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The effective potential for chiral supersymmetric models is discussed within the framework of the

Wess-Zumino model. The effective potential is calculated to two loops using two different renor-

malization schemes. In a modified minimal-subtraction scheme the effective potential displays

pathological behavior such as multivaluedness, complexity, and negativity. It is shown that these

features arise from the existence of ghosts in this scheme. A second renormalization procedure,

which preserves positivity of kinetic terms in the effective action, is then examined. It is found that

quantum corrections in this scheme are small and that supersymmetry is not radiatively broken to

the two-loop level. These results are compared with those obtained for O(N)-symmetric chiral

models.

I. INTRODUCTION

Supersymmetric Lagrangians exhibit several features
which are not present in nonsupersymmetric theories and
which can cause complications in the calculation of the
effective potential. For example, the supersymmetric ef-

fective potential, like the vacuum expectation value of the
supersymmetric Hamiltonian, should be positive semide-
finite. Other such characteristics are the existence of aux-

iliary fields and the decreased number of renormalization
constants. Because of these features, there are a number

of caveats which must be observed in supersymmetric
effective-potential calculations. In this paper these pit-
falls are discussed within the framework of the Wess-

Zumino model. ' The details of our previous two-loop cal-
culation of the effective potential for the Wess-Zumino
model are given during the course of this discussion.

Early calculations showed that the effective poten-
tial for the Wess-Zumino model vanishes to all orders at
the same points as the tree potential. O'Raifeartaigh and
Parravicini showed that the one-loop effective potential
is non-negative. Their proof, however, depended on sub-
stituting into the effective potential the tree-level expres-
sion for the auxiliary field. This technique was also used
in a recent two-loop calculation by Miller. To be con-
sistent it is necessary to solve for the auxiliary field at the
order that the effective potential is calculated. The auxili-
ary field as a function of the physical field acquires radia-
tive corrections.

The effective potential for a Mess-Zumino model with
a global O(N) symmetry has also been studied. These cal-
culations were done at the one-loop level with the auxili-
ary field solved at the same level. Zanon found that the
effective potential in terms of the physical fields is nega-
tive at one of its stationary points. Other authors ' ex-
amined this model and found that the effective potential

is not only negative but is also double valued for a range
of values of the physical fields. Amati and Chou'
showed that these properties result from an improper re-
normalization procedure. The renormalization prescrip-
tion of Zanon and others led to negative kinetic energy
terms. Amati and Chou found a renormalization scheme
which avoids this problem and showed that the resulting
one-loop effective potential is non-negative.

The Wess-Zumino effective potential is a function of
two variables, V,ff —Veff(a,f). These variables, a and f,
are related to the scalar component fields in the Wess-
Zumino model. The component fields in the Wess-
Zumino model are a physical scalar field A, an auxiliary
scalar field F, and a spinor field ttj. The Lagrangian does
not contain kinetic terms for the field F. Thus, F may be
eliminated from the Lagrangian by using its Euler-
Lagrange equation. The term "on-shell" is used if, in a
calculation, the equation of motion is used to eliminate F
If F is not eliminated the term "off-shell" is used. The
easiest way to compute the effective potential is off-shell.
To see this, consider the generating functional for con-
nected Green's functions W[J] defined by

expI —8'[J]]= I dA dF dPexp ~ —I d x[W(A, F,Q)

+AJ„+FJF+gJ~]

where W is the Lagrangian and J„, JF, and J~ are the
sources associated with the fields A, F, and g, respective-
ly. The effective action is then defined as the Legendre
transform of 8':"
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I [a(x),f(x), it (x)]
58' 58' 58'= W[J~,JR,Jg] —f d x ~ Jg+ ~ JF+5' 5' 5Jp

(1.2)

(1.4)

Q(x) =

as the effective potential for the physical field a.
The unrenormalized Veff(a, f) is discussed in Sec. II. A

modified minimal-subtraction renormalization scheme is
used and the resulting V,rr(a) is discussed in Sec. III. The
Wess-Zumino effective potential in this scheme shows the
same peculiar properties seen in the O(N)-symmetric
model of Zanon. The causes for this behavior are studied.

In Sec. IV a renormalization prescription which is
equivalent to that of Amati and Chou, and which is easily
extended to higher order, is adopted. The one-loop and
two-loop V,rr(a) are discussed and are shown to be posi-
tive semidefinite. Various results concerning renormaliza-
tion, P functions, and approximations are collected in the
appendices.

Equations (1.3)—(1.5) are to be solved for Jz, JF, and J~
in terms of a, f, and P. The resulting expressions for the
sources are then substituted into (1.2) in order to obtain a
function of a, f, and f.

The effective potential is defined by

V,rr(a, f) f d x = —I (a,f,0), (1.6)

where a and f are constant fields. Note that (1.6) is de-
fined with /=0. This is because the ininimum of the ef-
fective potential gives the ground-state configuration of
the fields and (P)o&0 violates Lorentz invariance. Ex-
plicit supersymmetry invariance is lost by setting /=0.
To demonstrate that the effective potential is super-
symmetric one must first calculate V, r(oaf, g) with P a
constant spinor field and then show that it is invariant
under supersymmetry transformations. If the vacuum is
to be Lorentz invariant the minimum of V,rr(a, f,P) must
be in the a fplane with-/=0. Here we bypass these
steps, assume from the start that (P )o=0, and use (1.6) as
the definition of the effective potential.

