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The effects of nonasymptotic terms in the photon structure function F$(x,Q') predicted by QCD
are studied directly in x space in leading and subleading order. The full. (regular) solution including
the hadronic nonasymptotic (Q() -dependent input) terms is shown to be free from the unphysical
singularities of the asymptotic solution and is furthermore positive definite for suitable chosen boun-

dary conditions (at Q =Qo~} and in the physically relevant x region (W & 2 GeV}. The implications
of the nonasymptotic solution and of their perturbatively uncalculable boundary conditions for the
determination of A and for the predictive power of purely perturbative /CD in the determination of
Fj(x,Q ) are critically analyzed. Furthermore, taking carefully into, account charm production, de-
tailed predictions are given for present and future (unfolded) data. Similarly to the case of deep-
inelastic lepton-nucleon scattering, the (nonperturbative) photonic input parton distributions at
Q =Qo are different for leading- and higher-order calculations. This implies that the differences
between leading- and higher-order predictions for F/(x, Q ) are too small to be distinguished by
present experiments. The only clean test of QCD, independent of the hadronic input, can be
achieved by observing an increase of Fl (x, Q~ } with ln Q~ for fixed values of x.

I. INTRODUCTION

The comparison of the QCD predictions for the photon
structure function F)(x,Q ) with experiment is now fully
under way as improved data over a wide range of Q be-
come available. In these comparisons it was customary
up to now to take for the theoretical QCD predictions just
the asymptotic leading-order or higher-order results of
Witten' or of Bardeen and Buras, respectively.

In a previous publication we pointed out the reasons
for the inadequacy of the asymptotic' formulas. This
inadequacy is not only due to the relatively low present
values of Q but mainly due to the mathematical deficien-
cies of the asymptotic formulas. The difficulties encoun-
tered, for example, by Duke and Owens in the small-x re-
gion were realized by Bardeen to be intimately related to
the nonasymptotic and previously neglected hadronic
components of the photon. The relation to the boundary
conditions of the evolution equations for the quark and
gluon distributions in the (real) photon was finally expli
citly' recognized and formulated in Ref. 3.

In this article we present detailed numerical results us-
ing the formulas developed in Ref. 3. We start, in Sec. II,
by comparing the asymptotic and the full solutions in
leading order and demonstrate the importance of the
nonasymptotic terms at the presently available values of
Q . In Sec. III, devoted to the higher-order QCD predic-
tions, we first demonstrate the positiuity of the full solu-
tion as contrasted with the asymptotic results of Duke
and Owens in the small-x region. We thus confirm the
anticipations articulated in Ref. 3 and demonstrate the
crucial theoretical importance of a correct treatment of
the boundary conditions. Moreover, since the input par-
ton distributions (at Q =Q() ) beyond the leading order
are differ'ent from the (measurable) ones in leading order,
the full leading- and higher-order QCD predictions for

F$(x,Q ) are practically indistinguishable by present ex-
periments. We present detailed predictions for F$(x,Q )
with special emphasis on treating charm production in the
threshold region by the well-known lowest-order associat-
ed (Bethe-Heitler box) process y*(Q )yacc. Further-
more, a few detailed comparisons with recent data are
presented.

The implications of our results are finally discussed in
Sec. IV, where, among other things, we critically discuss
the reduced predictive power of perturbative QCD in the
theoretical determination of F$(x,Q ), for presently avail-
able values of Q, due to the unknown hadronic quark
and gluon components of the photon.

II. LEADING-ORDER RESULTS

1where n= »,—,

a, ( Q z) =4m/(P()lnQ z/A2)

(2.1)

with P()——11 2f/3, f being the—number of flavors, and
the k 's are the (inhomogeneous) Born terms and refer
to the y —+ quark and y~ gluon splitting functions. This
equation is straightforward for the nonsinglet case i=NS
where

In contrast to the deep-inelastic lepton-nucleon case, the
parton distributions in the photon q;r(x, Q ) satisfy inho
mogeneous evolution equations ' which in leading order
(LO) read

d(I,r(x, Q )

d lnQ

a ~(Q') ) d xk(0)( )+ s I y P(0) X
y( Q2)
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kNs 3f(&e &
—(e & )2[x +(1—x) l PNs =P

with

(2.2)

where

o o
(2.6)

as=
aG

and Pqq) is the standard Altarelli-Parisi splitting function.
In the singlet case i=S, however, Eq. (2.1) becomes a
(coupled) matrix equation with

k (0)

(0)ks=
O

(0) (0)
(0)

~w ~eg
~S = p(0) p(0)

w gg

. (2.3)

where

kq' '(x) =3f(e &2[x +(1—x) ] .

From the solutions of Eq. (2.1) one obtains the measured
photon structure function F$(x,g ) by

These equations are easily solved by iteration and the
well-known results are shown by the short-dashed curves
in Figs. 1 and 2 for f=4 and f=3 flavors, respectively.

