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Chiral symmetry and the "penguin" interaction
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Department ofPhysics and Astronomy, University ofMassachusetts, Amherst, Massachusetts 01003
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It is shown how the "penguin" interaction, propo"ed by Shifman, Vainshtein, and Zakharov in
the theory of nonleptonic weak decays, is consistent with the constraints of chiral symmetry. For
the K-m. transition this involves including a diagram which was missed in previous work. The for-
mulas for the %~2m matrix elements are found to be a factor of 2 larger than the original estimates
using the vacuum-saturation method. In addition the equivalence of a procedure using a normal-
ordered operator and the more standard technique is demonstrated.

I. INTRODUCTION

One of the most interesting, and controversial, develop-
ments in the theory of low-energy weak interactions has
been the suggestion of the importance of the "penguin di-
agrarn, " Fig. 1, in nonleptonic M= 1 processes, as first
introduced by Shifman, Vainshtein, and Zakharov' (SVZ).
Despite many investigations, it is still not clear whether
or not it is this diagram which is responsible for the ob-
served LU= —,

' rule in kaon and hyperon decays. In addi-
tion to disagreements on the strength of this process, there
is, throughout the literature, considerable confusion and
error in the discussion of the chiral properties of the
penguin interaction. For example, there has recently ap-
peared a paper claiming that the vacuum-insertion
method of evaluating the penguin operator is inconsistent
with PCAC (partial conservation of axial-vector current)
and therefore wrong. The present paper will not be con-
cerned with the controversy over the strength of the in-
teraction, although the results bear on that question, but
will primarily attempt to elucidate correctly the chiral
properties.

In the remainder of this section I will discuss the con-
straints of chiral symmetry while in Sec. II the vacuum-
insertion method will be applied. In particular it will be
shown that this technique is completely consistent with
PCAC when one includes a new diagram, previously
missed, in the X~m. transition. In addition it will be seen
that the full result is a factor of 2 larger than obtained in
the original method.

In the application of the MIT bag model to this prob-

lem, the author and his colleagues have taken a different
direction in treating the chiral properties. That our work
has caused confusion is evidenced by the various com-
ments which we have received. In fact, however, the
"anomalous commutator" of our paper is equivalent to
the new diagram mentioned above, and our work yields
the same answer for X~2m as would a more convention-
al approach. I clarify the equivalence of the two methods
in Sec. III.

These questions arise because the penguin operator ap-
pears superficially to have a different chiral structure than
do the other parts of the weak interaction. The funda-
mental Lagrangian for the weak and e'ectromagnetic in-
teractions is constructed so that only left-handed fermions
feel the weak force. The flavor properties of the interac-
tion are therefore those of only the left-handed fermions.
The M= 1 transition can be bJ = —, or —', or in SU(3) can
belong to the octet or 27-piet. If one allows separate left-
handed and right-handed chiral SU(3) transformations,
the weak Hamiltonian must transform as (8L, , lz) or
(27L, , lz). The penguin operator appears at first to be
somewhat different from other weak operators in that
right-handed fermions are explicitly present. If, for the
purposes of this paper, we restrict our attention to the
dominant LU= —,, octet pieces in the interaction, then the
effective Hamiltonian including QCD corrections is

GF
H = cos8&sin0&cos83(c

&
8

& +e s 65),
2 2

where

dy&(1+ ys)u u y"——(1+yz)s uy&(1+—y5)u dy" (1+y&)s,

65——dy„(1+y, )t "s[uy"(1—ys)t "u+dy"(1 y, )t "d+sy"(1 —y, )t"s], —

with t" being the (color) SU(3) matrices, with
Trt"t =25" . The operator W~ is representative of the
usual "non-penguin" pieces of the weak interaction and
explicitly contains only left-handed quarks. 65 is the

dominant operator due to the penguin diagram. The
right-handed quarks enter in a flavor-singlet combination
and therefore, despite naive appearances, this does have
the same chiral properties as 6&, i.e., (81,1+). (I will as-
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I

K (k) ) =(k+q)„,
(m (q) I dy„y, u

I
0) =iv 2F q„,

(sr+(q+)m (qo) IP y„d I
0) = (q qo—)„,

(4)

FIG. 1. The penguin diagram in hS = 1 nonleptonic decays.

sume that the normal-ordering prescription of Ref. 2 is
not applied, and return to this topic later. ) We therefore
expect the same behavior under chiral symmetry for both
W~ and 65. It has not been apparent in the literature how
this comes about.