Calculating the effective potential on-shell is equivalent
to integrating (1.1) over F [this can be done since the in-
tegrand in (1.1) is Gaussian in F] before forming the ef-
fective action. The effective action, however, will not be a
function of a(x) and g(x) only. The source JF survives
integration over F and complicates further calculations.
The resulting expression is equivalent to the effective po-
tential calculated in this paper, but is in a less useful
form.

It may also be possible to compute the effective poten-
tial on-shell setting JF——0 but imposing the supersym-
metric Ward-Takahashi identities at each loop order of
the calculation. This point is presently under investiga-
tion.

The method of computing the effective potential which
will be used in this paper is to first compute V,rr(a, f) as
defined in (1.6} (in nonsupersymmetric theories one stops
here), eliminate f by solving

20$(x) (i Iv 2—)00r} f(x)o 0+00F(x) .

(2.2}
This model requires only one renormalization constant, Z,
to remove all the cutoff-dependent terms which arise. '

The renormalized Lagrangian is obtained by rescaling

No=Z'"A

mo =Z mg
—1

ko —Z kg o

(2.4)

(2.5)

Re-express (2.1) in terms of renormalized pR, mR, and
A,z, and drop the subscript R, to obtain

W= I d 0t Zgtg ——,m[/$5 (0)+Ptgt5 (0)]
—(1&3')&[CCO5'(0)+q'pter&52(0}] I

.

(2.6)

The only difference in form between (2.1) and (2.6) is that
the kinetic p p term in (2.6) is multiplied by the wave-
function renormalization Z.

To compute the effective potential use Jackiw's
theorem' and shift the superfield P to

0+4.i (2.7)

The Lagrangian density for the Wess-Zumino model is,
in the notation of Ref. 12,

~= I d 0I 4'ohio zmo—[kodo5 (0)+4o4'o5 (0}]
—(1~3')4[44'4'o5'(0)+ 0o0o0o5'(0) ] I '

(2.1)

The 0's are anticommuting Grassmann variables, mo is a
bare mass, A,o is a bare coupling constant, and the super-
field Po is given in terms of component fields by

( ox0, 0')+ A(x)+i0a 08~A(x)+ —,0000 A(x)

5V(a,f)
5

for f(a), and then identifying

V.rr«}= V.rr[a f(a)]— (1.8)

P,)—=a+00f, (2.8)

with a and f the (constant) fields conjugate to the sources
Jz and Jz. The fermionic field conjugate to the source

J~ is assumed to vanish. The vacuum-bubble method will
be used, so all terms linear in P are dropped (for a discus-
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si.on of the vacuum-bubble method versus the auxiliary-
field tadpole method in the two-loop calculation see Ref.
6). The Lagrangian can now be split:

W» can be written

~» =~p+~r (2.14)

where
m'=—m+Au . (2.11)

W=W, (+W», (2.9)

where W,i is just W with p replaced by p, ~ and where the
quantum Lagrangian is

W» = J d OI ZP"P ,' (—m '—+ON f)$/52(8)

——,
' (m'*+ONf*)gtg 5 (8)

—(1/3!)A[PPP5'(8)+Ptgtft5'(8)] I, (2.10) 1
Wp ———

F*

ya
' T

2

yP
(2.16)

where

where

Wr = —,' A,(A—AF+A'A*F* QQ—A fQ—A" ) (2.15)

is the interaction part of W». Wp is quadratic in the
fields

+ —,
'

A (aaf+a*a f*), (2.12)

W =Z(F*F+A' A &qV d—y') m'(AF—, gP).——

Integrating over the 8's, W, &
and W» can be expressed in

terms of component fields. The tree-level effective poten-
tial is just (recall that a and f are constant fields)

y'p'= —W„= Zf'f +—m (af +a'f' )

A,f Z-

ZH Af*-
—m' 0

—lZ(7
pram

m "5
p

0 —m'*

0 Z
Z 0

m'5 p

)Z—m QPg

(2.17)

(2.18)

m'*(A*F*———,
'

1(t it ) —,' Af(AA +A*A—*)

, A(AAF+—A—*A*F* /PA itiT—rA*) . — (2.13)
The component propagators can be read from M ' and
M

Af*
—Im'I2

m'"( —Im'I )

Af m

m'I'
A,f

Afm'"

m'( —
I

m'
I

')

m "( —
I

m'
I

')
Afm'*

Afm'*m'"
—~'If I'+ (

Af'm'

m'(C3 —
I

m'
I

)

—~'
I f I

'+ (-j((:)—
I

m'
I

')
Af*m'm'

(2.19)

io-"»a„
p ] lM

y m'*5pr

where

m'5p.
r

1 CT.p
~ 8P1

the following Euclidean superfield propagators may be
obtained:

(2 20) &0
I
T[k(y 8)4(y' 8')]

I
0&

g g
( g gg )2 Af gggggg Afm *m

X X
6—=detM=(Z Cl —Im'

I
) —Z A,

I f I

88, 2A, f"fm'*
(2.24)

X= —detM'= —(Z —
I

m'
I

) .

