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Illustrated study of flux patterns in SU(2) lattice gauge theory
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Flux patterns in four-dimensional, SU(2) lattice gauge theory are studied with Monte Carlo simu-
lation. The flux correlations associated with elementary, three-dimensional cubes are presented as
stereo pictures of the flux vectors. Comparisons with lowest-order, weak-coupling, and
U(1))&U(1)&U(1) Monte Carlo results are made. The Auctuations of the SU(2) theory are larger
and more disordered than those of the comparison systems.

I. INTRODUCTION

This paper reports on continuing numerical studies of
SU(2) lattice-gauge-field configurations first presented in
Ref. 1 (to be referred to as I). The goal is to develop phys-
ical insight into the behavior of non-Abelian gauge fields.
Work of this type can test ideas concerning important
field configurations and may suggest unexpected direc-
tions for further research.

The theory is controlled by local dynamics so, in prin-
ciple, the long-distance properties are in some way present
at short distance. The renormalization group propagates
them out to large distance. In practice, little is known
about this behavior. We begin with a look at the flux pat-
terns around elementary 1)&1&1 cubes. These are in-
teresting and still simple enough to study in detail.

In I, some initial results were presented. It was found
that significant, non-Abelian effects in elementary cubes
persisted at large values of P. A more detailed study is
described here. Enough information is collected so that
the data can be represented as stereo pictures of the flux
vectors associated with cubes. As in I, the lattice is of
size 10 and the P values range from 2.0 to S.2.

To interpret the data, it is useful to have simpler sys-
tems for comparison. In I, lowest-order weak-coupling
calculations provided a baseline. This essentially Abelian
limit of the theory will also be used here. In addition, it is
interesting to compare with a full Abelian theory. The
U(1) XU(1)XU(1) theory has the same number of degrees
of freedom as the SU(2) theory. The numerical simula-
tion of it produces data that provide an additional point
of reference for the SU(2) results. Qualitative effects at-
tributable to the non-Abelian interactions are then easy to
spot.

The conclusion of this study is that the flux pattern is
significantly non-Abelian over the whole P range. This
range includes large P values and thus very small physical
sizes for the elementary cubes. More specifically the
non-Abelian interactions in SU(2) give larger and more
disordered fluctuations than are found in the Abelian
comparison systems. We do not know if this disordering
is of the type that has been shown to be associated with
an area law for the Wilson loop.

Section II discusses the theoretical motivation and the
weak-coupling calculations. Section III presents numeri-

cal results for SU(2) and U(1)XU(1)XU(1). They are
displayed in graphs and pictures. Section IV interprets
these data and relates them to results in I. Section V
briefly restates the general conclusion.

II. THEORETICAL DISCUSSION

This section reviews the flux concepts, introduces the
flux averages of interest, and describes calculations in the
weak-coupling limit.

0& /8; f
&~. (2.2)

8; will be referred to as the flux through face i. The
magnitude of the flux is gauge invariant. The orientation

I I

FIG. 1. An elementary cube and the routes r; associated with
the ith face.

A. Flux

Our basic ideas for the study of flux have been
described in I and Ref. 4. Gauge invariance requires that
different plaquette flux vectors be parallel transported to
the same site for comparison. Thus, to study the patterns
in a three-dimensional cube, consider Fig. 1 and the routes
ri, . . . , r6 each associated with a face and all based at the
same site. Given a gauge-field configuration, an element
U(r; ) of the gauge group is associated with each route as
usual. These group elements can be parametrized by a
vector of angles

U(r;)=e (2.1)

with
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(PI 8J), i =1,2, 3, j=l, . . . , 6 (2.4)

that reveal patterns in the flux. The pictures are a repre-
sentation of the average vectors in the new "body-fixed"
basis.