It should be noted in passing that sometimes the x-
dependent predictions are extracted from the QCD predic-
tions for Mellin moments, defined by

1

q,r(n, g )=—f dxx" 'q,r(x, g ), (2.7)

which are fitted by using some ad hoc x-dependent ansa'tz
for Ff(x,g ) where supplementary considerations must
be invoked to determine the end-point behavio'r. In Fig. 1

we compare the results obtained in this way ' (crossed
curves) and one sees that they differ appreciably from the
exact solutions obtained directly in Bjorken-x space. Be-
cause of the simple analytic structure of the LO QCD mo-

—F$(x,g )=qgs(x, g )+(e &Xr(x,g ) . (2.4)

To obtain the most general solution of Eq. (2.1) it is clear
that one needs, as in the. deep-inelastic lepton-nucleon
case, input distributions qr(x, go ) at' a given value of
Q2=go which include the nonpointlike hadronic piece
of the photon and, strictly speaking, have to be extracted
from experiment. Since these nonpointlike contributions
in the solution of (2.1) are formally suppressed like

0.8

0.6

0.4

LO (f=4) B.B.

xx x
~f 0~x xxxx

qf(x, g )=
z a;(x)

tz, (g') (2.5)

which, when inserted into Eq. (2.1), yields a simple in-
tegral equation for a;(x):

[~,(g')«.(Qo') 1

it has become customary to neglect these terms and to
keep only those terms which are proportional to lnQ /A,
which constitute the so-called asymptotic or pointlike
solution. This latter solution is unique to the extent that
it does not depend on the unknown input quantities
("boundary conditions") Qo and qir(x, Qo ). The hadron-
ic nonpointlike pieces are then estimated using vector-
meson-dominance (VMD) arguments and are added to the
"unique" pointlike solution. As we shall discuss later
such a separation of pointlike and nonpointlike contribu-
tions to F$ is not only incorrect from a mathematical as
well as physical point of view but we shall also see that
the input boundary conditions at Qo are by far not negli-
gible at currently available values of Q .

Nevertheless, in order to demonstrate more clearly the
differences between the general solution of Eq. (2.1) and
the asymptotic solution so far used, we briefly consider
the latter one first. The asymptotic pointlike solution of
the evolution equations (2.1) is of the general form
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FIG. 1. Full LO solutions (soHd curves) for the photon struc-
ture functions for f=4 flavors and for two different values for
A using the VMD input of Eq. (2.9) at Qo ——1 GeV . The
long-dashed curves show the effect of the boundary conditions
at Q2=20 CJeV2 for vanishing input distributions [cf. Eq.
(2.11)]. The exact asymptotic solutions, Eqs. (2.5) and (2.6), are
shown by the short-dashed curves, which are of course the same
in the two pictures, and compared with the appropriate results
(crossed curves) of Ref. 2 (B.B.) and Ref. 4 (D.O.) obtained by
fitting some x-dependent ansatz to QCD moments.
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ments, one can also perform a direct numerical Mellin in-
version' and the results agree of course with those ob-
tained by solving the evolution equations directly in x
space (short-dashed curves in Figs. 1 and 2). In higher or-
ders, however, such a direct numerical Mellin inversion is
not possible anymore because the singularity structure of
the predicted moments is too complicated in n space;
therefore one is either forced to use the indirect and ap-
proximate fitting method ' described above or, more ap-
propriately, to solve the evolution equations directly in
Bjorken-x space which will be done in Sec. III.

As already emphasized the separation of the perturba-
tive asymptotic pointlike and the hadronic nonpointlike
(VMD) contribution to Fj, i.e., F$ = pointlike+ VMD,
where VMD is nonsingular, is incorrect. ' ' The intui-
tive reason for this has been recently reemphasized by
Frazer who pointed out that the infrared singularities of
the ladder diagram [Fig. 3(a)], which makes up the
asymptotic .pointlike result, ' must be canceled by in-
frared singularities of the diagrams in Figs. 3(b) and 3(c).
The diagram of Fig. 3(b), however, is of the type associat-
ed with VMD, i.e., with qq bound states. Therefore the
VMD terms must contain singularities to cancel the ones
of the pointlike terms. Thus, the usual prescription
FI't= pointlike+ VMD, where VMD is regular, is wrong.
Mathematically such a separation results in difficulties

La (f =3}

0.4—

concerning singularities at x=0 in the asymptotic point-
like terms usually considered: The leading-order Mitten
result' for F((x,Q ) diverges as x ' due to the right-
most pole in the moment Xr( n, Q ) at n = 1.5964 for f=4
flavors. In the next order one finds a divergence like x
due to a pole at n=2 which would result in (unphysical)
negative structure functions at small values of x. It has
been speculated by Rossi' that these divergences might
become even worse if one goes to even higher orders and
could extend over the entire region of x. All these diffi-
culties with mathematically ill-defined asymptotic terms
are eliminated if one considers, as one has to, the general
solutions of the evolution equations (2.1), i.e., by taking
into account the hadronic input distributions at Qc
(boundary conditions) from the very beginning.