There are two constraints on kaon decay amplitudes
which we deal with. The first follows from SU(3) alone
and states that the %~2m amplitude must vanish in the
SU(3) limit. The second is a consequence of chiral SU(3)
[or vector SU(3) plus chiral SU(2}] which states that kaon
amplitudes are all related in a special way and must be at
least first order in the products of four-momenta (i.e., in
terms like k q). It is well known that, even using chiral
SU(2}, the soft-pion theorems for kaon decays are incon-
sistent if the amplitude is independent of momentum. Ex-
panding the amplitudes to first order, requiring consisten-
cy in the soft-pion limits, and applying the SU(3) theorem
mentioned above, leads to a unique form of the ampli-
tudes. Equivalently, early work by Cronin using effec-
tive l.agrangians shows that this form emerges given only
the (8L, lz) transformation property. The appropriate
forms are

(0
I dy„y5s I

K (k) ) =i v 2F k„.
We do not have as direct a measure of the constants in-
volved in matrix elements of scalar and pseudoscalar den-
sities. Here if we assume that there is no momentum
dependence in the amplitudes we obtain

(sr+
I

us IK)=A, '

(~
I
"y5u

I
0) =i~2F A,

(~+~'Iud Io)=—
2

(o
I
dd

I
o) = (o

I

ss
I
o) = —2F.'A .

All vertices can be written in terms of single amplitude A

by using the soft-pion theorems of PCAC and current
algebra. If one treats the chiral-symmetry breaking due to
quark masses

A „,=m„uu+mddd+m, ss

to first order in the masses, then A gives the relationship
between quark masses and meson masses

m '=(m. + Im „,Im+),

I '=(KI~.„IK),
and therefore

2 2
K m

m+ —m+
(o IH. IK'(k'=0)) =o,
(m. (k) IH IK (k))= 2F gk— mg —md mg+md my+my

with the quark masses clearly being the current-algebra
masses. In what follows we will see that one is forced to
consider the momentum dependence of these amplitudes.
For later convenience, the parametrization becomes

r

(~+(q)
I
us

I
K (k) ) =A 1+ (k —q)

Awhere
s, —=(k —q ), so ——mx /3 —m2 = 2 2

2

(m (q)
I
dy5u IO) =i~2F A 1+

2and with all other amplitudes related to these by the
M= —,

' rule. It is the structure of these amplitudes and the
relationship between them which one must reproduce if
one is to be consistent with PCAC. Equation (3) will
therefore be our criterion for PCAC consistency.

II. VACUUM SATURATION

(rr+(q+ )m (qo)
I
ud

I
0) = — A 1+ (q++q. }'

2 A

k
(OI dyes IK (k)) = iv 2F A 1+—

z
In this method, one evaluates matrix elements involving

four quark fields by breaking the amplitudes into the
product of two-quark matrix elements through insertion
of the vacuum state in all possible ways between the quark
bilinears. To discuss this technique one needs the various
two-quark matrix elements. I will assume SU(3) invari-
ance in defining the various constants. For vector and
axial-vector currents, we have the usual definitions:

(OIdd Io)=(OIss Io)= —2F A .

The treatment of the vertices as form factors would sug-
gest the choice of &he minus sign in the momentum-
dependent terms.

In the %~2~ transition, the vacuum-saturation result
for 6] is well known and has the appropriate form

(n+(q+ )m (q —)
I
H

I
Ks(k)) =ig(2k q+ q —)——

(n.+(q, )vr (q )m+(qi)
I
H

I

K+(k))

[k + —,(s3 —so)],2R 2

3I'
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(m+(q+)vr (q )
l

d'1 lX (k)) = —', [(n.(q )
l
dy„you l

0)(~+(q+)
l uy„s lK (k))

—(sr+(q+)~ (q )
l
urdu

l
0)(0ldr„yss lK (k))]

iF [(k q—+ )+(q+ q—)],
which leads to

(m+(q+)~ (q )
l
6i lKs(k)) = (2k —q

~ —q ~) .
3

The overall factor of —', above comes from color factors associated with the two orderings in 6'i, i.e., from

(10)

(mid;-y„y, u, l
0) =i v 2F "p„,

JM

where i and j are color labels. Use has been made of the Fierz-rearrangement property

Plirp(1+ Y5) ki03j r (1+rs)04j elir (1+r5)04j 43j Y (1+r5W2i

With the penguin transition one also has matrix elements of S,P densities, with the Fierz relation

p, r&(1+r5)$2 $3ky"(1 —y5)$4 ———2g& (1—y5)$4 $3 (1+y5)pz

The result is

&~+(q+)~ (q )I &s I&-'(k) &=[ &~+(q+)~ (q )I u y&u-j+d yidj I
0&&oldkrprPI Il~'«) &

+2(~-(q )
l
d, y,u,

l
0) (~+(q+ )

l
u„s, lac'(k))

2(m+(q+—)n (q ) ld;dt l0)(0ldkyssj lX (k))]t; t'ai.

