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Quantum chromodynamics in two space-time dimensions with massless fermions is studied using
the path-integral approach. Performing a non-Abelian chiral change of variables, the fermion deter-
minant is solved exactly. Apart from a gluon mass term, it contains a Wess-Zumino anomaly term,
also present in the solution of other two-dimensional models. Physical properties are discussed in

terms of the resulting effective Lagrangian.

Interest in two-dimensional field theories has been
renewed after the advances originated in recent works by
Polyakov and Weigman,! Alvarez,> and Witten.> A re-
markable feature revealed by these works is the connec-
tion between two-dimensional models (such as the non-
linear o model) and the Wess-Zumino functional* origi-
nally constructed as an effective action for chiral
anomalies in d =4 space-time dimensions.

Here we study quantum chromodynamics in d =2 di-
mensions (QCD,) with massless fermions. Using a re-
cently developed® path-integral version of the bosoniza-
tion technique (particularly adequate for non-Abelian
theories) we solve exactly the fermion determinant. We
show that this determinant consists of two terms: one cor-
responding to a gluon mass term (the non-Abelian exten-
sion of the Schwinger mechanism); remarkably, the other
term is precisely the analog (for d =2) of the Wess-
Zumino functional. This term is endowed with deep topo-
logical meaning since it corresponds to the Chern-Simons
secondary invariant in differential geometry.®” Since our
results were obtained by exploiting the non-Abelian chiral
anomaly, it is no'surprise to see the Chern-Simons term
arise in this context, in light of recent works.® '

The evaluation of the fermion determinant is an impor-
tant step towards a complete solution of QCD, with mass-
less fermions, a model where only partial results are
known (see Ref. 5 for an incomplete list of works on this
model). As we shall see, our approach shows that fer-
mions are completely decoupled from the gluon sector.
This last is described by an effective Lagrangian consist-
ing of N2—1 [for the SU(N) case] massive scalars and
N?—1 massless gauge excitations. The presence of the
Wess-Zumino term makes the scalars self-interacting.
These results show interesting connections between QCD,
and other two-dimensional models such as the nonlinear o
model, the chiral Gross-Neveu model, etc. Also, resem-
blances with current-algebra effective Lagrangians*® be-
come apparent.

We start by sketching how the fermion determinant can
be computed using the technique developed in Ref. 5. As
we shall see, this approach overcomes the usual difficul-
ties characteristic of bosonization in non-Abelian theories,
providing a very economical way of analyzing two-
dimensional fermion models.

The generating functional for QCD, with massless fer-
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mions reads (in Euclidean space-time, which will be taken
as a large two-sphere S 2

szgz‘p@dz@A”exp [—f(@ﬂgb—k%Fm,Z
+ gauge-fixing term)d’x | ,

1

where v, D, =P =i3+gA and A, takes values in the Lie
Algebra of SU(2) [the extension to SU(XN) is trivial]. The
massless fermions are taken in the fundamental represen-
tation of SU(2).

Exactly as it happens in the Abelian case (the
Schwinger model) there is a change in the fermion vari-
ables which completely decouples fermions from gauge
fields, at the classical level. Although this is possible in
an arbitrary gauge, it is simpler and more instructive to
work in what we shall call the decoupling gauge. In this
gauge one can always find a field ¢ =¢%"° [taking values
in t}51e Lie algebra of SU(2), generated by the ¢%s] such
that

A=%(aeys¢)e_y5¢=——g—i[aUs(x)]Us_l(x) )

[Eq. (2) becomes A4,=(1/g)e,, 3,4 in the Abelian case,
and hence the decoupling gauge coincides with the
Lorentz gauge for the Schwinger model].

It is straightforward to check that in terms of the new
fermion variables

X=Us~'(x), X=9Us~l(x), ®

the fermion Lagrangian becomes completely decoupled
from gauge fields,

Lp=yDy=XidX . )

That the choice of the decoupling gauge is possible can
be proved, following the work of Roskies,” by considering
the j =iys complexification of SU(2), SL(2,C). Indeed,
Us(x) can be taken as an element of the form Us(x)
=exp[ —ijd(x)], that is, a positive-definite Hermitian ma-
trix of determinant one. [We shall call G5 the set of all
such elements, G5 CSL(2,C).]

Defining x4 =x; % jxo, Eq. (2) can be written as
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A_=-2i(d_Us5)Us~ . (5)

Note that in our approach the role of fermion currents,
which in the operator method are written after bosoniza-
tion in terms of scalar fields (for example, J, =¢,,d, ¢ in
the Abelian case), is played by the gauge field. We then
see that in our way to bosonization we have arrived at the
analog of currents J. introduced in Refs. 1 and 3, except
for the fact that x . are not truly light-cone coordinates.
Precisely this difference simplifies considerably our treat-
ment.

The quantum aspect of the decoupling is taken into ac-
count by the change in the fermionic measure under
transformation (3):

DY DYy=J DX DX . (6)
. |
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It is important to note that the Jacobian J coincides with
the fermionic determinant

detD=f@J.@¢exp

—ftYJDz&dzx]
=J [ DX DXexp [— [xi aXd2x]=Jdetia .

In order to evaluate J, one considers an extended Us
transformation depending on a parameter ¢ (¢ €[0,1]):

Us(x,t)=exp[(1—12)ysh] . ' (8)

The whole transformation (2) is then built up by iteration

from the infinitesimal one, varying ¢ from O to 1. Follow-
ing the method described in Refs. 5 and 10, we get

2 1
: —8
ln(detD/detza)=an=—2-w—fd2x tr [%AA+ fo dtysA. A, ] 9)

with

,=-;—i[aU5(x,t)]U5‘1(x,t) .

