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Comment on the ultraviolet behavior of gauge-dependent Green's functions in QCD
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The ultraviolet behavior of gauge-dependent covariant Green s functions in QCD is shown to
have a discontinuous behavior in both the number of flavors (nf) and the gauge parameter (a). In
particular, we show that for nf & 10 and o;&0 the behavior is, up to a normalization constant, that
of pure free field theory without the usual logarithmic power modulation normally associated with

asymptotic freedom.

In this paper we show that the generally accepted view
concerning the ultraviolet (UV) behavior of gauge-
dependent Green's functions in quantum chromodynamics
(QCD) is incorrect. It is typically assumed and often stat-
ed, for instance, that in Lorentz gauges this behavior is
given by free field theory modulated by powers of loga-
rithms. ' We show, however, that in actual fact there is no
logarithmic modulation when the number of flavors (nf)
is less than 9 provided one avoids the Landau gauge. In
other words, under these conditions, the asymptotic
behavior of a typical gauge-dependent Green's function is,
up to a normalization constant, precisely that of unadul-
terated free field theory. Only when the number of fla-
vors exceeds 9 does the "usual" logarithmic behavior
enter. This rather bizarre dependence on nf is, however,
entirely absent in the Landau gauge where the usual loga-
rithmic result is valid regardless of the number of flavors.
As a specific example consider the transverse part of the
gluon propagator D(q, a), a being the conventional
Lorentz gauge parameter; u=O corresponds to the Lan-
dau gauge. We show that its UV (i.e., q —+Do) behavior
has the following structure:

f()a(tfgpa)
A'

f[O,G(t,g),a(t,g,a)] . (3)

As usual the running coupling constant G(t,g) is given
by

the anomalous dimension. In this equation, f is to be con-
sidered as a function of the independent variables t, g, and
o,' so that the partial derivatives have their usual meaning;
however, it should be noted that all derivatives are to be
taken keeping the implicit unrenormalized quantities (in-
cluding any cutoff) fixed. It is well known that gauge in-
variance requires that

5(g,a) = —2ay(g, a) .

Furthermore it is always possible to define P(g, a) to be
gauge invariant, i.e., independent of a, as in the minimal
subtraction scheme. '* We shall not dwell on the problem
of scheme dependence here though we shall return to the
more general case of a gauge-dependent P function at the
end of the paper.

We shall demonstrate below that the solution to Eq. (2)
can be expressed in the following way:

—1j2

constant, a+0
nf& o: q, a X.

q (lnq ), a=O, (la)
G(t g) dg'

P(g')
(4)

whereas the running gauge parameter a(t,g,a) satisfies

= —2ay[G(t, g),a]

subject to the boundary condition a(O,g,a)=a. Perhaps
the most salient feature of the solution (3) is the apparent
absence of the usual explicit anomalous-dimension ex-
ponential factor. Indeed, this will prove to be the source
of the curious nature of the UV behavior exemplified in
Eqs. (1). This factor is, in fact, buried in the running
gauge parameter 6 as can be seen by examining the
Landau-gauge (a=O) limit. It is not difficult to verify
that

G(t,g)=exp —f [ &&(y)gIP(g')]dg'lim
a—+0Bf Bf df+P(g, a) ~5(g, a) —y(g, a)f=0, (2)

where P(g, a) =pdg/r)p, 5(g, a)=pc)alBp, and y(g, a) is where yo(g)—=y(g, O) is the anomalous dimension in the

nf ) 10: D(q, a)~ (lnq )i'
(lb)

q

where p = (nf —,' )/(33 —2nf) is derived from the
anomalous dimension in the Landau gauge only. Notice
that p does not depend upon a. A more detailed version
of this is given in Eq. (11)below.

To see how this comes about, consider a dimensionless
Green's function f(t,g, a) that depends on a logarithmic
momentum scale t= lnq IIJ, , the gauge co—upling g, and
the gauge parameter u, both normalized at the scale p.
For the gluon propagator mentioned above, f:qD; the-
argument can straightforwardly be applied to any similar
gauge-dependent Green's function. The standard
renormalization-group equation reads'
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xf[o,G(t,g),o] . (7)

As usual the small-g behavior of the P function, namely,

P(g), , bg'—

with

b—= (11——,'nf),
16m

leads to asymptotic freedom provided nf & 16; thus

G'(t, g), „(2bt)

Landau gauge. Inserting this in (3) then leads to the stan-
dard solution'

G(t,g)
f(t,g,o) =exp f, [ro(g')/P(g')]dg'

lim f(t,g,a)-
f~ao

(a/ao)' when nf & 10,
(a/ao)' e &'g' '(2bt)' when nf & 10,

dg da df
P(g) 2ay(g, a) fy(g, a)