The wave-function renormalization, Z, was set to unity in
(2.19) and (2.20) since higher-order terms are not needed
in the two-loop calculation. The factors of Z which ap-
pear in the determinants (2.21) and (2.22), however, will be
used (see Appendix A).

Using the component propagators and the decomposi-
tion

(0
I T[y(y, g)yt(y', 8')]

I
0)

exp( 2igcr O'B—~)

— A, 'f' &
2& gmg ~

z

P(y ) =A (y) +V 28$(y ) +OOF(y ),
where

—:x +i Oo™0,

(2.23)
+ON fm" +O'O'Af'm'

—888'O'A, f'f 5' '(y —y') . (2.25)
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The 5 function can be expanded:

5' '(y —y') =exp[+i(eo 8 —8'o 8')B~(x)]5(x—x') .

(2.26)

The tree-level effective potential is given in (2.12). The
one-loop contribution is given by Jackiw's theorem
as3 —5, 14, 15

V(2)
2 3!

x Jd Zd z'(0
~
T[ [P'(z)&'(8)+P '(z)&'(8)]

x[y'(z )s'(e')

V' '= —trln
2 g2

(2.27)
+y"(z')s'(8')]]

~

0),
The evaluation of this is discussed in Appendix A. After
regularization (2.27) becomes (2.31)

V(l)(a f)
fi 1 4—+3—2y A, f'f

16&
2 2

4 m1 4 m2
+m1 1n +m2 ln

p p

which can be evaluated using the superfield propagators
(2.24) and (2.25). Alternatively, integrating (2.31) over the
8 and O' Grassmann variables, V' ' becomes

&2—2m ln
p

(2.28)

mi2=—/m'/z+A,
/ f /,

m2 —= m'

(2.29)

(2.30}

The two-loop contribution to the effective potential is

where @=4—n, p is the renormalization point, y is
Euler's constant, and

$2v"'= ", J' d4«4~ &0~ T[~,(~(~),F(~},q(~})

x ~l(& (x'),F(x'),y(x ') )]
~

0 },

(2.32)

where Wl is defined in (2.15). V' ' can then be evaluated
using the component field propagator s defined in
(2.19)—(2.22). Either approach gives

(2) g& d4pi d p2 d p(a f}= & (p) +p2+p~)(2~)8 (2n. ) (2n ) (2m )

where

X;=p;~+
/

m'
/

6;—:X;2—A, /f /

X (f*m'*m'*+ fm 'm') 2A, f"f 4A, +4k,X2X—&
1 2 3 X2X3

1 '(l &1~2~3—4g f f(gi&2+2&)m'*m')+4pi g)X2Xi+ Spi.p)
X2X3

(2.33)

(2.34)

(2.35)

To simplify this expression, and since we are mainly interested in the qualitative features of (2.33) as a function of a and
f, we choose a and f to be real. In this case (2.33) can be expressed as (keep in mind that these expressions are Euclide-
an}

(2) A, ))'i d pi d"p2 d p3V (a,f ) = 5

(pi�+pi+pi�

)(2m. )
8 (2~) (2m. ) (2m. )

X I Di(m i )Dg(m) )+2Di(m i )D2(mp)+Di (m2)D2(m2)+4D i(m')Di(m')

—4D)(m')D2(m i ) —4D) (m ')D2(m i)

+m' [—3D,2&(m „m i,m i ) —D)2&(m), m2, m2)+ gD)2i(m', m', m i )]

2m, D, s(m—', m', m ) —2m2 D123(m m m2}I (2.36)
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D;(a) = 1

p
2 +g 2 (2.37)

are automatically satisfied at the two-loop level. There-
fore it seems reasonable to use a modified minimal-
subtraction scheme and set

Diz3(a, b c)=D((a)Dz(b)D3(c) (2.38)
1 4—+3—2y

16+2 4
(3.3)

The integrals in (2.36) are discussed in Appendix B and
the renormalization is discussed in Appendix C. The fi-
nite part of (2.36) is given for different renormalization
schemes in the relevant sections of the text.

The powers of A' in (2.27) and (2.33) will be maintained
during renormalization as a bookkeeping device, and the
limit A' —+1 will be taken in the final result. The wave-
function renormalization, Z, is also expanded in a power
series in A:

and '
1—,+ + —,

' (3—Sy+2y')
16m e

(3.4)

(see Appendix C), where the wave-function renormaliza-
tion is defined

Z = 1+HZ(+A' Z2+ (2.39) Z =1+ZI +Z2+ ' ' ' (3.S)

Note that both V"' and V' ' vanish at f=0 (i.e.,
mi ——mz ——m'). Thus, the two-loop corrected effective
potential will vanish at f=0 as does the tree-level poten-
tial.