In order to obtain the general solutions of Eq. (2.1} one
clearly needs the hadronic input distributions q,r(x, QO }
at some initial Q =Qo (boundary conditions). Strictly
speaking these nonperturbative quantities have to be
determined experimentally, as in the case of deep-inelastic
lepton-nucleon scattering. Present two-photon measure-
ments, however, do not suffice to delineate the three input
quantities q4(x, Qc ), Xr(x, Qo ), and Gr(x, Qc ). We
therefore assume, as is commonly done, that this input
can be estimated on grounds of VMD ideas although one
should keep in mind that VMD probably underestimates
the "real" hadronic input at Qo especially at large values
of x. Typically Qo -1 GeV where VMD is in good
agreement with the measured total yy cross section, but
for Q & Qc -1 GeV there is a clear deviation" from the
VMD expectations which points toward the onset of the
pointlike partonic contribution. The VMD contribution
to the photon structure function is dominantly given
by, ' at a given value of Q,

Fj,vMD(x, Q ) 2- g e; xq; (x,Q ) (2.8)

&l~

N
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with fz /4m 2 and where one assumes q; (x,Q ) to be
the same as those for n, i.e., q~ =q = —,'(q +q ),
and their evolutions with Q are well known' according
to the standard (homogeneous) Altarelli-Parisi equations.
Writing Eq. (2.8) in our nonsinglet and singlet basis we fi-
nally get

0.3-

0.2—

0' . I . I, l
~ I, I

0. 0.2 0.4

i100

QP~(c) ~

0.8

ftooopppuo

%Atrtr+ 00

QCD

FIG. 2. Full LO solutions (solid curves) for the photon struc-
ture functions for f=3 flavors and for two different values of A
using the VMD input of Eq. (2.9) at QO2=1 GeV2. The long-
dashed curves are the QPM predictions for charm production
according to Eq. (2.13) using m, =1.5 GeV.

(a) (b)

FIG. 3. Diagrams leading to infrared singularities: (a) in the
pointlike asymptotic solutions (Refs. 1 and 2) and (b) and (c) in
the hadronic input distributions. Diagram (b) simulates the qq
bound vector state (VMD).
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2 4m'
qkS, VMD(»Q )=

2 X '

P

—,v (f =3),
——,'p (f =4),

&(MD(x, Q')=, (2v +6/ ), (2.9)

by the long-dashed curves (corresponding to Q =20
GeV2): As one can see the positive spikes proportional to
x at small x in the asymptotic solutions disappear
due to taking into account the boundary conditions at
Qo . The reason for this becomes immediately transpar-
ent if one writes the general full solution of Eq. (2.1) for
moments, 3 defined by Eq. (2.7),

G(MD(x, Q )= G

where the pionic parton distributions are taken from Ref.
, 13 using the same valence and sea decompositions, name-
ly,

qr(n, Q2}= 4

a, (Q')
a (Q2) 1 —2P,(0)(n)/Po

S.

a, (Q() )

a (Q2) —2P(o)(n)/po

a;(n)

(2.11)

u =d =u =d =v +g
+ ~+

17 =d =Q =d s =s:—P .
(2.10)

to be compared with the asymptotic solution (2.5). Thus
artificial poles in a; are regularized by the vanishing of
the square bracket in Eq. (2.11),i.e.,

All these results are adopted at Q =Qo -1 GeV for our
hadronic input. The small (intrinsic) photonic charm dis-
tributions cr, c r have been neglected in Eq. (2.9}~harm
production in the threshold region is expected to be entire-
ly described by the lowest-order Bethe-Heitler process

f f~cc.
It should, however, be emphasized that in order to ob-

tain a better agreement between theory and experiment
one might be forced to use initial values for qtr(x, QO )
other than suggested by VMD. This is so because it is by
far not obvious that there exists any Qo at all, even in the
(1-GeV region, where the photon is entirely prescribed

by the VMD ansatz.
The final results for f=4 flavors are shown in Fig. 1 by

the solid curves for various values of Q and two choices
for' A. It is clear that at presently attainable values of
Q ( &100 GeV ) the effects of the hadronic boundary
conditions at Qo ——1 GeV are not negligible' throughout
the whole x region and therefore the asymptotic solutions
(short-dashed curves) should not be used for comparison
with present data. To illustrate the dependence of our
predictions on the chosen (VMD) input q(r(x, QO ) at
Qo ——1 GeV, we also show the results for q(r(x, QO ) =0

lim ( 1 —a') —= —lna,
p—+0 E'

(2.12)

which explicitly demonstrates how indispensable the full
solution is for obtaining physically and mathematically
well-behaved predictions for the photon structure
function —this will be of vital importance when higher or-
ders are included. Furthermore, it is clear from Eq. (2.11)
that this regularization is independent of the detailed
form of the input q(r(x, Qo ) and depends only on the
chosen value of Qo via a, (Qo ). Finally it should be
stressed that all the perturbative predictions in Fig. 1, as
well as all forthcoming results, should be taken seriously
only for W & 2 GeV and Q & 1 GeV where
W =Q (1/x —1).

For a realistic comparison of LO predictions with
(most) present experiments (where Q & 50 GeV ) one
should not use the f=4 results of Fig. 1, since in the
charm-threshold region where Q ~4m, charm produc-
tion must not be treated as the standard light quarks
(u, d,s) but instead must be accounted for by the well-
known lowest-order quark-parton-model (QPM) cross sec-
tion for the (Bethe-Heitler) process y*(Q )yacc, similar
to the case of deep-inelastic lepton-hadron scattering, '

2 2
4 ~ 4fPl~—Fj,(x,Q ) =3 — —P 8x (1—x)—1 — x (1—x)

x ' ' 9 m Q2

4m, 8m, 1+p+ x +(1—x) + x(1—3x)— x ln
Q' Q'

(2.13)

where

P =1—4m, x/(1 —x)Q

For P &0, i.e., W &2m„F$, —:0. We use throughout
m, =1.5 GeV. A few predictions due to Eq. (2.13) are
shown by the long-dashed curves in Fig. 2 which have to
be added to the f=3 flavor (u, d, s) results shown by the
solid curves. Only for Q & 100 GeV one can use the ful-
ly renormalization-group-improved results for f=4 light
quarks as shown, for example, in Fig. 1.