(12)

(11)
where the free-field normalization f(t,o,a)=1 has been
used [as it was in Eq. (8)]. This, together with Eq. (8), is a
more detailed version of the result quoted in Eq. (1) and
exhibits the curious discontinuities in both a and nf;

We will now show that Eq. (3) is indeed a solution to
Eq. (1). To do so we shall first use the method of charac-
teristics to derive the general solution. "' The characteris-
tics are obtained by simultaneously solving the ordinary
differential equations

Using this in Eq. (7) then gives the well-known result that

f(t,g, o) —(2bt )'"' (8)

Here a[=(1/96&)(4nf —39)] is the coefficient of the
leading term in the perturbative expansion of yo(g): i.e.,

Three independent characteristic surfaces are

(i) fa '~ =ci,
(ii) t+K(g)=c2, where K(g)= g g

P(g)
'

and

(13)

(14)

ro(g), pg'.

Thus, in the Landau gauge Eq. (3) does indeed reduce to
the standard result which exhibits the well-known loga-
rithmic power modulation of free field theory. The naive
extension of this result to arbitrary a, typically implied in
standard works, ' is simply to replace the anomalous-
dimension coefficient a as it occurs in Eq. (8) by its gen-
eralization a(1—a/ao), where

ao ———,n a= , (39 —4nf)—.

This is not, in general, correct.
To see what actually happens in other gauges (a&0) we

need to examine the UV behavior of a. As we shall show

explicitly below, this is given by

CKp

a(t,g, a) taboo [1+ —2$(g, a)(2bt)altt]
(9)

where tttt(g, a) enters via a boundary condition. This equa-
tion is the crux of the problem since the result of the limit
taking clearly depends critically on the sign of a and this
changes once nf exceeds 9. Explicitly, Eq. (9) gives

ao when nf &10

aoe ~' ' '(2bt) ' ~0 when nf &10.

(ul) $(g, a) =c3

this being the parametric solution to

da y(g, a)
dg P(g)

(15a)

(15b)

The c; in these equations are parameters whose variation
sweeps out the characteristic surfaces. The general solu-
tion is simply the most general "intersection" of these sur-
faces and is given by @(ci,c2,c3)=0, where @ is an arbi-
trary function. Using Eqs. (13)—(15) this can be recast
into

f(t,g, a) =a'~ W[t +K(g), e&'g' '],
where W is another arbitrary function to be determined by
imposing suitable boundary conditions. The exponential
form for the second variable in (16) is for convenience
only as will become clear below. Actually all conse-
quences of Eq. (1) can be derived from (16) without the
need for introducing running coupling or gauge parame-
ters. However, since these concepts have become conven-
tional, we shall first demonstrate how they arise and
thereby derive Eq. (3). Clearly we need to eliminate W
from Eq. (16); this can be accomplished by introducing an
arbitrary but convenient boundary condition. Suppose
that we specify f at some new value of (t,g, a)—call it
( T,G,a); then just as in (16),

f(T,G,a) =a' W[T+K(G), e &'G n'] . (17)

This formula is valid provided a&0 since in that case one
can show that

,2&&~.~~ —a
~—+0

and

T+K(G)=t+K(g) (18)

W can now be eliminated between (16) and (17) by simply
choosing

and Eq. (9) is simply replaced by (6). Using this in (3)
straightforwardly yields

P(G,a) =tt't(g, a)

to give

(19)
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1/2

f(t,g, a) = — f[t+E(g) K—(G), G,a], (20)

where we have used Eq. (18) to eliminate T. Notice that
Eq. (19) can be used to eliminate either G or a from (20)
thereby leaving its right-hand side (RHS) dependent on
only one arbitrary parameter (a or G) in addition, of
course, to t, g, and a. This arbitrary parameter can be
chosen at will and simply reflects the freedom of choice of
boundary condition required to eliminate W. The fact
that the left-hand side (LHS) of (20) is actually indepen-
dent of this choice is guaranteed by Eq. (1}. It is impor-
tant to emphasize that at this stage t, g, a, and G (or a)
are completely independent variables. The "conventional"
form of the result, represented by Eq. (3), follows as a spe-
cial case of (20): One simply chooses T=0, thereby forc-
ing the arbitrary parameter (G, say) to become a function
of t and g determined by Eq (18.):

K(G) =t+K(g), (21)

This equation can be recognized as identical to the one de-
fining the usual running coupling constant, G(t,g ), name-

ly, Eq. (4). Furthermore, with this definition, a becomes
a function of t, g, and a to be determined by solving Eqs.
(19) and (21); explicitly, it is the solution to

P[G(t,g),a(t,g,a)]=P(g, a) (22)

The final step in showing that (16) can be recast into (3) is
to confirm that a(t,g,a) as defined by (22} satisfies (5).
This can be accomplished by noting that the RHS of (22)
is independent of t; Eq. (5) follows by taking 8/(}t of Eq.
(22) and using the fact that, from its definition as a
characteristic, namely, Eq (15a),.dP =0.