III. V,gg IN A MODIFIED
MINIMAL-SUBTRACTION SCHEME

(A' has been set to 1).
The effective potential in this scheme is given by

V C( V(o)+ V(i)+ V(z)+. . . )

where

(3.6)

V'" and V' ' as given in (2.28) and (2.33) can be ex-
panded in a power series in Af. The first term in each
power series is order A, f . Thus, the identities

(3.1)

C='

m4
m&0,

A,
2 '

4
m —0

(3.7)

a'v
d adf y=o

(3.2) V' '= —y +yx —g(m}y, (3.8)

V(')=8[(x +y) ln(x +y)+(x —y) ln(x —y) —2x lnx ],
V' )=28 t[(x +y)ln(x +y)+(x —y)ln(x —y) —2x lnx ] —8x lnx +2(x +y) ln (x +y)

(3.9)

+2(x —y) ln (x —y)+2x [(x +y)ln (x +y)+(x —y)ln (x —y)]
—4( —', —y)[(x —y) ln(x. +y)+(x —y) ln(x —y) —2x lnx ——,'y(x +y)ln(x +y)+ —,y(x —y)ln(x —y)] j.

The notation used here is
I

and

(3.10)

m

m A,Q for m=0,
p

z, for m&0,

for m=0,
p

ka +1, for m&0,
(3.11)

(3;12)

1'8=—
4 16~'

(3.14)

The effective potential defined here is a complicated
but well-behaved real function of x and y if x +y) 0.
For x +y &0 it is complex. In V,rr(x, y) the variable y
plays the role of auxiliary field and x plays the role of
physical field. To find the effective potential in terms of
x the equation

1 for m&0,
0 for m=O,g(m) = '

L

(3.13}

8 V(x,y)
ay

where

(3.1S)
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y p (0)+ y (&)+ y™(2) (3.16)

must be solved for y as a function of x. This trajectory
y(x) is then substituted in V to get

V(x)=—V(x,y(x)) .

At the tree level

y' '(x)= —,
' [x'—g(m)]

and

V'0'(x) = —,
' [x —g(m)]

(3.17)

(3.18)

(3.19)

From this point the mass will be set to zero in order to
simplify the discussion. The features which will be
described for the m =0 case will also appear in the m&0
case, but the m&0 case displays additional features which
are not essential to the present discussion. These addi-
tional features will be described later in Sec. IV.

Consider the one-loop V(x) with m =0. By substitut-
1ng

FIG. 1. The trajectory y{x) in the tree-level (dashed) and
one-loop {dashed-dotted) approximations in the modified
minimal-subtraction scheme. The one-loop trajectory has two
branches, I and II. Solid parabolas are y = kx . Units are arbi-
trary.

into (3.15) the equation

(1—2a)+2B[ (1+a)ln(1+a) —(1—a)ln(1 —a)

(3.20) Supersymmetric models with a global O(X) symmetry
also display this unusual behavior. ' It is possible in
these models for the negative branch of the effective po-
tential to have a stationary point, i.e., a value of x where

+2alnx +a]=0 (3.21)

is obtained. A number of interesting observations may be
made from Eq. (3.21). First, a= 1 [i.e., the trajectory y(x)
goes into a region of the x-y plane where V(x,y) is com-
plex] at

1 1 1
x&+~~

——~ exp — —1 (3.22)

and a= —1 at

1 1 3
vZ'"P 4 2B

(3.23)

Note that x&+~~ &x~ ~~. From the limiting cases of Eq.
(3.21) it can be seen that a~0 from the positive side as
x —+0 and that u —+0 from the negative side as x —+Oo.
By substituting the asymptotic value of x as a function of
a from Eq. (3.21) into V' '+ V'" it can be seen that for
large x the one-loop effective potential is negative and be-
comes arbitrarily large in magnitude as x —+Do. This
behavior is shown graphically in Figs. 1 and 2.

The one-loop trajectory, y(x), has two branches (labeled
I and II in Fig. 1). Branch I runs into the y =x parabola
at x(+&) and branch II begins at the y = —x parabola at
x( ] ). There is a range of values of x between these two
branches of y(x) for which the effective potential is com-
plex. Because of the shape of branch II, there is a region
where the one-loop effective potential is double valued (see
Fig. 2).

It is interesting to note that similar behavior has been
observed in O(1V)-symmetric P theories in the large-X
limit. ' In these calculations nonpropagating auxiliary
fields were included in the Lagrangian as a computational
trick.

V(x,y(x)) =0 .
Bx

(3.24)

It is these points which have been interpreted as an indica-
tion of the spontaneous breaking of supersymmetry. In
the Wess-Zumino model there is no stationary point on
the negative branch of V,ff for B & —,

' (i.e., A, & 4m.).
Adding one-loop corrections creates major qualitative

changes in the effective potential. Two-loop corrections
again make qualitative changes. Results of numerical cal-
culations of y(x) are shown in Figs. 3 and 4. The deriva-
tive in (3.15) diverges as y approaches +x . Thus, the tra-
jectory y(x) cannot run up against the parabola y=+x
as it did in the one-loop case. Instead the trajectory tracks
along these parabolas approaching them asymptotically.
This is shown in Fig. 3. The two-loop trajectory has a

(x)

FIG. 2. The one-loop effective potential in the modified
- minimal-subtraction schem. e. Units are arbitrary.
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FIG. 3. The trajectory y(x) in the tree-level (dashed) and
two-loop (dashed-dotted) approximations in the modified
minimal-subtraction scheme.

third branch which is very close to the origin of the x-y
plane. This third branch is shown in Fig. 4. The two-
loop effective potential is real everywhere on the x axis
but is triple valued in places. In particular, the effective
potential is triple valued at points infinitesimally close to
thc origin x =0.