As we shall see these LO predictions are in disagree-

ment with present preliminary data, i.e., they fall below
present measurements. This might indicate that the input
at Q =Qo -1 GeV is not simply given by VMD, Eq.
(2.9), but perhaps by VMD and the naive QPM (box) cross

. section —a combination which provides already a reason-
able description"' of the data at a given value of Q .
The various LO predictions will be given in comparison
with the respective higher-order ones to be discussed next.

III. HIGHER-ORDER CONTRIBUTIONS

Generalizing the LO evolution equations (2.1) to the
next-to-leading order one obtains
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dqf(x~Q ) a (p) ag(Q } (i)
k, (x}+ k; (x)

d lnQ 2m 2'
a (Q') a (Q')S - p(0) S - p(1) y+;+

2 g

with the convolutions defined by
r

P~q P q y
2

(3 1)

(3.2)

where P) ——102—38f/3 and A as well as all higher-order
(HO) results throughout this paper refer to the modified
minimal-subtraction (MS) scheme. Explicit analytic ex-
pressions for the HO photon-parton splitting functions
k "Ns(x) alld'

'k(i) '

ks = (i)
(i)

G

and

(Q2) A P A
(3.3)

are given in Ref. 3 where also simple analytic expres-
.sions' for PNs(x) and Ps"(x), the latter matrix being de-
fined similarly to Ps ' in Eq. (2.3), can be found. In con-
trast to Eq. (2.4), the measured photon structure function
is now obtained from

a 2 2—Ff(x,Q )=qps(x, Q )+ B~*qps+(e'& Xr(x, Q')+ '
(B,*&r+Ba*Gr) +3f(e'&

4m.

(3.4)

with the convolutions defined in Eq. (3.2) and the various Wilson coefficients BJ(x) are summarized in Ref. 3. It should
be emphasized that, in contrast to the LO case, the photonic parton distributions q(r(x, Q ) by themselves have no direct
physical meaning; only the combination (3.4) with Wilson coefficient represents, to a given order in a„a measurable
quantity which is independent of the renormalization convention adopted, ' apart of course from the prescription depen-
dence inherent in defining a, . Therefore the boundary conditions at Qp, i.e., the (unknown) input distributions
qtr(x, Qp ), required for the full solution of Eq. (3.1), can in general be different from the ones for LO calculations. The
situation is here identical to the well-known case of deep-inelastic lepton-nucleon scattering where the unphysical input
distributions for the HO predictions are different from the physical LO ones.

A. Asymptotic soiution

The asymptotic pointlike HO "solution" is the one2 where only terms proportional to a, '(Q ) and "constant" terms
independent of a, are kept, whereas all other pieces appearing in the general full solution of Eq. (3.1}are neglected. Fol-
lowing Eq. (2.5) it can be obtained from the ansatz

qr(x, Q )=
2 a;(x)+b;(x)

a, (Q')

which, when inserted into Eq. (3.1), yields the same integral equation (2.6) for a;(x) whereas b; Ns s(x) satisfies

(3.5)

(3.6)

where

bx
bs—=

bG

Again Eq. (3.6) is easily solved numerically by iteration. The final expression for the photon structure function then
follows from inserting q,r(x, Q ) in Eq. (3.5) into Eq. (3.4):

—+$(,Q')=, [ ( )+& '& ( )]+b ( )+& '&b ( )x a, (Q2)

+Bq4aNs+ &e &(Bq eaz+BG~aa)+3f (e & Br(x)+O(a, ),
4m

(3.7)

where the O(a, ) terms arising through the combination
of Eqs. (3.4) and (3.5) should, strictly speaking, be omitted
here since their complete inclusion affords a treatment of
the evolution equations (3.1} beyond the order here con-
sidered.

Equation (3.6) for b;(x) is entirely new. It allows one
to solve for b; directly in Bjorken-x space. We show for
illustration in Fig. 4 the explicit results for b;(x) for f=4
flavors together with the well-known previously obtained
LO results for a;(x) which appear in Eq. (3.6) for b;(x).
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FIG. 4. Solutions of Eq. (2.6) for a;(x) and Eq. (3.6) for b;(x)
for f=4 flavors. The final results are obtained by multiplying
the curves by the indicated powers of 10.

As one can see the two singlet quantities bx(x) and bo(x),
shown by the dashed curves in Fig. 4, become strongly
negative for x~0, diverging like —x, in contrast to
the small positive spikes of ax(x) and ao(x) proportional
to x ' as discussed in the previous section. The
reason for this can be readily understood from Eq. (3.6):
Taking the nth Mellin moment, defined by Eq. (2.7), one
observes that b, (n) is proportional to the. inverse of the
singlet anomalous dimension matrix Ps '(n) ' defined in
Eq. (2.3); thus bs(n) develops a pole at n=2 with negative
residue due to the vanishing of one. eigenvalue of
Ps '(n =2) reflecting energy-momentum conservation.
This n=2 pole implies in x space a (negative) spike pro-
portional to x, for small values of x, which extends to
larger values of x than the weaker divergence proportional
to x '5 in az(x) and ao(x).