To obtain a more quantitative understanding of this in-
formation, two comparisons are helpful. The weak-

coupling limit of the averages in (2.4) can be computed
and compared with the measurements. It is also interest-
ing to compare the non-Abelian SU(2) theory to an Abeli-
an theory with the same number of degrees of freedom:
U(1)XU(1)XU(1). Since we follow the usual definitions
and conventions, it is appropriate to make the comparison
at the same p values. The effect of non-Abelian interac-
tions on the flux pattern can be seen quite directly.

is meaningful only in comparison with the other flux vec-

tors based at the same site.
The relationships among these vectors can be studied in

considerable detail. For example, it is straightforward to
extract and plot the six flux vectors associated with a
given cube in a given field configuration. Unfortunately,
this is not very instructive. Even for adjacent faces at
large p, the tendency of the vectors to align or antialign is

small. The eye misses the small correlations. It is neces-

sary to consider appropriately chosen averages.
In I, the averages (8] 8;) were studied. Here we ob-

tain the more detailed information needed to construct
pictures of the six flux vectors associated with a given
cube. Simple averages of the vectors 8; are not gauge in-
variant. It is only relative orientations, not absolute orien-
tations, that are meaningful. To proceed, choose an
orthonormal basis P], $2, P3 fixed relative to 8] and 83.

42=(83—8]8] 83)/'I 83—8]8]'83
I

(2.3)

p3=p] xp2= 8]x 83/ I 8]x 83
I

~

This is a right-handed coordinate system oriented so that
8] has only a positive 1-component and 83 has only a 1-

component and a positive 2-component. The new com-
ponents P;.HJ of HJ can be computed. Viewing individual
configurations of vectors in this basis is no more enlight-
ening than in the original basis. But now it is meaningful
to compute the averages

In I, standard methods were used to calculate ( 8] 8J ).
Now consider

(4].HJ)=(8].HJ(8] 8]) '/ ) . (2.5)

Since this is not a polynomial or even expressible as a
power series in the link variables, it cannot be handled
directly. However, the identity

g —]/2 (2 )
—]/2f dy e

—]' 2/2

can be used to write

(2.6)

(p 8 &=(2n) fdy fd pe i'/ (e '8, 8 ) .

(2.8)

Now the usual methods can be applied to the average in
(2.8). Luckily, the final y and p integrations are elemen-

tary. The average (8] 83), which will be of interest later,
can be handled similarly.

The method does not work on ($2 HJ) because of a
more complicated denominator:

(pg HJ)=((83 8~ —83 8]8] HJ)

X[83 83—(8]'83) ] (2.9)

=((8] 8]83 Oq
—. 83 8. ]8] HJ)(8] 8])

X ( 8] 8]83 83 8] 838] 83) ) ~ (2.10)

One can use (2.6) to deal with the (8] 8]) '/ factor. If
(2.6) is applied to the other square-root factor, an intract-
able quartic exponent is obtained. This difficulty is over-
come with the observation that

8] 8]83 83—8] 838, .83——detA

when

(2.11)

8].83 83.83
(2.12)

($].HJ ) =(2~) '/2 fdy(e ' ' 8] HJ ) . (2.7)

It is convenient to introduce another dummy integration
so that

B. Weak coupling

The lowest-order, weak-coupling calculation in SU(2) is
essentially Abelian. Each color component fluctuates in-
dependently and can be thought of as a separate U(1)
theory. Thus, at the same p, the lowest-order results for
SU(2) and U(1) XU(1)XU(1) coincide.

Now if a is a two-component column vector, then

(detg )
—]/2 (2~)—]fd a e a Aa/2

Furthermore,

a Aa=(a]8]+ag83)
and thus

(2.13)

(2.14)

Tg a/2e " =(2m) d crexp[ —,'o +i(a]8]+—a283)o] .

The result of all this is another expression that can be attacked in the usual way:

(p2'HJ &=(2~)

fdic

fd a fd pf d ere ~'+~ ]/

X (exp[]) 8] p+](a]8]+a283) 0 ](8] 8]83 8J —83'8 8 '8'))

(2.15)

(2.16)
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(P, 0, ) = 1.13/~P,

(P, 0, ) = —0.244/~P, j =2,3,5,6

(P, 04) = —0.155/~P,

y, 0, &=0,

(p2 0.) = —0.238/V p, j=2, 5

(j,.0, ) =0.865/v P,
(p2 gq) = —0.223/t p,
& j,.0,& = —0. 166/v P,
(0) 03) = —0. 184 .