The pathological behavior exhibited by the effective po-
tential in Eqs. (3.8)—(3.10) is due to the use of an inap-
propriate renormalization scheme (minimal subtraction).
This was pointed out by Amati and Chou' in reference to
the model of Zanon. To see this, consider the coefficient
of f*fin the effective action To on.e loop it is given by

both arise from the PtP term in the Lagrangian (2.6).
From (3.25) it can be seen that for large enough m'
(m'=A, a) the coefficient of a Da becomes negative.
Hence, the kinetic energy term of the physical field, a, has
the wrong sign for large a. The value of a for which
(3.25) changes sign roughly corresponds to the value of x
where the one-loop effective potential becomes complex
(see Fig. 2).

When the two-loop contribution (3.26) is added the
coefficient of a*Cia becomes negative for small values of
a as well as for large values. This is because of the
logarithm-squared term in (3.26). The appearance of
ghosts at small a is reflected by the triple valuedness of
the effective potential at small x (see Fig. 4).

It can now be seen that the decreased number of renor-
malization constants can cause complications in the calcu-
lation of the effective potential. If the coupling constant
and wave-function renormahzations were independent (as
they are in A,P theories), then the coefficient of a'Cla
changing signs would not be a problem. The independent
wave-function renormalization could be adjusted to keep
(3.25)—(3.26) positive.

In supersymmetric models all of the above must be tak-
en into account in the choice of the renormalization
prescription. Th1s 1s done 1Q Scc. IV.

The rcnoITIlallzatlon Dlust bc done ln such a wag as to
keep the kinetic terms in the effective action positive and
to remove the divergent terms. The easiest way to do this
is to impose the renormalization condition ' '

1
21n

r

+3, (3.25)
p

~ jeff = —1.
Bf*Bf f f* 0

(4.1)

and the two-loop contribution is

21n +51n —2
16m' 4 p' p

(3.26)

In this case

1 4 gyes
'2——2y —2 ln

16 4 e pi

The coefficient of a*Cia in the effective action must be
given by (3.25)—(3.26). This is because a*Cia and f*f

+ —,
'

(y —3y+4) (4.3)

FIG. 4. The two-loop trajectory y(x) in the modified
minimal-subtraction scheme for x &~ 1.

(see Appendix C).
The one-loop running coupling can be determined from

(2.5) and (4.2):

$2( 2)

1 ——', [A, (p )/16m ]in(m' /p )

A, (p ) is the coupling measured when m'=m+Aa=p
and A, (m' ) is the coupling at any other value of m'.
This dependence of A, on a was discussed in Ref. 10 and
noticed for small a in Refs. 4 and 9. From (4.4) it can be
seen that the model is not asymptotically free. As a in-
crcascs thc couphng A, 1Ilcrcascs Rnd there w111 bc a point
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3: 3
2 16~ 2 16'

(4.5)

We solved this equation numerically and found that the
two-loop coupling, A, , reaches 4m at a slightly larger value
of the field a than does the one-loop coupling.

In the minimal-subtraction scheme the coupling be-

(A, =4m. or 8= —, ) beyond which the perturbation expan-

sion does not make sense.
The two-loop P function is discussed in Appendix C

[see (Cl 1)] and gives the following equation for the cou-
pling A,

V C(v(o)+ V())+ V(&)+. . . )

where Cis defined in (3.7) and

(4.6)

comes large at values of x corresponding to complex ef-
fective potential for one loop (see Fig. 2) and to the large-
x triple-valued effective potential for two loops (Fig. 3).
The triple valuedness of the two-loop effective potential at
small x (see Fig. 4) is due to the logarithm-squared terms
which appear in the inappropriate minimal-subtraction
scheme [for example, in (3.26)].

Using the scheme (4.1) the problems encountered in
Sec. III are circumvented. The effective potential is

V'"= —y'+yx' —g(m)y,

V"'=8[(x +y ) ln(x +y)+(x —y) ln(x —y) —2x lnx —(3+21nx )y ],
V' '=28 [ [(x +y)ln(x +y)+(x —y)ln(x —y) —2x lnx ) —8x ln x +2(x +y) ln (x +y)

+2(x —y) ln (x —y)+2x [(x +y)ln (x +y)+(x —y)ln (x —y)]
—4(3—y+inx )[(x +y) ln(x +y)+(x —y) ln(x —y) —2x lnx

——,'y(x +y)ln(x +y)+ —,'y(x —y)ln(x —y)]+4[(4—2y)+(1 —y)lnx ]y ] .