The fact that b;(x) is strongly negative in the small-x
region causes F$(x,g ) in Eq. (3.7) to become negative4
for x &0.2 in the presently accessible range of Q ( & 100
GeV ) where the first term on the right-hand side (RHS)
of Eq. (3.5) is not yet the entirely dominant one. The re-
sults for two values of Q are shown in Fig. 5 by the solid
curves and are compared with the ones ' obtained by fit-
ting some x-dependent ansatz for F((x,g ) to the mo-
ments predicted by QCD (crossed curves). These latter
approximate results differ appreciably from our exact
solutions, the differences being even larger than in the LO
case (cf. Fig. 1), although the intercepts in x where F$
turns negative have been surprisingly well reproduced.

Clearly, negative values of the structure function

FIG. 5. Asymptotic HO solutions (solid curves) for the pho-
ton structure function given by Eq. (3.7) for f=4 flavors and
A=—P~s ——0.5 GeV. Our exact results are compared with the

approximate ones (crossed curves) of Ref. 2 (B.B.) and Ref. 4
(D.O.) obtained by fitting some x-dependent ansatz to QCD mo-
ments.

F$(x,g ) are unphysical and their appearance is not very
surprising since they result from a mathematically ill-
defined quantity, bs(n =2)= oo. Such difficulties occur,
however, only in the asymptotic solution (3.5) which is ob-
tained by arbitrarily truncating the general full solution of
Eq. (3.1), i.e., by disregarding all input boundary condi-
tions at Q =Qo which, although power suppressed in
a, (gz), are in principle not negligible.

B. Full regular solution

To obtain the general full solution of Eq. (3.1) one
needs, as in the LO case, to specify the boundary condi-
tions at some initial Q =Qo, i.e., the hadronic input dis-
tributions qtr(x, go ). Having chosen an appropriate in-
put, the most straightforward way to find the full solu-
tions would be to solve Eq. (3.1) by iteration and insert the
results into Eq. (3.4). In this way, however, it is impossi-
ble to avoid the convention-dependent 0(a, ) terms
[their complete inclusion affords a treatment of Eq. (3.1)
beyond the order here considered] which were under con-
trol in Eq. (3.7) because of the explicit ansatz (3.5) for the
asymptotic solution. From this direct procedure we have
found that the 0 (a, ) terms, when appropriately extracted
as described below, are tolerably small only for Q ) 100
GeV and for present values of A between 0.1 and 0.5
GeV, at least as long as one works in the MS or
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momentum-subtraction (MOM) scheme. 4 For Q (100
GeV, however, the unwanted 0 (a, ) terms turned out to
be sizable, typically 30—40%, and therefore we have
chosen to work not directly with Eq. (3.1) but with a
method which allows us to trace and eliminate these terms

I

explicitly.
The simplest way to sketch the method which allows us

to avoid 0 (a, ) terms explicitly is to recall the solution of
Eq. (3.1) for moments, defined by Eq. (2.7). This can be
written in closed form as

qr(n, g )=
2

1—
(2,(g')

(g2). ) —2P(o)(n)IPo
S

(z, (gp')
a;(n)+ 1— ~ (g2) —2P,(o)(n)IPo

b;(n)
(2, (Qp')

(g 2) 2P(I )o(n)/Po
S "(n)— '

~,")(n) ~,(Q,2)"' '""'&&(n,g, 2)
77 p 2 p

+ higher orders (3.8)

T (»Q' Qo') —=
& (g2) 2P(o)(n)/—Po

&,(Qo )
(3 9)

for which one can immediately read off the following evo-
lution equation in x space:

which should be compared with the LO solution (2.11).
Thus, if one inverts each term in (3.8) separately to
Bjorken-x space, one can, on inserting into Eq. (3.4), omit
explicitly all annoying 0(a, ) terms. The second line in

Eq. (3.8) describes nothing else but the standard @CD
evolution of parton distributions and is easily obtained in

x space by solving the homogeneous HO evolution equa-

tions, i.e., Eq. (3.1) with k o' and k;"' set equal to zero.
Furthermore, a;(x) and I2; (x) in the first line of Eq. (3.8)

are the same as in the asymptotic solution (3.5) and are
the solutions of Eqs. (2.6) and (3.6), respectively. So the
only problem left is to invert the most important square
brackets in Eq. (3.8) which multiply a; and b; and which
regularize any artificial poles in a; and more importantly
the n=2 pole in b; according to Eq. (2.12), leaving us
with a perfectly finite and mathematically well-defined

(positive) result. According to Eq. (3.8) we have to invert
the expression

dT;(x, Q, Qp )

das (zs o
(3.10)

TNs(»Qo Qo )=Tqq(»Qo Qo )

=T~(x,Qp, Q()2) =5(1—x),
Tqs(»go' Qo') =Tgq(»Qo' Qo') =0

(3.1 1)

The final result is then obtained by inserting the Mellin
inverse of Eq. (3.8) into Eq. (3.4):

with (z, =a, (g ) given by Eq. (3.3) and the convolution is
defined by Eq. (3.2). Some properties of the nonsinglet
quantity Ti Ns(x, Q, Qp ) have been studied already a
long time ago whereas for i=S, Eq. (3.10) is a matrix
equation since