(2.17a)

(2.17b)

(2.17c)

(2.17d)

(2.17e)

(2.17f)

(2.17g)

(2.17h)

(2.17i)

The relative sizes of the averages in (2.17) give informa-
tion about typical weak-coupling flux configurations that
can be understood in terms of the geometry of the cube.
Faces 2, 3, 5, and 6 are all adjacent to face 1 while 4 is
across the cube. Thus, (2.17b) and (2.17c) indicate that
the flux exiting any face next to face 1 is equally likely to
be oriented parallel to the flux entering face 1 and that the
flux exiting the more distant face 4 is somewhat less likelyi
to be so oriented. By construction, P2 is orthogonal to 0&

and determined otherwise by 83. This easily explains
(2.17d) and (2.17f). Since faces 2 and 5 are adjacent to
and symmetrically placed relative to faces 3 and 1, the
equality in (2.17e) is understood. Face 4 is adjacent to
face 3 but opposite face 1, while face 6 is opposite face 3
and next to the less important face 1. This rationalizes
the relative sizes of (2.17e), (2.17g), and (2.17h).

A simple consequence of the lowest-order version of the
Bianchi identity' ' is

(2.18)

The gauge-field averages in (2.8) and (2.16) are Grauss-

ian in lowest order. They were done for an infinite lattice.
The necessary propagators were obtained by doing one
momentum integration analytically and the remaining
three numerically. The results at order 1/v 13 are

tion. The interpretation will be given in Sec. IV.
The SU(2) averages are from the configurations

described in I, and the numerical methods were discussed
there. The lattice is of size 10 and the P values are 2.0,
2.4, 2.6, 3.0, 3.5, and 5.2.

The lattice size for the U(1) XU(1)XU(1) work is also
10; the P values are 2.0, 2.6, and 5.2. A heat-bath algo-
rithm outlined by Caldi was used to generate configura-
tions from an ordered start. A U(1) X U(1) XU(1) configu-
ration consists of three independent U(1) configurations.
Otherwise the sampling is similar to that in I. Averages
were separated by five sweeps after an initial 30—35
sweeps. Also at P=2.0 and 5.2, the quantities of interest
were measured every five sweeps from the ordered start.
This was done to check for trends in the averages versus
iteration number. After the first two measurements no
trends were seen, and we conclude that the lattices were
adequately thermalized by 30—35 iterations.

The SU(2) flux for some randomly selected cubes was
computed. Two examples at P=2.6 are shown in Fig. 2.
These are stereo views. To perceive the depth informa-
tion, hold the figure squarely oriented and about ten
inches from your eyes. In looking at this page, your eyes
are pointing so that the two lines-of-sight intersect on the
page. To view the figures, cross your eyes slowly so that
the lines-of-sight intersect in front of the page. As you do
so, each view will split, and you will see four rather than
two sets of vectors. Continue this until the center pair
fuse into a new image. It seems to help to frown a little
and concentrate on the centers of the figures. This takes a
couple of minutes of practice and adjustment, but when
the images lock together, the effect is dramatic and quite
three-dimensional.

In Figs. 3(a)—3(i), the SU(2) and U(1) X U(1) X U(1) data
for (P;.0J), (i,j)=(1,1), (2,3), (1,3), (1,4), (2,5), (2,4),
(2,6), (3,5), and (3,4) are shown. (1,2) is not shown because
it does not (as it should not) differ significantly from (1,3).
Similar statements hold for the other missing (i,j) values.
The curves are the lowest-order, weak-coupling results.

As an example of (0~ 0J ) data, (0~ 03) is given in Fig.

The results in (2.17) satisfy this constraint. It expresses
the conservation of flux in an Abelian approximation.
The U(1) XU(1)XU(1) theory will satisfy (2.18) in every
order.

Now consider

(y, 0, ) =&0,X0,.0, /~ 0, X0,
~

& . (2.19)

The lowest-order contribution to this average is zero since
the different color directions fluctuate independently.
This is also true to all orders in the U(1)XU(1)XU(1)
theory. In SU(2), there will be nonzero contributions in
the next order where interactions among the color direc-
tions take place. This average is a measure of the impor-
tance of these interactions.