It is of some interest to reexamine some of the features
of the solution from the point of view of the most general
solution as expressed in Eq. (16). We shall show that all
of the above-stated results, namely, Eqs. (8) and (11), can
be derived without the need for introducing running cou-
pling or gauge parameters. First, we note that Eq. (15b)
can be straightforwardly integrated when a—+0 to yield
[see Eq. (6)j

hm
—P(g, a) —1/2 3 (g)

a~Q

f(t,0,0)=1 . (27)

Since P(g)~ b—g, E(g)~1/2bg so this condition (27)
requires

limF(1/2bg )= lime
g~Q g~Q

or, using Eq. (24),

lim F(x) -(2bx)'~

(28a)

(28b)

But, from Eq. (26)

lim f(t,g,O)=e "' ' lim F(t) (29a)

e
—A (g)(2bt)a/2b (29b)

in agreement with Eq. (8). Notice that this result is in-
dependent of the magnitude of g, i.e., one does not neces
sarily have to be in a perturbative regime for the asymptotic
result to be valid.

Now let us carry out a similar procedure in an arbitrary
gauge: the UV limit off is given by

lim f(t,g,a)=a'~ lim W[t, e ('(s' '] . (30)

—P(g, a) gclb 1 +0(g2)
CXQ

g —+Q CX

(31)

[Notice, incidentally, that this is precisely the limit that is
required on the LHS of (22) in order to determine the UV
behavior of a; indeed, using (31) in (22) will immediately
confirm Eq. (9}.] Now, it is clear that if P(g, a) is to be
kept fixed when g~O, then either

or

a~ao (when a &0, i.e. , nf &10) (32a)

a~O (when a &0, i.e. , nf & 10) . (32b)

Suppose nf & 10; then the free field boundary condition
on (16) requires

As in the Landau gauge this can be approached by taking
g~O; however, in this case, one must keep e ~' ' ' fixed
(at some value y, say). Now the small-g behavior of
(t}(g,a) can be derived from Eq. (15b) and is given by

1/2

where the indefinite integral

A(g)—:f dg (24) 1.e.)

f(t, O, ao) = 1 =ao'~ lim ~ [1/2bg, y],
g —+Q

(33)

[As noted above, it is this singular behavior in a that in-
validates the extension of Eq. (10) to the Landau gauge. )
Using (23) in (16}gives

(34)lim ~ (t,y) =ao
t —+ oo

Using this in Eq. (30) then yields precisely the result al-
ready obtained in (11),namely,

f(t,g, O)= lim a'~ F[t+K(g),a '~ e "(s)] .
a—+0

(25) lim W(t, g, a) =(a/a())'
t

Since the limit must exist, it follows that

f(t,g, O) =e "(s)F[t+K(g)j, (26)

where F is an arbitrary function. This is precisely the re-
sult which would have been obtained had we set a=O
directly in Eq. (1). Now let us impose the free field boun-
dary condition on f(t,g, O), namely, that

It is straightforward to verify that for nf & 10, (32b) yields
Eq. (11b). Note, incidentally, that in deriving these results
we have to be sure that the neglected terms of O(g ) in
(31) do not contribute when a~ao,' this requires

~

a/b
~

& 1 which is guaranteed regardless of the number
of flavors. We have thus demonstrated that all of the re
suits ofasymptotic freedom can be derived without recourse
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to the concepts of running coup/ings .
A few further remarks are worth making:
(i) The results exhibited in Eqs. (1) and (ll) are con-

sistent with the following expression for f:

f(t,g, ct) =
CXp

1+e-&'I ' 2bt+ j.

g

a/b
i

&/

(35)
Notice that this has the correct free field normalization,

f(t, O, a) = 1, and can be expanded perturbatively in g .
(ii) Rather than introducing the running coupling,

G(t,g), we could work with Eq. (20), keeping G an arbi-
trary parameter. In that case the infrared behavior of f
can be related to its small-coupling limit by simply taking
G~O, as was done in Ref. 5 for the case of the Landau
gauge. Indeed, if p(g)= b—g for all g, then (35) is the
exact perturbative solution to Eq. (1); it is only the ab-
sence of the next term in p ( ~ lng ) that prevents it from
being the complete perturbative solution.

(iii) Since the first two terms in p are gauge invariant,
the use of a gauge-dependent p(g, a) will not affect any of
the UV results derived here.
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