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Hadronic v decay, pion radiative decay, and pion polarizability
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Using conserved vector current and the first Weinberg sum rule, it is shown that the "missing"
10% of the hadronic ~ decay could come from the axial-vector current. This implies for m~evy
decay, F&(0)/Fq(0) =0.50+0.15, and a charged-pion polarizability a =5)& 10 cm .

Using the conserved-vector-current hypothesis' (CVC)
and the experimental data on e+e ~ even number of
pions, it is straightforward to calculate the following
branching ratio (B) of the hadronic heavy-lepton r decay:

B(a+~a+~ v) =(24+1)%,
B(~+~m+~+mmv) =.(5+0.5)%,
B(s+~m+3m v) =(1.2+0.0)%,

m6m

m 2

of the missing 10% hadronic events. It agrees with one of
the two solutions obtained from m.~evy experiments.
The charged-pion polarizability deduced from this calcu-
lation agrees in sign and magnitude with that given by a
recent indirect measurement.

We begin first by writing down the formula for the
hadronic decay rate:

I ~~ vV 2

ds 1—
I (r~evv)

where we have assumed B(~—+evV)=17.5%, compared
with the experimental averaged branching ratio of
(17.5+1.4)%. B(~ +n+v) can —be calculated without any
ambiguity and is equal to 11~ro. These results together
with the experimental B(r+ +m.+p v)=—(5.4+1.7)% en-
able us to compute the quantities

m,
v|(s)
a|(s)

(3)

B(w—+one prong) =(77+2.4)'%%uo,

B(a~three prongs) =(10.6+2)%%uo

(2)

compared with the experimental results, (86+3)%%uo and
14%, respectively. We have added to Eq. (2) 2% contri-
bution of strange-particle decays (IC,E*,Q&, Q2) estimated
by a parton-model calculation and we have neglected the
m', and Sm contributions to three- and five-prong events
which were shown to be very small. ' From Eq. (2}, it is
clear that about 10% of the hadronic mode of the one-
prong type is unaccounted for. The origin of this
discrepancy could be due to a statistical fluctuation
and/or an inaccurate measurement of e,p branching ratio.
In this article, we would like to point out that the 10%
missing hadronic events could be real and in fact due to
the axial-vector matrix element. This is so because of the
symmetry between axial-vector and vector-current matrix
elements as implied by the first Weinberg sum rule: the
vector current (via CVC},contributes to a total branching
ratio of (30+1)%, while the axial-vector current contri-
butes to a known experimental branching ratio of
(20.8+3.4)% and hence the missing 10% is due to the
axial-vector-current matrix element. The missing events
could come from the 3n. continuum or the existence of a
second axial-vector meson resonance A&. As a conse-
quence of this analysis, the axial-vector form factor in
n.~e vy is calculated. It is found that the ratio
y =Fz (0)/F~(0) =0.5, which is independent of the nature

Fg(0) = f [a ~(s) —v~(s)]+f1 ds (r')
2m' s 3

(5)

Equations (3)—(5) represent our present knowledge of the
low-energy axial-vector form-factor matrix elements. Ob-
viously Eq. (5) is least sensitive to the high-energy
behavior of the spectral function, while Eq. (4) is sensitive
because it depends on how good is the high-energy cancel-
lation between the axial-vector and vector-form factors.
Fortunately, quantum chromodynamics (QCD) and exper-
imental data on e+e ~ hadrons provide a reasonable es-
timate of the region where the asymptotic freedom in
QCD applies. We take a reasonable value s =N =3 GeV
above all the known isovector mesons; above N,

where U~ and a& are, respectively, the spin-1 vector and
axial-vector spectral functions. The spin-0 part of the
axial-vector spectral function ao(s) is given by a similar
expression and is not written. From the previous estima-
tion of the decay constant of n'(1300), F~ =5—6 MeV,
its branching ratio is completely negligible. We assume in
the remainder of this article that this is also true for the
continuum contribution to the function ao(s), which can
be estimated from the quark-parton model.