III. NUMERICAL RESULTS

In the previous section, some flux averages were intro-
duced. The Monte Carlo data are presented in this sec-

FIG. 2. Two examples of the six Aux vectors associated with
two randomly selected cubes in a gauge-field configuration at
P=2.6. These are stereo views, and the three-dimensional rela-
tionships can be perceived by following instructions in the text.
The overall orientation of the figures and the labeling of the vec-
tors are not relevant here.
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FICx. 3. Cyraphs of (P; 8~) vs P. The dots are SU(2) data, the triangles are Ull)XUil)XU(1) data, and the curves are the weak-

coupling results of (2.17). The ( i,j) values are (a) (1,1), (b) (2,3), (c) (1,3), (d) (1,4), (e) (2,5), (f) (2,4), (g) (2,6), (h) (3,5), (i) (3,4).
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FIG. 3. (Continued) .

4. The lower points are SU(2), the upper ones U(1)
XU(1) X U(1), and the line is the weak-coupling result.

The (P;.8J ) data can be represented in terms of pic-
tures that show the average orientations of the six flux
vectors relative to the P; basis. Results for SU(2) at
P=2.0, 2.6, and 5.2 are given in Fig. 6. Figure 5 is a
reference to indicate labeling that would overly clutter the
stereo views in Figs. 6 and 7. The U(1) XU(1) XU(1) aver-
age vectors are drawn in Fig. 7, and all ($3.8J ) vanish in
this case. In both cases, the larger vectors 0& and 03 are
scaled down by a factor of 10. Although the overa11
scales of the printed figures vary slightly, the coordinate
axes always represent a length of 0.10.

IV. INTERPRETATION

-.20—

-.18 —
(Oq ~ 9 Q

-.16—
-.14—

-.12

-.10—

-.06—

-.04—

-.02—

Examples of flux configurations such as those in Fig. 2
look random. This is because they are not too far from
random. Although the correlations are qualitatively im-
portant, they are small quantitatively. One way to see this
is to consider the measured values of (8~ 83) in Fig. 4.
They are not only much less than one, but for SU(2), also

0
FIG. 4. Graph of (8~ 83) vs P. The dots are SU(2) data, the

triangles are U(1)XU(1)&U(1) data, and the line is the weak-
coupling result.
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FIG, 5. Labeling for Figs. 6 and 7.

well below the weak-coupling number. There is only a
small tendency for Ot and es to antialign. Similar con-
clusions apply to the other faces of the cube.

The small alignments can be seen in the average projec-
tions of the flux vectors onto the P; basis. Consider
(P t 8 t & first. Since

(({), 8, &=& ~8,
~
&=(~8;I &, (4.1)

this quantity is an indication of the size of the fluctua-
tions of the flux through a single plaquette. The SU(2)
data of Fig. 3(a) are above the weak-coupling curve and
above the U(1) XU(1)XU(1) data. Thus, the effect of

FIG. 6. Stereo views of &P;.8~ & for SU(2). The top, middle,
and bottom pictures are P=2.0, 2.6, and 5.2, respectively. The

»

8» and 83 vectors are shown at »p of their true length. The
coordinate axes represent a length of 0.10.

FIG. 7. Stereo views of &p; ej & for U(1) XU(1) XU(l) as per
Fig. 6. In this case, all vectors are in the 1,2 plane.

non-Abelian interactions is to increase the average magni-—+
tude of the flux. Similar statements apply to ({t)2 83&,
which is the magnitude of the component of 83 perpen-
dicular to et. See Fig. 3(b).

(P t 83 & and the other averages shown in Figs.
3(c)—3(g) measure the flux alignments around the cube.
The SU(2) data are below the weak-coupling curves and
below the U(1) XU(l) XU(1) data. This indicates that the
effect of the non-Abelian interactions is to disorder the
flux pattern.

The weak-coupling approximation to the averages in
Figs. 3(c)—3(g) is not very close to the measured values.
This is probably due to the fact that (8, 83 & and the other
similar quantities are so far below the weak-coupling
value. Here is another indication of the substantial disor-
dering of the flux even at moderatelg large P values.

Now consider the averages (({)3 8; &. In SU(2), they are
zero in the lowest-order weak-coupling calculations. In
the next order, when the three-gluon vertex is included,
they will get nonzero contributions. In the U(1)
XU(1)XU(1) theory, these averages are exactly zero.
Thus they can be thought of as a measure of the non-
Abelianness of the flux configuration.