(13)

(14)

= —", [(n. (q ) ldy, u lo)(m+(q+)
l

us lE (k))

—(~+(q )~ (q )
l
dd

l
0)(0

l
dyss lK (k))] . (15)

lf t»»s evaluated with no momentum dependence the amplitude will vanish, as was noted in the original work of Spz.
Allowing momentum dependence

2

(m+nl/5 lK .) = , i~2F A —1+ (k —q)
A

e+ e k( + )'

A . A

=+ 9 ~2iF A 2(k q)— (16)

or
2

(~+~-
l
~,

l
j~.;) =+i. 64 F~A 2 2(2k —q —q+ )+d'

This discussion is similar in spirit to the original work of SVZ; however the final result is a factor of 2 larger than would
be obtained in their method. This difference is due to the fact that SVZ used momentum dependence in scalar amplitude

(n.
l
us

l

Z')
but not in pseudoscalar ones

(m.
l
dy5u

l
0) .

The procedure used in the present paper is the correct one if soft-pion theorems are to be satisfied. In K~2m, the
penguin operator has the form required by PCAC.

Most of the confusion in the literature occurs in the treatment of the K +n. transition, and i—t appears that everyone
has missed an important diagram in the evaluation of the penguin term. For the nonpenguin operator we have, as usual,

«)
I
&il j~' «)&= 3 &~

I dr, r5u lo&&0 luy„r~ lit-&
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In the case of Wq there are two contributions, given pictorially in Fig. 2:

(k)
I

8's IE (k))= 2t—itkt[ —&m. Idysut IO)&OI ukyssj IE )

+ &~
I
d;st I

E )(&0
I dkdj I

0&+ &0
I sksj

ld ysulO&&Oluy&IE ) —2&~ IdsIE &&Olddlo&).

In most past investigations only Fig. 2(a) has been includ-
ed. Again, if one uses vertices independent of momentum,
the amplitude vanishes. Including momentum depen-
dence, one has

k
(k) I

8's IE (k))= —, X2F A 1+

4128 ~ k2 0 k
( )=-

9 ~2 + ~4

Again the consistency with PCA.C is evident if one com-
pares Eqs. (3), (17), and (20). The new diagram, Fig. 2(b),
has played a crucial role in obtaining this consistency as it
cancels out the constant term which would have disagreed
with Eq. (3). Note that in E~2m. , any diagram similar to
Fig. 2(b) which contains &0l qq IO) vanishes for the on-
shell amplitude. Such diagrams only contribute to off-
shell processes, such as L~a.

It is from the outset clear that the vacuum-saturation
technique applied to d's should be consistent with PCAC,
because the operator has a clear chiral property and there
is nothing intrinsic to the vacuum-saturation method
which violates PCAC. The above calculation has, I hope,
made clear in detail how such consistency arises.

Even though it is somewhat outside the main develop-
ment of this paper, it is appropriate to comment on the
magnitude of the penguin contribution. Combining all
terms we have

To evaluate the amplitude A one must eva1uate the
quark masses appropriate for the scale at which one
chooses the renormalization point. Here we will repeat
Weinberg's method, s including observations made in Ref.
2. Vfeinberg ascribes ES=1 mass splittings to the quark
masses treated to first order (here neglecting isospin viola-
tion)

with

=(m, —m~)Z

=~sZm

=150 MeV (24)

with u (1) being the upper (lower) component of the quark
wave function. In potential models

Z =&A Iss IA) .

At this stage, most authors absorb Z into the mass, i.e.,
m, =Z~m, =1SO MeV How. ever, we are after m, not
m, and therefore this is not appropriate here. At low en-

ergies it is certainly not correct to set Z =1. Z may be
calculated at the hadronic scale using quark models. In
the bag model

x u —l
Z~ = =0.48 (2S)

dx(u +I )

G~ 2F
& 7r 'lT

I H~ I Ep ) — cos)eicos)gsslnei
2 2 3

&u(p)u(p) &

(u+(p)u(p)) p(E+~) ) (26)

X(2k —q+ —q ) C, + Cs
32 A

A

If I use the model of Isgur and Karl' with a =0.17
GeV, I estimate

=S.3X10 m» Ci+ Cs . (21)8 323
A

Experimentally the desired answer is
K

&n+m
I H~ I E, ) =+7.78X10 m» (22) (a)

while QCD short-distance analysis' yields the coeffi-
cients

C) ——2.4,

C5-0.02—0. 1 .
(23)

K

The coefficient Cs has a rather strong dependence on the
renormalization point, and there are legitimate questions
as to whether or not the penguin diagram is short-distance
dominated.