(4.7)

(4.8)

(4.9)

8, x, y, and g(m) are defined in (3.11)—(3.14).
First consider the one-loop effective potential

V(x,y) = V'"(x,y)+ V"'(x,y) .

5(8)=(—a +a)+8[ (1+a) ln(1+a)

+(1—a) ln(1 —a) —3a'], (4.15)

The function

V(x,y )—y V(x,y )
Bp

x4 —'
=y +8 (x —y )ln x4 +y (4.10)

is non-negative. Thus along the trajectory y(x), which is
the solution of

8 V(x,y) (4.11)

V(x,y(x) ) must be non-negative.
Substituting

y(x)=ax
into (4.11) with m =0 the equation

(1—2a)+28[(1+a)ln(1+a)

(4.12)

V(x,y(x) )=x"5(8),
where

(4.14)

—(1—a)ln(1 —a) —2a] =0 (4.13)

is obtained. This is a transcendental equation for a which
may be solved numerically. For B=0 the solution is the
tree-level a= —,'. As B increases a decreases monotonical-
ly to a=0.487 at B= —,.

Substitute (4.12) into V(x,y) to get

with a in (4.15) determined by Eq. (4.13). For 8=0,
6=

4 . As B increases 5 decreases monotonically to
6=0.247 at B= 4.

Thus the bizarre behavior of the one-loop trajectory and
effective potential in the minimal-subtraction scheme is
replaced by boring behavior when the condition (4.1) is
used. The one-loop effective potential is proportional to
x~. It is even well-behaved for values of x where the per-
turbation expansion has no meaning.

When the two-loop contribution (4.9) is included,
analysis similar to that discussed in (4.10) through (4.15)
does not work. Numerical computations, however, show
that both the trajectory and the effective potential stay
very close to the one-loop case described above. In partic-
ular, nothing unusual happens for small values of x. The
two-loop V(x) is a well-behaved non-negative function of
x which vanishes only at x=0. This is true up to a B-
dependent (and therefore A,-dependent) point, xz, beyond
which V(x) is multivalued and negative along one of its
branches. It is possible that this behavior is a result of the
approximation made in evaluating the integrals in Eq.
(2.36) (see Appendix C). In any case no significance can
be attached to this behavior since xz is well beyond the
point where perturbation theory is valid. To illustrate this
let xz be where A, becomes 4m (8 becomes —,) using the
two-loop running coupling defined by Eq. (4;5). For
B=0.2, xz ——1.17 and x~ —89. For B=0.15, x =1.48
and xz-226. As B decreases xz increases very rapidly
and (x~/x~)~0 as 8~0.
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are shown in Figs. 5 and 6. Both of these approach the
m =0 results for large x. This continues at higher order.
The minima in V (x) at x =+1 [a =0, ( —2m/k)] are
also present at higher order. The differences at one-loop
and two-loop occur between these minima (i.e., for
—1&x &1). The tree-level trajectory (see Fig. 5) crosses
the parabola y = —x . The one™loop trajectory runs into
this parabola so there is a region around x =0 where the
one-loop effective potential is complex. The two-loop tra-
jectory approaches the y = —x parabola asymptotically
as x decreases and passes through the origin. The two-
loop effective potential is everywhere real and non-
negative but has a third minimum at x =0. No physical
significance can be placed on any of these features since
the perturbative expansion for the effective potential be-
tween the minima of a double-well potential (such as in
Fig. 6) is known to be untrustworthy. '

V. SUMMARY AND CGNCLUSIGNS

FIG. 5. The tree-level trajectory for m+0.

y' '(x) = —,(x —1) (4.16)

The two-loop effective potential calculated with the re-
normalization condition (4.1) is qualitatively the same as
the tree-level potential. It is quantitatively very close to
the tree-level potential for values of the field where the
perturbative expansion is good.

All of the above results apply equally to the m&0 case.
There are, however, a few subtleties involved in the mas-
sive case. The tree-level trajectory,

We have shown that the vacuum of the Wess-Zumino
model is stable under quantum fluctuations. Supersym-
metry is not broken by radiative corrections to the effec-
tive potential. In order to show this it was necessary to
use a renormalization procedure which preserved the posi-
tivity of the kinetic terms in the effective action. If a
modified minimal-subtraction scheme is used instead,
then the effective potential displays pathological behavior
such as multivaluedness, complexity, and negativity. Care
must be taken in the choice of renormalization prescrip-
tion because the Wess-Zumino model possesses only one
independent renormalization constant. A bad choice of
renormalization scheme cannot be compensated by adjust-
ing a second independent renormalization constant.

and potential

V' '(x) = —'(x —1) (4.17)
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APPENDIX A: GNE-LGGP EFFECTIVE PGTENTIAL

In this appendix the one-loop contribution to the effec-
tive potential is discussed to order A . V' ' is given in
(2.27) as

(i) fig dp
1

(Zp+~m'~ ) —ZA ~f~
(2~)4 (Z2p2+

~

m &

~

2)2

(Al)

Dimensional regularization will be used (although other
regularization techniques, such as Pauli-Villars, give the
same result), so re-express (Al) as

FIG. 6. The tree-level potential for m&0.

