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Mass-derivative formula and the singularity structure in thermo field dynamics
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We introduce a mass-derivative formula and show in the examples of the daisy diagrams and the effec-
tive potential in the manner of Coleman and Weinberg that there is no 8+(k2 —m2)-type singularity in the
perturbative calculations in thermo field dynamics. Other derivative formulas are also mentioned.

I. INTRODUCTION

The present note is concerned with an important feature
regarding the nature of the perturbation expansion in the
real-time formulation of finite-temperature field theory,
known as thermo field dynamics (TFD).' " Unlike the
imaginary-time formalism, ' ' in TFD T = 0 and T & 0
parts are separated at the outset. The latter is accompanied
by a 5 function and thus one must deal with products of 5
functions at higher orders.

The propagator in TFD has a 2X2 matrix structure in-
volving two sets of fields, the ordinary field P and the so-
called tilde field P. For example, the scalar propagator
A(k) is

—ih(k) = Up(kp)b p(k) Up(kp)

between them unless products of singular functions appear.
But if they do, the choice of Up(kp) becomes essential. For
instance, the two-point function obtained through perturba-
tive calculation is consistent with the one based on general
considerations, only when Up(kp) is chosen.

II. THE MASS-DERIVATIVE FORMULA

i Ar = (Ar)~+'1 . t)

N! (jm2
(2.1)

which one can easily prove by noting, for instance,

The formula we will make use of to show the absence of
a S~ singularity is

2~5(k2 —m') =
k2 —m2+i 5

I
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~,(k) =, , (8- +0),
k2 —m2 —I'57

(1.3a)

'-2 1 1
Ap(k) = —2mih(k m plk I

plkpl/2 , (1.3b)
1

where U~ denotes a matrix for the Bogoliubov transforma-
tion, i.e.,

In a zero-temperature perturbation calculation the formu-
la similar to (2.1) has been used frequently, for instance,
when one tries to extract the finite part of the Feynman dia-
grams. It is interesting, however, that it also holds at finite
temperature, provided the propagator is replaced by the
propagator given by the two by two matrix of Eq. (1.5).
The formula will be used extensively to examine the singu-
larity structure of many Feynman diagrams in TFD. We
shall apply it in two typical cases where the 6~ singularity
appears when the propagator in (1.1) is made use of. (For
the use of the mass-derivative formula in the nonrelativistic
case see Ref. 19.)

1 0
0 —1

(1.3c)

III. THE DAISY DIAGRAMS (REF. 17)
%'ITH TWO AND N PETALS

The perturbative expansion then proceeds in the usual
way with this propagator and the vertices generated by the
Lagrangian W(@,@)= W(@)—W(@). Then in the high-
er-order calculation one finds 5 (X~ 2) singularities. Our
main concern here is to show that in TFD such singularities
cancel with each other in contrast to the old real-time for-
malism. '7 (See also Refs. 7, 10, and 12 for explicit calcula-
tions. )

For such analysis it is of vital importance to note that we
have, in (1.1), Up(kp) rather than Up(tok) with tok
= (k2+ m')'/'. Because of 5(k2 —m2) no difference arises

Since we are concerned only with the physical sector the
external legs in Fig. 1 are constructed from the @ fields and
do not contain any @ contribution. The right-hand side
(RHS) of Fig. 1 expresses explicitly the diagram in terms of

FIG. 1. Detailed structure of the daisy diagram with two petals in
TFD.
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the individual matrix elements of the propagator 5 given by
Eq. (1.5). The petals are easy to calculate:

where a=4 —n. The rest of the diagrams are identical to
the (11) element of the RHS of (2.1) with N=2, which is
given by

d"k " d"k m 2
~11 ~22=- ——y+1 —ln m2

(4~)' [(AT ) ]11= (All ) 2(A12) A11+ (A12) A22 (3.2)

m
" (x —1)'+ 2

dx eP~

(3.1)

and reproduces the diagrams in Fig. 1. Here we used the
relation 6~2=62~. One may simplify the calculation of the
diagrams in Fig. 1 by using the mass-derivative formula as
follows:

( —i)Z' 8 " d"k ( —/)/'
2 Bm2 " (22T) n 2

~11
I 1 + 1 " ~( 2 I)1/2 8 m2

(4m. ) m2 22T "1 Bm e/' —1
1

(3.3)

This shows that, although each diagram appearing on the RHS of Fig. 1 carries a 5 singularity, the result of the sum of
these diagrams is well defined.