Tqq Tqg
s= T Tgq gg .

and with I's ' given in Eq. (2.3). This implies two coupled
integro-differential equations for Tqq and Tsq and two
coupled equations for Tqz and T~. All these equations
are again easily solved by iteration using as initial input
values' at Q =Qp

1 2 4m.—Fj(x,g )= ~ aNs(x)—
x ~ (Q2)

a, (g ) a, (Q )
TNs*aNs+(e } ax(x) — '

2 (Tqqniax+ Tqsq aa)
a, (Qp') (z, (gp )

u, (g')
+bNs(x) TNs*bNs+—(e }[bx(x)—T q bx —T q bG]j+B q aNs — TNs*aNsqq qg q (z (Q ')

I a, (g ) a, (g )
+(e } Bqqax —

2 Bqe(Tqqqax+TqsqaG)+Bzqaa —
2 Ban:(Tsqqax+T~qiaa)

(g 2) q qq qs a, (Q()')

4 a a, (g')
+3f(e') „Br(x)+0(&,)+qIqs, h d(»g )+ 4 Bq q'CIqs, h d

4m 4m.

a, (g )
+ (e } +/ad(x g )+ 4 [Bq + ~kad+BG Glad j

L

(3.12)

where the last three terms proportional to quad(x, g )

refer to the hadronic input parton distributions qir(x, go )

evolved according to the standard homogeneous HO
(Altarelli-Parisi) evolution equations —the moments of

which are represented by the last line in Eq. (3.8). It
should be stressed again that the Qp2 dependence in Eq.
(3.12) or (3.8) of the (regularizing) boundary conditions
remains even if one chooses vanishing input distributions,
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i.e., qr(x, go )=0, which implies that the additive had-
ronic, terms proportional to q; h,d in Eq. (3.12) are absent.

The regularizing effects of the Qo -dependent terms in
Eq. (3.12) are demonstrated in Fig. 6 where we show the
full HO solutions (solid curves) as well as the ones
without the purely hadronic pieces q,rz, d in Eq. (3.12)
(long-dashed curves): In contrast to the unphysical nega-
tive values of the asymptotic solution for Ej at small
values of x, as shown in Fig. 5 and by the short-dashed
curves in Fig. 6, the general full solution is finite and per-
fectly positiue T. he price to pay for obtaining the full
solution, i.e., a physically as well as mathematically sensi-
ble result, is the so far arbitrary hadronic input qf(x, go )

at an appropriately chosen value of Qo . Thus at present-
ly measured values of Q it is illusory to use just the
"unique" asymptotic solution for F$(x,g ) as a test of
@CD and as a way to determine A. Since the positive a;
terms in Eq. (3.12) or (3.8), become suppressed at small
values of Q ( ( 10 GeV ) as compared to the negative b;
terms, the full solution turns negative in the large-x re-
gion as shown in Fig. 6 for Q =3 GeV . Although this
large-x region lies already in the resonance region 8'&2
GeV where perturbative parton-model calculations are not
applicable anymore, such negative results are irrelevant
also since they have been obtained by using the same in-
put distributions qf(x, go ) as for the LO calculations.
We have performed this somewhat academic calculation

in order to demonstrate the magnitude of the HO contri-
butions per se in Eqs. (3.4) and (3.8) or equivalently in Eq.
(3.12). Within the same spirit we illustrate the depen-
dence of the full (academic) HO solutions on Q and A in
Fig. 7.

Realistically, however, HO calculations afford in gen-
eral a different input than the LO ones for being com-
pared with experiment as has been discussed at the begin-
ning of Sec. III—an analogous situation to the one en-
countered in deep-inelastic lepton-nucleon scattering.
Since, as in the LO case in Sec. II, present experiments are
too scarce to determine the three nonperturbative input
quantities qr(x, go ) we have fixed this input in the fol-
lowing way in order to obtain more realistic HO predic-
tions. The (small) photonic gluon distribution has been
fixed by counting-rule arguments as described in Sec. II,
whereas the fermionic input distributions have been
determined at Qz ——1 GeV so that, when evolved to
Q~=5.9 GeV, the full HO expression for F((x,g ) in
Eq. (3.12) reproduces the PLUTO data'6 at Q~ =5.9
GeV . A similar procedure for fixing the input for a LO
calculation would now enable us to compare the LO re-
sults with the HO ones at different values of Q &5.9
GeV with experiment. Since such measurements are not
yet available' ' we choose, as an example, a LO input
such that the final LO result for Fj(x,g ) coincides with

HO

oa- Q =2=

0.6—

0.4—

(f =4},
3 GeV

h =0.5 GeV

W & 2GeV
0.6—

0.4—

0.2—

HO (f=4}
A =0.26eV

C5

C5
0K

CV0

0.2—

0.8—

0,6-

0.4—

0.2—

I ~

Q =20 GeV

/
/

/
/J

/
/

/ I, }

0.2 0.4

==W(2
-=GeV

———with input qY(x, Q,)=0

I, I ~ & . I

0.6 0.8

&I

C3

W cv
U

A = 0.46eV
0.8—

0.6—

0.4—

0.2—

0.2 0.4 0.6 0.8 1.
X

FIG. 6. Full HO solutions (solid curves) according to Eq.
(3.12) using the VMD input of Eq. (2.9) at Q&P=1 GeV . The
long-dashed curves show the effect of the boundary conditions
for vanishing hadronic input distributions. The asymptotic
solutions (short-dashed curves) are the same as the solid curves
in Fig. 5. Only predictions corresponding to 8'& 2 GeV should
be considered; these lie to the left of the vertical shaded bars.