(i) A' 1 d p k if'i
2 Z" (2'.)" (p + im'

i
)

where the change of variables p —+p /Z has been made and
where
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If'I —=z If I
. (A3)

Performing the integration in (A2) and expanding Z as

1 1

4 —,+3—2y ~'f'f

Z —1' +
V(" becomes

p(&) pp(&) +g2y(&) +. . .

where

(A4)
2m) 4+m& ln +m2 ln

p
&2—2m' ln

m2

p

(A6)

V(1) 1 1
Zi 2 —+2—2y k f f4

4 16m

2 2
m& 4 m2—4 m] ln

2 +m2ln
p p

&2

—2m'41n
p

2
1 mi——,(Af)m, ln

p

+ —,'(Af)m2 ln
p

(Aj)

m& ——m' +if, (A8)

ln (A6) and (A7) p is the renormalization point, y is
Euler's constant, e =4—n,

I)(a,b)

g$ 4 2 a2
~ —+—2(1—y).— ln +ln 2(16~ ) e & p, p

and

m, '=m' —Af . (A9)

APPENDIX 8:
EVALUATION OF THE TWO-LOOP INTEGRALS

Two types of integrals appear in (2.36):

The R part of the one-loop contribution to the effective
potential, Vz", will be needed to cancel (1/e) X logarithm
terms in the two-loop contribution.

+ (3—4y+y')

1 dP tr r)P2r1=
2n; Ops Bp I

(85)

g2 Q2—2(1—y) ln
2

+ln z
p p

1 a b
ln +ln

p p

Factors of 1n(4m. ) and order e terms in the expansion of
I (e) are ignored since they either cancel or may be ab-
sorbed into renormalization counterterms.

The integral I~ is more complicated. Use the identities

I~(a,b)=f, ', D, (a)D, (b),
dP] d P2

(2m ) (2m. )
(81)

1 ~pti

n, Bp&z
(86)

dPl dpzdp3
Ia(a~a») = . . .5"'(p)+p, +p, )(2m. )'

(2m ) (2m ) (2m. )

1 ~p2i1=—g Sl,n, Bp2J-

once each, integrate by parts and rearrange to obtain

(87)

XD& (a)D2(a)D3(b),

where

D;(a) = 1

pi +a
The integral I~ (a,b ) is straightforward:

(82)

(83)

Iz —— [2a Iq+4a b I2+(2a +b )I3],
(n —3)(n —4)

(88)
where

(89)

(810)

I, = f (dp, )(dpz)b, &(b)b2 (a)b&+2 (a),

I2 ——f (dp~)(dp2)h~ (b)62(a)b, ~+2 (a),

I3 ——f (dp))(dp2)(p) +p) p2)h) (b)b2(a)h)+2 (a),
(811)
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with

(dp;) =-
dA

(2m )"

1hi+2(a):—(pi+»)'+" '

(812)

(813)

1

I, = f dx dy(1 —y)[x(1—x)y]'i2

&& [y+Ax(1 —x)(1—y)]

with

b2
A

a

(817)

X 4a I~+4b I&+(2a +b ) I, (814)

where

I,= f dx dyy[x(1 —x)y]'i

The integrals (89)—(811) can be evaluated using dimen-
sional regularization. In terms of @=4—n, (88) becomes

Ig ——
2

(4m)'
-(a') ', &(e)
(16 )

1 —Ax
dx =1,

o [1 Ax(1 x )]

(2——,'A) f dx
o 1 —Ax(1 —x)

+(4—A) f dx
[1—Ax(1 —x )]2

(819)

Expand (814}in powers of e. The following identities are
useful:

)& [y+Ax(1 —x)(1—y)] "+',
1

Ib = f dx dy(1 —y)[x(1 —x)y]'i

)&[y+Ax(l —x)(1—y)] "+",

(815)

(816)

—2 x =0 . B20
1 —Ax(1 —x )

Expand the left-hand side of (820) in a power series to
prove the last identity. Using (819) and (820), Ir) be-
COIDCS

Irr(a, a, b)= ~ —(2a +b )+—'

(3—2y)(2a +b ) —2 2a ln +b ln
(16m2) e & )M' p

a b+ 2a 1n +b 1n
p p

—(3—2y) 2a ln +b ln +(3—3y)(2a +b ) +a J(A),
P P

(821}

where J(A) is a function of A = (b )/(a ) which cannot be expressed in terms of elementary functions. J(A) is given by

J(A)= 2 2 [A lnA —A ln A+4[I, , (A)+AIb, (A)+(2+A)I, ,(A)]—(2+A)I, , (A)],

where I, , etc. , are defined by expanding I„Ib, and I, in powers of e:

Ia =Iap++Ia& +
Ib ——IbP+eIb +
Ic=Ico+eIc, +& Ic + '

Note that if a =b then J(A) =J(1) is just a constant.