(10)

The first term in (9) shows that the gauge fields have gotten a mass m (m2=g?/2). That is, the Schwinger mechanism
takes place in QCD, as in the Abelian case. We shall now show that the second term corresponds to the analog of the
Wess-Zumino functional®® in two dimensions, also appearing in the nonlinear o model solution of Polyakov and Wieg-
man! and the simplified model solved by Alvarez.? Indeed, using Eq. (10) the second term in Eq. (9) can be written as

W,=

with
U=U(x,t)=exp[td(x)] . (12)

Consider for a moment the analytic continuation of U
to an element U, of SU(2):

U.(x,t)=exp[itd(x)] . (13)

Since we are taking space-time as a large sphere and
m(SU(2))=0, we can think of U, as a mapping from a
solid ball B (whose boundary is S?) into the SU(2) mani-
fold. We shall take as coordinates in B (whose boundary
is precisely S?) the parameter ¢ and the two-space-time
coordinates (writing ¢ =cosa we can think of B as the
upper hemisphere on S*). The analytically continued W,
reads

W5 =47l , : (14)

where T is the Wess-Zumino functional

F‘Tiﬁfgd%effktrna,-Uc>Uc—‘<8,~Uc>Uc"
X(3eU)U, 71, (15)

InJ =In | 962

detid

2 ; 1
Etr [ysAip At d? =5 [y dt [ dx ul3,V)U~1@R,0)U~'3,U)e,] (1

which has the very important property of being defined
modulo 277, the ambiguity being related to the topological
inequivalent ways of extending a given mapping
U,:8%—SU(2) into a mapping from B into SU(2); the to-
pologically distinct possibilities are classified by
m3(SUQ))=2.%67

Coming back to our actual problem, the extension from
S? to B arose naturally when we constructed the finite
chiral transformation Us(x) from Us(x,t)EGs. Any
other extension than the one defined by Egs. (8) or (12)
would have yielded the same W), since there are no ambi-
guities [of the kind described above for the case of
U.€8SU(2)] for the elements of the set GsCSL(2,C).
This can be seen by noting that G5 is homotopically
equivalent to R*® and 73 (R3)=0. We then conclude that
any other extension of Us different from that of Eq. (8)
[for example, by changing (1—¢) in the exponential by an
arbitrary function f(¢) satisfying f(0)=1, f(1)=0]
would lead to the same result. Then, we shall write the
Jacobian as

1, RN _ _ _
———,:;trlfdzx(aﬂU)(ayU Nt e [y dt [d?x(3,0)U8,0)UB,UU! | (16)
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This result coincides with that obtained in Ref. 1 when
solving the nonlinear o model; it is also related to the
determinant evaluated in Ref. 2 for a simplified version of
QCD,. Note that the second term has been obtained by
carefully evaluating the change in the fermion measure
under non-Abelian chiral transformations. This shows
that the non-Abelian anomaly, which precisely coincides
with the secondary Chern-Simons invariant, can be
thought of as arising from the noninvariance of the func-
tional measure under these transformations (compare this
aspect with Ref. 11).
It is instructive to make a perturbative expansion

U=1+¢°+0(¢?) .

The Jacobian reads
InJ = —;-l—trdex[(a,,¢)2+ Le,,$3,60,0]
+higher-order terms . (17

This Jacobian is a resemblant to the effective Lagrang-
ian discussed by Witten® in order to describe low-energy
hadron phenomenology. However, in the present case, the
effective Lagrangian contains the F, ,“,2 term and reads

. 2
¢ o+5-68,68,0¢.

2
V2v2+ g_v2
2

1
Legg=—tr
: g

+2643,V%¢ 3, de,, (18)

As usual in the path-integral approach to bosonization®
one gets an effective Lagrangian with high-order deriva-
tive terms. It corresponds to N?—1=3 massive scalars
(with mass m = —g /V/27) and three massless gauge exci-
tations,!® since the propagator A associated to Lagrangian
(18) reads :

A=Ap(m,x)—~Ap(0,x), Ap(m,x)=—-K0(mx). (19)

In contrast with QED,,'>!> where the massive scalar is
free, here a self-interaction (given by the Wess-Zumino
term and the commutator part of the F,w2 term) is
present. Due to the Wess-Zumino term, the Lagrangian
violates both naive parity operation (Pyo=xy—>Xg,
x1——x1, U—U) and (modulo 2) boson number Np
conservation [(—1)"2=U—U~" or ¢°— —¢°, but is in-
variant under the product Po(—l)NB which corresponds
1o Xg—>Xg, X|— —X1, p—> —¢.

As we pointed out above, the fermion determinant (17)
coincides with the one computed by Polyakov and Wieg-
man! in their solution of the nonlinear o model. Howev-
er, their effective Lagrangian has no Flu,,2 term, and hence
bosons remain massless. (It is the presence of the kinetic
term which makes the bosons massive in QCD,.) Similar
to the o-model case, the solution of the chiral Gross-
Neveu model leads, in the path-integral approach, to a
theory of fermions interacting with an effective vector
field (see Ref. 14), and after decoupling, the bosons
remain massless.

In summary, we have computed the fermion deter-
minant for QCD, and stressed the appearance of a Wess-
Zumino term, analogous to those discovered in other
two-dimensional models. We have shown that the fer-
mions completely decouple from bosons, these last being
massive self-interacting scalars. Concerning fermion
Green’s functions, the decoupling implies that at short
distances fermions are free. In order to complete the
physical picture of the theory (testing screening at long
distances and analyzing boson Green’s functions), one has
to explicitly write the decoupling gauge condition in order
to treat the gauge-field sector. Work on this aspect is in
progress.
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