It is straightforward to generalize the calculation to the N-petal case (see Fig. 2) where one faces a 5~+' singularity. The
result is

1 'N 'N
1 9 m2 ln m2+ dx(x2 1)1/21 Q m

(42T)' Bm2 2m Q m2 ePNlx'

Another typical case where one faces the problem of SN is
when one tries to evaluate the finite-temperature effective
potential in the manner of Coleman and Weinberg. 0 The
diagrams are given in Fig. 3. All of the external lines carry
zero four-momenta.

It should be noted that Fig. 3 contains a diagram not in-
cluded in Ref. 20. While the omission of this diagram at
zero temperature is not of any importance in the calculation
of the effective potential (at T=O) it does contribute a
finite-temperature part which obviously cannot be absorbed
in the zero-temperature renormalization. ' The prescription

N
m 2 m2 " (x —1) '/——y+1 —lnm2 + dx

(42T )' e 2~2 J 1 eie~ —1

(3.4)

I

for extracting the physical sector is to fix one of the legs to
be P and draw all diagrams compatible with the rules in
TFD. (It does not matter which leg is chosen to be P.) As
for the first diagram in Fig. 3, one chooses the A~~ propaga-
tor integrated over m2. That this is correct can be seen by
taking the derivative of the diagram and comparing it with
the diagram in the tadpole method. The diagrams obtained
in this manner are in one to one correspondence with daisy
diagrams, except the first diagram, and thus coincide with
the (11) element of (2.1) (N = 0, 1, 2, . . . , ~). Their
finite-temperature contribution is given by

1 ' d4k

1', 2N ~ (22T)4

'N

'N'—i 1

1 2N (N —1)! 2

'N —1

[APT ]11
6

Qm2
(3.5)

The first diagram gives

In[I —exp[ —p(k'+ m')"']) . (3.6)
1 2N (N —I)! 2 Bm2 p " (22T)3

in[1 —exp[ —P(k'+ m')'/'])
P " (22T)'

(3.7)

Adding (3.6) and (3.7) we obtain the well-known result

J~ In(I exp[ P(k2+ m2)1/2]} !n[I exp[ P(k2+ m2+ 1 /@2)1/2]}
—1 [(Z/2)P2]" B,t' d'k —i " d'k
P N! em' (2m)' P (2Tr)'

(3.8)
In this way the proof regarding the absence of 5 terms is considerably simplified with the use of the mass-derivative formu-
la.
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FIG. 2. Detailed structure of the daisy diagram with N petals in
TFD. FIG. 3. Diagrams for finite-temperature effective potential.
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In a similar manner the derivative formula is useful in
calculating those tadpole diagrams'2 in which the external $
is attached to an internal line.

IV. OTHER DERIVATIVE FORMULAS

In this section we wish to demonstrate how certain other
derivative formulas in zero-temperature field theory may be
extended to finite temperature in a straightforward manner
by means of TFD.

A. Fermion Mass-Derivative Formula

We have the relation
'N

temperature case, they provide a useful computational de-
vice.

Incidentally, the derivative formulas (4.7) and (4.8) do
not hold when i =0, because U~ and U~ depend on k0.
This reflects the fact that the temperature effect violates the
Lorentz covariance through the appearance of f and g which
contain k0 only.

There is a different version of the k0-derivative formulas.
They are

'N

[S(k)yo] S(k) = —,Ur(ko) i So(k) U~(ko), (4.9)
()k0

and
'N

2 [k(k)vkp] A(k) = Us(kp) i Ap(k)T Us(kp)
(jkp

s= (s)~+'
N! Bm

with

S(k) =i [Sp(k) + Sp(k)] = UpspUF

where

[I—fp ( I~ I) ]"' ~fp"'( I~ I )
—o fF"(I~I) [1—f,(I~I)]"',

S (k) = (k+ m)
1

2 ~2+ i~

(4.1)

(4.2)

(4.3)

(4.4)

(4.10)