(823)

(824)

(825)

Divide V' ' as follows:

APPENDIX C: RENORMALIZATION AND P FUNCTION

—2m' ln
p

(C2)

V(2) = V(2)+ V(2)+ V(2) (Cl)

where V,' ' is the part of V' ' which involves integrals of the type Iz [Eq. (81)] and where Vb '+ V,
' ' is the part of V' '

which involves integrals of the ty~e Irr [Eq. (82)]. V,' ' contains all the J(A) terms [see (821)] and Vr',
' contains the rest.

Substituting (84}into (2.36), V, ' is seen to be

(2) fi A, 1 2 rrrl 2 r)222 2 2

Va = „2—m&ln 2 +m2ln 2(16&) & p, p
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Note that all pole terms in V,' ' have canceled.
Substituting (B21) with J(A )=0 into (2.36) Vb

' is

A, A
Vb

' — —(A, f )+—[(—,
' —y)A, f —(mi lnmi +mz lnmz —2m' lnm' ——,'mi Af lnmi + —,'mz Af lnmz )](16~')' E

+ —,
'
[—8m' ln m' +2mi ln m& +2m& ln mz +2m' (m& ln m~ +mi ln mq )]

—( —,—y)[mi lnmi +mq lnmz —2m' lnm' ——,
'

m& Af lnmi + —,
'

mi Af inmi ] . . (C3)

1 (1—y)—+ — +constant
16 e

and in the scheme of Eq. (4.1) they are
r

1 4 Nl
Z) ——— ———2y —2 ln

16& 4 p

1

16' e

1—+ ( finite)
16

(C4)
m' 1

~ +/+in
p E'

Z2=—
and

Note that V, and Vi', are invariant under f~ f-
(i.e., mi~mz). This will not be true of V,' ', which will
be discussed later in this appendix.

All the pole terms in V' ' are in Vb '. Considering
(2.12) with Z expanded as in (2.39), Vi" and Vq" as given
in (A6) and (A7), and Vb

' in (C3) it can be seen that if

(C7)

(C8)

2
1 3 —2y 1

16m e +constant (C9)

'2
Z, —+1—y +(finite),16' (C5)

The P function is given by (for a discussion of the cal-
culation of two-loop P functions using dimensional regu-
larization see Ref. 20)

then all pole terms in the effective potential cancel. In
particular the (1/e) X logarithm terms cancel with Zi de-
fined as in (C4).

The finite parts of (C4) and (C5) are determined by the
renormalization prescription. In order to compute the
two-loop P function, and for reference, the values of Zi
and Zz in the modified minimal-subtraction scheme are

—~/2
ap (a/aX) [in(XZ-'")]

Either scheme gives the same result

3 X' 3
P(A)=A, — ——

~ +
2 16~ 2

(C 10)

(Cl 1)

1 A,
Z1 4

+3—2y ~

E
(C6)

The remaining finite part of the effective potential is
obtained by substituting J(A) [Eq. (B22)], where
A =(b /a ), from Iz(a, a, b) into (2.36) to get

V,
' '=

~ ( —, )m' 3{1+z)J(1)+(1—z)J 1+ —8J(l+z)+2{l+z)J(l+z)+2{1—z)J(1—z), (C12)
(167r ) 1 —z

where

&2 (C13)

In the notation of Eqs. (3.11)—(3.14)

(C14)

and

V~~~=2g~x~ 3(1+z)J(1)+(1—z)J 1+ —8J(1+z)+2(1+z)J(1+z)+2(l—z)J(1—z)
1 —z

Expand in powers of z (note that —1 &z & + 1 if V' ' is to be real) to g«
V~z~=2Bzx4[[2J(1)—6J'(l)]z+[4J'(l)]z +[2J"(1)]z +

(C15)

(C16)
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a V"'
=28 x [[8J'(1)]z+[6J"(l)]z+ .

I . (C17)

Along a parabola y =ax, o; a constant, this becomes

(2)BV, =28 x y(a),2 2

y =ax2
(C18)

Now V' ' in the form (2.33) can be expanded in a power
series in Af. If this is done it is seen that the first term in
the series is order (A, ) . The first term in the power
series for V,' ' and Vs

' is also order (Af), so the coeffi-
cient of the term linear in z in (C16) must vanish. By the
same technique it can be shown that ihe coefficient of z
does not vanish. Thus, V,' ' is not symmetric in f.

Note that

where y(a) is a number depending on a. Note that, be-
cause of lnx terms, V,' ' and Vb

' are not so simple
on these parabolas. In the discussion of the two-loop tra-
jectory y(x) using the renormalization scheme (4.1) the
contribution of (C18) was ignored. It was found that y(x)
lies very close to the parabola y=( —,

' )x . The effect of
neglecting the contribution from (C18) will be to shift the
trajectory a small amount from its true value. Thus ap-
proximating V' ' by ignoring V,' ' will have a small quan-
titative but no qualitative effect on the results discussed in
this paper. It is also straightforward to show (although
the functional analysis is somewhat involved) that terms
of the form (C18) cannot remove the triple valuedness of
y(x) and V,fr(x) near x=0 in the modified minimal-
subtraction scheme (see Fig. 4).
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