The first Weinberg sum rule reads

f ds v&(s)= f dsa&(s)+2mf (4)

where f =133 MeV. The axial-vector form factor in
m chevy decay is given by '
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2~fi mi ——0.21 . (7)

(As long as mi is not at the edge of the r-decay phase
space, this expression is insensitive to the value of mi
used. ) Using this value in the Weinberg sum rule Eq. (4),
the remaining contribution b,ai(s) to the axial-vector
spectral function is

f ha&(s)ds=0. 20 GeV (8)

Equation (8) is the basis for the following phenomenologi-
cal analysis. In the following, we consider its consequence
on w—+axial-vector current+ v decay and m.—+evy decay.

I. v DECAY

Because the axial-vector spectral functiori contribution
is given in the integral form, it can be either in the form
of a second axial-vector meson resonance or a continuum.

(a) Second axial vector meson resona-nce A i. It is not
out of the question to consider the possibility of the ex-
istence of a second axial-vector resonance of higher mass
besides the well-known 3

&
resonance. This is so because

there are two strange axial-vector mesons Qi (1.28 GeV)
and Qz (1.40 GeV). Using the symmetry argument, we
expect to have a second A

&
resonance A ~, with essentially

the same mass as Qz. (We can ignore the difference be-
tween up-, down-, and strange-quark masses. ) Denoting,
the decay constant and mass of this second resonance,

vi(s)=ai(s)+ac(s) to a good accuracy as can be shown
from QCD.

Usj.rig experimental data on e+e ~++~ and
e+e +4—n and Eq. (4) we obtain

f v2 (s)ds=0. 27 GeV
/

f v&~(s)ds=0. 25 GeV

and hencef,ds a i (s) =0.41 GeV (6)
9m

Note that for our value of N, the 4m contribution is as
important as the p contribution in the Weinberg sum rule.
We now demand that the A i contribution to Eq. (6) in the
form of n.p resonance yields approximately an experimen-
tal branching ratio fo 12%. A 5-function approximation
for an Ai resonance with an experimental width of 300
MeV underestimates its effect in the Weinberg sum rule
by as much as 60% compared with a numerical integra-
tion of a current-algebra model . which correctly takes
into account the appropriate phase-space factor and finite
width of the Ai resonance. If we use, however, the 5-
function approximation in both the Weinberg sum rule
Eq. (4) and the expression for ~—+Aiv decay, Eq. (3),
then the error cancels out. For clarity we use the 5-
function approximation.

Denoting the A i contribution ( mz, ——1.27 GeV) in

ai(s) by

2'& mi 5(s —si)

and requiring it to yield a branching ratio of 12%, we
have

respectively, as f2 and m2 ——1.4 GeV, using Eq. (8), we
have

2nf2'm& '——0.20 GeV,
which is the same value as that of A i resonance, Eq. (7).
The w-decay branching ratio for this second resonance is
8%, which is very near to the missing 10% of the hadron-
ic events. If the experimental data on one prong are
correct, this resonance must decay mostly to one-prong
events (the neutral modes which are not detected could
come from n. , vP, Kt ). Likely candidates for the decay
modes are gym+ for KKn which decays two-thirds of the
time as one-prong events.

(b) Continuum contribution. The continuum contribu-
tion to a i(s) could be in the form of 3m or 5m. . . . Using
current algebra, the 5m contribution was found to be very
small. The 3m. contribution could be in the form of n
"o" where "o" is a correlated 2m, i =0, S state. In this
case

r(r ~+~+~ v) tr(r -~+~'~'v) =2,
which is not what we need to account for the "missing"
10% one-prong events. We cannot say, however, in gen-
eral, what the value of this ratio is (continuum events
could also come from rirtn. and KKa). Assuming the
axial-vector-current continuum starts at so ——1.4 GeV
with the value given by QCD, i.e., parton model, its
branching ratio is 7.5%, which is what we need. Howev-
er, within the wisdom of the QCD sum rule and
phenomenology this choice of so is rather low; it should
be higher than the mass of the lowest axial-vector meson
resonance; so) 1.7 GeV; in this case its branching ratio
would be 4.5%, which would not present a convincing ar-
gument for the missing events.