These relations follow from —iS = UpSp Uy and
= UgkpUg when U+ UF= 1 and U~7. U~ = ~ are used. Note
that the left-hand side (LHS) of these formulas describes a
fermion line with many y0 vertices or a boson line with
many k0 vertices, each vertex having zero energy-momen-
tum transfer. Therefore, these derivative formulas are suf-
ficient for proving that such boson and fermion lines do not
have any 5N singularities.

fr(lkol) o gp(lkol)
Sp(k) = —(k+ m)2mis(k' m') (—lk I) (I„ I)

t

(4.5)
eP~/2

e~"+ 1
' " e~"+ 1

gF((d)=, fp ~) = (4.6)

B. Momentum-Derivative Formulas

There are two choices for a. : o.=1 or e(kp) (1 for kp) 0
or —1 for kp ( 0). The proof of (4.1) proceeds in a similar
manner as (2.1). One may make use of this formula to re-
peat calculations similar to those in the preceding section.

V. CONCLUDING REMARKS

The main conclusion of this paper is that in perturbation
expansion in TFD the 5N singularities tend to cancel among
themselves. In showing this, use was made of the mass-
derivative formula in order to simplify the computations.

In closing we like to add a further observation. The for-
mula (4.1) is closely related to the Ward-Takahashi (WT)
relation of the form

—ik~S p ——I" p ——,p+ —;k S' p+-/ k k k. k
2 " 2' 2' 2

p+ ——S p —— . (51)k k
2 2

We can prove the following relations:

i S= Sy(S6 (4.7)

Here S' and I „contain quantum corrections. In particular,
when S' and I „do not contain any quantum correction, the
above equation reads

ar = 2(xr) k, (a7),~ 6
k

(4.8) —ik~S p ——k
2

1 r

k k
y Sp+ —=Sp+ ——Sp ——

2 2 2
(5.2)

where i = 1, 2, 3. The proof for these formulas is the same
as the one for the mass-derivative formulas.

The fact that the various zero-temperature-derivative for-
mulas may be extended to finite temperature using TFD is
rather nice since one would expect that, as in the zero-

I

At first glance, it would seem that this, with the limit
k 0, would immediately lead to the derivative formula of
the form (i 8/8k~) S = Sy„Sfor every iL. However, the real
situation is not as simple as that. To show this, we first
prove (5.2) for a nonzero k. The proof is as follows:

—ik&S p ——y S p+ —= iS p —— p ——~ y+ m
k

2 " 2 2
p+ —.y+ m S p+ —=S p+ ——S p ——k ) k k k

2 2 2 2
(5.3)

However, the limit k 0 in (5.2) is very tricky, because we cannot always equate
1

lim k~S p ——y S p+-k k
k 0 2 " 2

(5.4)
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to

lim k&S(p)y„S(p) (s.s)

when S(p) contains a 5(p2 —m') term. The k 0 limit of
the product of 5((p —k/2) —m') and 5((p+ k/2)z —m')
or of the product of 5((p —k/2)2+ m') and [(p+ k/
2)2 —m'+ i 5] ' is quite tricky. Therefore, we need to take
particular care in order to obtain the derivative formulas
from the WT relations. On the other hand, in TFD,
S(p)y„S(p) in (5.5) does not have any difficulty caused by
5(p —m ) terms because the relation Uz(po) Uz(po) = I
makes

S(p)y„S(p) = U (p )S (p)y„S (p) U (p )

The latter is proportional to Ut;(pp) [(t)/t)k~)So(p)] Ut. (po)
because So(p) satisfies all the derivative formulas. This ex-
plains why many of the derivative formulas hold in TFD.
In TFD, 5(k2+ m2) terms are created only through the Bo-
goliubov matrices, Utt or Ut;. The products of 5(k' —m')
terms disappear in TFD, because the relations

Utt(ko)r Utt(ktt) =r and Ut:(ko) Ut; (ko) = 1 eliminate all the
Bogoliubov matrices associated with the inner vertices.
Although no 5~ singularities appear in TFD, the Bogoliubov
matrices associated with both ends of a line do not disap-
pear. Since these Bogoliubov matrices depend on ko, they
modify the form of ko-derivative formulas as was seen in
Sec. IV.

The above argument indicates also that we should be
careful in reading the above %T relation; we presume that
both sides of it are to be smeared out with certain square-
integrable functions.
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