FIG. 7. Full HO predictions for f=4 flavors and for various
values of Q and A. The vertical shaded bars indicate, as in

Fig. 6, the resonance region 8'&2 GeV. For comparison the
asymptotic LO predictions are shown by the short-dashed
curves which are the same as in Fig. 1. These HO results
should not be compared with actual measurements since they
have been obtained, as in Fig. 6, by using the same input at Qo
as for the LO calculations.
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agreement with the PLUTO data we have therefore
chosen to supplement the VMD input (2.9) at Qo

——1

GeV by the naive quark-parton-model (QPM) box contri-
bution for light quarks (u, d, s). This latter expression fol-
lows directly from Eq. (2.13) in the limit 4m~ /Q && I
and, for a specific quark flavor, is given by

'

Y

Q -iSGeV, f=i
0.8—

0.6—

LO„+YMD

CQPM(x Q

=3e 8x (1—x)—1' 2m

+[x'+ (1—x)']ln 1—x
m

, (3.13)

0.4—

0.2—

I . I, I, I

where for the effective light constituent quark masses we
have taken throughout 0.8

LO„+VND

m„=md ——0.2 GeV, m, =0.3 GeV . (3.14)

Although the resulting full solution, denoted by
LO+ VMD+ QPM(uds) in Fig. 9, is in good agreement
with the data it should be kept in mind that, in contrast to
the asymptotic solution, this result depends strongly on
the (partly) unknown or guessed hadronic inputs VMD
and QPM(uds) at Qo ——1 GeV . The latter is very sensi-
tive to the chosen values of quark masses in Eq. (3.14) and
the VMD+QPM(uds) contribution to F( has to be
larger than the perturbative QCD prediction in order to
achieve this agreement with experiment. It is therefore
mainly the predicted Q euolution which can be seriously
tested with present experiments once the input at a given
value of Q has been guessed —a situation similar to the
case of deep-inelastic lepton-nucleon scattering. Thus the
predictions for Q =24 GeV in Fig. 9 and for Q =45
and 110 GeV in Fig; 10 should provide us with further
tests of QCD when compared with forthcoming unfolded
data obtained by the' ' JADE (Q =24 and 110 GeV )

and PLUTO (Q =45 GeV ) collaborations. It should be
. noted that our evoluted results at Q )Qz in Figs. 9 and

10 remain unaltered if we choose appropriate input distri-
butions at Qp ——5.9 GeV instead of Qp ——1 GeV .

As demonstrated above in Sec. IIIB, the HO predic-
tions will differ only insignificantly from the LO ones
shown in Figs. 9 and 10. Furthermore it should be kept in
mind that, as soon as high-statistics data at various values
of Q become available, a more detailed analysis will be-
come meaningful, in particular a model-independent
deternunation of the thus far unknown hadronic input
qf(x, Qp ). Furthermore, the agreement or disagreement
with experiment might even be misleading at present since
the dat'a, which refer to an average value of Q, include a
wide range of measured values of Q . On the other hand,
the theoretical predictions depend rather strongly on the
specific value of Q . Therefore, as soon as high-statistics
experiments become feasible, it should be mandatory for
experimentalists to present their data at various fixed (and
not averaged) values of Q in order to allow for a clean
comparison with theoretical predictions. In Figs. 9 and
10 the vertical shaded bars indicate the region where the
invariant 2y energy 8'becomes smaller than 2 GeV, thus
entering the resonance region. Therefore the pointlike and
perturbative parton calculations should not be taken seri-

'

I

0.6

0.4—

p2 Q =IIOGeV, f=0

~ I, &, I, I . 1, I, / . I

0.2 0.4 0. 6 0.8

FIG. 10. Predictions for F((x,g2} at Q =45 and 110 GeV2
using A=0.4 GeV. The notations are as in Fig. 9.

ously in large-x regions where 8'& 2 GeV.
At small values of Q, where Q ~4m, , charm is not

fully excited yet and one has to use the lowest-order
Bethe-Heitler expression (2.13) to account for charm pro-
duction. Thus only the f=3 flavor QCD predictions are
relevant in this region and not the resummed (evolved)
f=4 results. These results are shown in Fig. 9 for
Q =5.9 GeV and, although not explicitly stated, all f=3
predictions are always supplemented by I"$, of Eq. (2.13).
For intermediate values of Q the truth lies somewhere
between these f=3 predictions and the f=4 results:
Therefore in Fig. 9 we show for Q =24 GeV some pre-
dictions for f=3 flavors as well. For large values of
Q ( )50 GeV ) the f=4 flavor results, shown in Fig. 10,
should already be adequate. It might be interesting to
mention that for such large values of Q the f=3 [supple-
mented by Eq. (2.13)] and the f=4 results differ by less
than 10% as long as x & 0.7.