II. ~~eve DECAY

The remainder of this paper is devoted to study the im-
plication of Eq. (8) on the axial-vector form factor in

chevy and hence the pion polarizability. We begin first
by showing, to a good degree of accuracy, that the 2m
contribution to the integral of the vector spectral function
v2 (s) cancels out the (r ) term in Eq. (5). Because each
of these two terms is large [the magnitude of each is about
2.4 times larger than Fr(0)], we cannot use experimental
data on (r ) which has a large uncertainty. Instead, us-
ing analyticity and unitarity we can show that the in-
tegrals of v2 (s) and (r ) are closely related and cancel
out. Experimental data on the pion form factor in the
timelike region and, to a lesser degree, the spacelike pion
form factor can be used to control approximations and as-
sumptions made.

There is confusion in the literature on the question of
whether to use subtracted or unsubtracted dispersion rela-
tions for the pion form factor. Of course, we must use the
subtracted dispersion relation. But it is important to re-
quire that the timelike pion form factor must satisfy the
final-state theorem, which states that below the inelastic
threshold, a condition which is practically valid for s & 1

GeV, the phase of the pion form factor is the same as the
P-wave pion-pion phase shift. Once this condition is im-
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posed together with the experimental P wa-ve phase shift,
one cannot have the flexibility associated with the ques-
tion of subtracted or unsubtracted dispersion relation as
frequently discussed in the literature.

There are two steps involved in showing the cancella-
tion. The first consists in showing the validity of the
one-pole formula of Frazer-Fulco" or the Gounaris-
Sakurai' formula with parameters adjusted to give the
observed p mass and width. To do this, we can use the
crossing-symmetric P-wave Roy equation' to study the
P-wave phase shift. Using experimental data on the S
and P waves in the Roy equation, it is straightforward to
show that in the low-energy region, and in the vicinity of
the p resonance, the correction due to the left-hand cut is
almost canceled out by the appropriate subtraction con-
stants and amounts to a correction of only a few degrees
phase shift. Hence we can write [$=4(v+ m )]

vp+m [1—yh ( —m )]

vz —v+yvh (v) iyv —~ l(v +m„)' r

—,
' (r ) =—J ImF~($)

77 3@i
(1 la)

and vz„($);

2 3/2
s 1 ~ ds 4m

v 2'($) 1—4' s 12~ 4m s S

X IF ($)
I (1 lb)

Upon comparing Eqs. (1 la) and (lib), using Eq. (10) and
the fact that the integrand is peaked at the p mass while
g ($) is a slowly varying function of $, we have

where h (v) is the well-known logarithm function " the
factor multiplying g(v) is the usual pion-farm-factor for-
mula, and g (v) simulates the inelastic effect and possibly
the polynomial ambiguity, with g(0)=1. Equation (10)
provides an excellent description of pion-form-factor data—4 &$ & 1.8 GeV2 (Ref. 14). From experimental data, we
have $& ——25.8m and y=0. 184 ($& is defined such that
the P-wave mn. phase shift is equal to 90' at 770 MeV).
Using the definition of the pion radius

1 ~p

24m f y
—g($ )

= —0.07— (12)

=0.013m (13)

where the first term on the right-hand side represents the
contribution, the second term the A& contribution

(this value would change slightly if we used instead the
continuum contribution), and the third term the 4m state,
and the last term comes from Eq. (12); Using CVC,
Fi (0)=0.0265m „and hence finally

y =Fg (0)/Fy(0) =0 5 (14)

with an estimated uncertainty of +0.15 which comes
mostly from the uncertainty of the timelike pion form
factor at the p peak. The experimental values for y are
0.44+0. 12 or —2.36+0.12 (Ref. 15) and 0.26 or —1.98
(Ref. 16). The negative solution for y is of course ruled
out by our calculation. The pion polarizability a~ calcu-
lated from our value of Fz (0) is'

e Fg(0)
a = =5& 10 cm (15)

m f
which is consistent with that obtained by an indirect mea-
surement using the reaction m 3—+m Ay. '
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where (r )=0.21m, and g($&)=1.10.
It remains to calculate the 4m contribution to v &($), the

A& and A ~ or continuum contribution to the right-hand
side of Eq. (5). Using Eqs. (7), (9), and (12) and experi-
mental data on e+e —+4~, we have

Fg(0)=(0.021 +0.017—0.020—0.005)m
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