FIG. 2. The vacuum-insertion contributions to the K ~m
amplitude.
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~ 2

=0.6,

ZM 04 ~

These estimates indicate that at the hadronic scale

(27)

and

m, = 150 MeV/Z =300—400 MeV

mg 2

ms+md
Zm =670—800 MeV .0.25 GeV'

0.15 GeV
(28)

A direct calculation of A in the bag model yields a some-
what smaller result:

A =430 MeV . (29)

Let us here take the most optimistic value A =800 MeV.
The value of A, which governs the momentum depen-

dence of the chiral amplitudes, is also needed. SVZ'
choose A=m =700 MeV. Manohar and Georgi" would
argue that this chiral scale is 4~F =1 GeV, a result
which is consistent with a recent analysis of this scale in
K~3m data. ' The range 700~1000 MeV is probably a
reasonable range.

Combining all these threads, one has the optimistic esti-
mate

(ir+m.
~

H
~

E ) =5.3X10 mx(Ci+10C5)

=5.3X10 mx. (2.4+1), (30)

where the factor in parentheses should be 15 to match the
experimental value. Despite a large color factor, the per-
turbative QCD coefficient of the penguin operator ap-
pears too small, in this evaluation, to explain the M= —,

'

rule.

[Fs,@s]=[F3,85] . (32)

This is a statement of the left-handed chiral property.
However, upon normal ordering we have

[F3 8'sl=[F3 8'5] ——", (0
~

dd
~

0)d(1+ys)s . (33)

The other differ'ence between the two operators is that for
8'5 one must evaluate both Figs. 2(a) and 2(b), while for
05 Fig. 2(b) is absent because of the normal-ordering
prescription. Therefore, one may calculate a physical am-
plitude such as E~m. ~ by use of PCAC as follows:

lim (m. (qi)~ (qz)
~

d's
~

E (k))
q)~0

This is defined so that the off-diagonal mass term which
would arise from the s —+d matrix element is absent. The
new term changes the chiral properties but does not affect
the physical decay rates. The "anomalous" piece which
occurs in the commutator when taking a soft-pion limit
has the same effect as Fig. 2(b), which is absent for the
normal-ordered operator. The purpose of this section is to
clarify this situation.

The fact that the new term should not change any of
the physical decay amplitudes is known from work which
dates back to a 1959 paper by Feinberg, Kabir, and Wein-
berg. ' The new term is like a piece of the s-d mass ma-
trix, and is added to make the matrix diagonal. However,
such mass terms cannot lead to physical decay ampli-
tudes. It has been shown that one obtains the same
answer whether or not one first diagonalizes the mass ma-
trix, as long as one deals with one-mass-shell states. '

Therefore the new piece can, and does, modify E~ir but
not %~2m.

The current algebra commutator for the standard
penguin operator 65, which has not been normal ordered,
satisfies

III. NORMAL ORDERING

In Ref. 2, Donoghue, Golowich, Holstein, and Ponce
used an operator for the penguin interaction which was
normal ordered with respect to the true vacuum:

2F~
' (~o(k)

~

~, ~Eo(k))

6'5= 85+ —", (0
~

dd
~
0)d(i+yes)s

+—", (0
i
ss

i
0)d(1 —y5)s . (31)

2F [Fig.2(a)+Fig. 2(b)] .

However, use of the normal-ordered operator yields

(34)

lim (m (qi)ir (qz)
~

6 ~E (k))= [(n'(k)
~
[Fi,@ ] ~E (k)) ——, (O~dd ~0)(ir (k) ds ~E (k))]

q, 0 F~

[(m. (k)
i

6'5
i

E (k)) ——", (0
i
dd

i
0)(ir (k)

i
ds iE (k))]

(35)[Fig.2(a) ——', (0
~

dd ~0)(m. (k)
~

ds
~

E (k))] .
2F

When explicitly evaluated the same X~2~ amplitude is obtained in each case. The result would be that quoted in Sec.
II [Eq. (21)] if the vacuum-saturation method is used. The bag model provides an alternative technique of evaluation,
but yields a result larger than the vacuum-saturation method.
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