.-N elastic channel com-
pared to the symmetric states. A slight enhancement
however occurs due to configuration mixing with the
states of the symmetric band (see Table IV).

The even-parity 6 states are shown in Fig. 2. There are
only two bands here: (a) the symmetric 56, S = —, band
shown in Fig. 2(a), and (b) the mixed-symmetry 70, S = —,

band shown in Fig. 2(b). As in the I = —, symmetric
band, there is good agreement between the experimental
states and the theoretical calculations in the I= —,

' sym-
metric band. Corresponding to the mixed symmetry,
S = —,

' band there are no observed levels to compare ex-

cept a weak Pq~ at 1550 MeV.
We shall now turn our attention to the odd-parity

states. The I = —,
' spectrum is shown in Fig. 3. The

mixed-symmetry 70, S=—,
' band is shown in Fig. 3(a).

The band head corresponding to L=1, S~~ and D~~ states
comes at 1510 MeV, close to the observed levels. The in-
teresting thing to notice in this band is however the L =3,
D~5 and 6~7 levels at 2200 MeV, almost exactly corre-
sponding to the observed masses. Unlike the spherical os-
cillator model, where these belong to the N=3 mixed-
symmetry levels, these states are explained in our model
as belonging to the N=1 mixed-symmetry rotational
band. The fact that these states are strongly seen perhaps
justifies this inclusion in the N=1 band rather than the
N=3 band.

In Fig. 3(b) we have shown the mixed-symmetry 70,
N=1, S = —,

' band. The agreement with L=1 levels is

good while the L =3 states have not been seen except for a
G f 9 state at 2250 MeV. In Fig. 3(c), the symmetric 56,
N=3, S = —, band is shown. There is a weak D&q state at
1880 MeV (shown by an open square) according to the
analysis of Ref. 16, which corresponds to the band head at
1830 MeV. In general the states in this band couple rath-
er weakly to the m-N elastic and inelastic channels com-
pared to the 70 N= 1 states.

Even though we have not included the mixed symmetry
70, N=3 band in our analysis, a few comments are in or-
der. The L=1 band head of this band comes at 2010
MeV with our parameters if we ignore the effects of spin- ODD-RLRITY DELTA SPECTRUM '3'

spin and U(r,J ) parts of the Hamiltonian. However,
these constitute a smaller (about half) effect on a mixed-
symmetry configuration than on a symmetric configura-
tion. Thus the I= —,', mixed-symmetry 70, ¹=3,L=1
state would be approximately found at about 2000 MeV,
corresponding to J= —,, (S&&) and —, (D&&). There are
two observed levels corresponding to this at 2060+80
MeV (D~q) and a weak level at 2100 MeV (S~&). The
L= 5 level would fit the It level shown at 2600 MeV in
Fig. 3(c) and the 6» level at 2800 MeV. This is not an
unambiguous identification since these two observed
states could as well belong to the L=5 symmetric, N=3
band. The former identification is preferable, since in the
odd-parity configurations, the mixed-symmetry states are
seen more strongly.

The odd-parity I= —, spectrum is displayed in Fig. 4.
Figure 4(a) shows the mixed-symmetry, N= 1, S = —,

band and Fig. 4(b) shows the symmetric, N=3, S=—,

band. Though the higher L (L &3) states are not seen
very well, the agreement is satisfactory. It is gratifying to
note that the L = 1 states of the N=3 band have come
down in energy due to deformation.

As in the I= —, odd-parity N=3 case, we could con-
struct an I= —,, N=3, mixed-symmetry 70, S = —, band.
The band head here would be at about 2100 MeV, corre-
sponding to J= —, (Sz&) and J=—', (D33 states). A weak

Sq~ state is seen at 2150 MeV. The next L=3 and L=5
states would come at about 2350 and 2800 MeV. Thus
the I&&& level at 2750 MeV, shown in Fig. 4(b), may as
well belong to this band.

In the spherical-oscillator model ' the N=2 and N=3
states come too high in excitation energy. These are
brought down by introducing a strong spin-independent
central interaction U(r,j) which is treated only in first-
order perturbation theory. This is supposed to simulate
the anharmonic terms in the interquark interaction, and
the energy shift due to this to the N=2 symmetric state is
of the order of %co. ' As mentioned earlier, this prescrip-
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FIG. 3. Odd-parity nucleon spectra, (a) N=1 mixed symme-
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%=3, symmetric S =
2 band. The state denoted by an open

square in (c) corresponds to the phase-shift analysis of Ref. 16.
The rest of the notation is the same as in earlier figures.
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FIG. 4. Odd-parity 6 spectra, (b) %=1, mixed symmetry,
S= 2 band, {b) %=3, symmetric, S= 2 band. The dashed

vertical lines show the mass spread of the particular states ac-
cording to the phase-shift analysis of Ref. 16.
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tion does not fully explain the lowering of the N=3 odd-
parity states in the A. In our model, the lowering of the
excited states is caused by the deformation of the mean
field. This deformation may partly be due to the anhar-
monic components of the force. The residual interaction
U( r,j ) in our model is only half as strong, and a perturba-
tion treatment with it is less objectionable. It also plays a
limited role in our model, and was not included in the
original version. Without U(r;J), the splitting between$+
the N=2 symmetric and mixed-symmetry —, states
would only be about 160 MeV.

It is our view that deformation of the baryon even in
low-lying excited states is a real physical effect, and we
have demonstrated this phenomenologically by grouping
the observed states in rotational bands. Once the self-
consistency between the shape of density and the mean
field is demanded, the quantum-mechanical moment of
inertia becomes the same as the rigid-body inertia. This is
just of the right magnitude needed to explain the spacing

between the observed states. In the present model, the ef-
fect of interquark forces is put in indirectly through the
volume conservation condition, which makes the baryonic
matter incompressible. It would be desirable to perform a
microscopic self-consistent calculation with a reasonable
Hamiltonian to derive the mean field and demonstrate
that it is deformed in excited configurations. Our more
phenomenological approach may well provide the motiva-
tion for this.
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