Finally in Fig. 9 we show also the "prediction" of just
the naive QPM box for light quarks at Q =5.9 GeV,
supplemented by VMD and charm production [Eq.
(2.13)], which is denoted by VMD+ QPM(uds). The use
of the naive box expression (3.13) at Q =Qo -1 GeV to-
gether with Eq. (3.14) for the effective constituent quark
masses is certainly within the realm of our present under-
standing of constituent quark masses. ' However', at
larger values of Q the use of Eq. (3.13) together with
quark masses as large as in Eq. (3.14) is doubtful, to say
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ing conclusion that there are, in fact, no "absolute predic-
tions" (i.e., only A-dependent predictions) for the photon
structure function. The effects of choosing Qo -1 GeV
are significant euen in regions of Q and x where our had
ronic input function is already negligible. This holds for
all presently available or foreseeable values of Q . Thus
the usual extraction of A from the pointlike asymptotic
solution, ' combined with a regular hadronic input, is no
more than a very unreliable guess. Et could be correct by
some fortunate accident but the reliable determination of
A affords a careful assessment of the hadronic input func-
tions. These afford measurements of F$(x,g ) at various
values of Q . The value of A can then be determined
from the QCD-predicted and A-dependent evolution of
Fj(x,g ) as compared to experimental measurements at
higher values of Q . The situation is thus exactly the
same as already encountered for the nucleon structure
functions. Only the observation of a linear increase with
ln Q /A of F( at fixed values of x would provide us with
a clean test of QCD—a prediction which is rather insensi-
tive to the. hadronic input at Qo .

After these general remarks, let us turn to somewhat
more concrete conclusive remarks and summary of our re-
sults:

(i) One should not consider the resonance region

I I I I I I I I I

10
I i i s i i sil

100
x &x,„=Q /(Q2+8';„),

Q (GeV )

FIG. 14. Comparison of the predicted gi dependences of
various LO and HO calculations at a fixed value of @=0.4. The
notations and inputs are as in Fig. 9. The input distributions for
the HO result have been chosen to be the same as the ones for
the LO calculations described in Fig. 9.

the ill-understood hadronic input, is the observation of an
increase of F((x,g ) with lng /A for fixed values of x.

IV. CONCLUSIONS

We have argued that there are two representations for
the general solution of the photon evolution equations.
These are the traditional solution, ' consisting of a
"pointlike" part plus a regular hadronic (VMD) input,
and the one of Ref. 3 referred to as the "full solution. "
The pointlike (asymptotic) part of the traditional solution
is singular in the leading order and also in the higher or-
der with a negatiue singularity. Together with its regu
lar hadronic input it thus yields a singular, even negative
at HO, structure function. One can obviously improve
this shortcoming of the traditional solution by taking a
singular hadronic input which compensates the singulari-
ties of the pointlike component. This, however, then
amounts to our full solution.

The comparison of the singular traditional solution
with the data is meaningless and wrong. There is no value
of g, however large, where it is "safe" even in the
intermediate-x region. ' The realization that the hadronic
input should always play a crucial role via the boundary
conditions of our regular solution leads to the disappoint-

where 8';„=2GeV, in comparing with the data.
(ii) The hadronic inputs qf(x, go ), should be separately

determined for the LO and the HO analysis of future
high-statistics data since they can obviously be
different in analogy—to deep-inelastic lepton-nucleon
scattering.

(iii) For Q &20 GeV do nor use full f=4 flavor QCD
results, but instead f=3 flavor results supplemented by
lowest-order QPM (Bethe-Heitler) for charm production.
For Q & 50 GeV the f=4 predictions are presumably al-
ready adequate.

(iv) Theoretical calculations should be performed direct
ly in x space. Fitting to integer-n moments is too inaccu-
rate.

(v) Future data should not be averaged over Q since
QCD predicts a rather strong Q dependence of
F$(x,g ). Averaged Q data, F((x, (g )), are thus not
very useful and might even be misleading when compared
to QCD.

(vi) It is seen from Fig. 9 that in LO the hadronic input
VMD + QPM( uds) at Qo ——1 GeV combined with stan-
dard values of A reproduces the data at (Q ) =5.9 GeV2.
Furthermore it should be noticed that for values of Q~ as
low as 5.9 GeV one cannot convincingly test the pointlike
structure of the photon dominating in the large-x region:
The constraint 8') 2 GeV abolishes the interesting region
x)0.6.

(vii) In the physically relevant x region ( 8'&2 GeV,
i.e., x &x,„) the difference between HO and LO predic
tions is small and perturbative calculations are thus reli-
able. Present experiments are far too inaccurate to distin-
guish between these LO and HO predictions as in the cor- '

responding case of deep-inelastic lepton-nucleon scatter-
18,21
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(viii) Predictions for forthcoming experiments at

Q =24, 45, and 110 GeV for various hadronic inputs are
given in Figs. 9 and 10, and further detailed predictions
can be found in Figs. 12 and 13 using a
VMD+ @PM(uds) input at Qo ——1 GeV .

Note added. While completing the manuscript we re-
ceived a very recent paper from G. Rossi [Phys. Rev. D
29, 852 (1984)], which is essentially a shorter version of
his paper cited in Ref. 25 and where in addition the Qc-
dependent input boundary conditions for a real phot-on

target have been included and discussed as suggested in
Ref. 3.
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