(P3 8 t & and (Ps es & vanish by construction. ( ({)3 8$ &

is shown in Fig. 3(h) and is positive. The data for
(I(3 82& do not differ significantly from those in Fji,. 3(h)
except that the sign is negative. ($3 84& and (P3 8$& are
positive and indistinguishable. (f3 84& is in Fig. .3(i) and
may be slightly below ($3 es &.

The pattern of signs in these four averages can be un-
derstood. For example,

(j, 8,&=&j,xj, e, &=&8,xe, e,i~ e, xe,
~

&

(4.2)

is associated with the route r =r5r3r I shown in Fig. 8. A
short calculation shows that a positive sign in (4.2) has the
effect of decreasing the flux through r The signs f. or the
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here and the ( 8~ 81 ) studied in I. A rough guess that
neglects certain correlations is

(4.5)

At weak coupling, both sides behave as P ' and the coef-
ficients differ by 15%. Equation (4.5) is a reasonable
guide.

The quantities of central interest in I were

D = Oj. 0J (4.6)

and

R =(8, 84)/(8, 8, ) . (4.7)

FIG. 8. An elementary cube and the route r =r~r3r~.

other three averages follow from similar reasoning.
That

D was loosely interpreted as a density of magnetic sources
and R as a rough indication of the shape of the flux pat-
tern. The measurements of D indicated the presence of
significant non-Abelian effects. Several manifestations of
this have already been seen here. Equation (4.5) suggests
that

I &43 85)1=1(93 82&
I

(4.3) &4i K&(4i Xrj) (4.8)

is not surprising given that faces 2 and 5 are the same dis-
tance from faces 1 and 3. That

(4.4)

and may be slightly smaller than (4.3) can be rationalized
with the observation that faces 4 and 6 are similarly relat-
ed to faces 1 and 3 and are each farther from faces 1 and
3 than are faces 2 and 5.

More importantly, one should note that the data in
Figs. 3(h) and 3(i) certainly are not negligible compared to
those in Figs. 3(c)—3(g). So even at rather large P values,
there are significant non-Abelian features in the single-
cube flux pattern.

This information can be presented in the flux pictures
of Figs. 6 and 7. (Pi 8& ) and ($2 83) are large by con-
struction. All the others are much smaller. This shows
again the generally random nature of the flux. The direc-
tions of the vectors in the 1,2 plane demonstrate the sim-
ple tendency of flux that enters the cube through one face
to leave it through others. In U(1) XU(1)XU(1), the flux
is conserved while the SU(2) data show large deviations
from Abelian conservation.

However, there is a Bianchi identity' ' for the SU(2)
theory that constrains the flux vectors This i.dentity
reduces to simple Abehan conservation as P~ ao, but it is
complicated at finite P when expressed in terms of 8 vari-
ables. Thus, while the SU(2) patterns are no less con-
strained than those of U(1) XU(1) XU(1), they are allowed
to be more complicated.

The orientations of the flux vectors along the P3 direc-
tion in the pictures have been explained above. They are
arranged so as to reduce the flux through compound
routes such as the one in Fig. 8.

There is a relationship between the averages presented

will be close to D. This is found to be true. More gen-
erally, all the (p; +8J ) are qualitatively the same as D
in measurement and interpretation.

In spite of these non-Abelian effects, R was observed to
stay surprisingly close to its weak-coupling value down to
the crossover region. As (4.5) would suggest,
( &&t& ] 84 ) /( &)) i 8 3 ) has similar behavior. We have no ex-
planation for the especially close correspondence between
this ratio and its weak-coupling limit. It seems
anomalous amid the other non-Abelian effects.

In the U(1)XU(1)XU(1) data, all the (p; +8& )are. .

zero to many places. Only monopoles can contribute here.
Thus, the data confirm the expectation that such objects
are very sparse at these P values.

V. CONCLUSIONS

Although the flux patterns are too random to view
directly, some simple averages reveal the correlations and
these can be represented in pictures. The fluctuations in
the non-Abelian theory are larger and more disordered
than those of the Abelian standards. The SU(2) theory
takes advantage of its more complicated configuration
space [as compared with that of U(1)XU(1)XU(1)] to
manifest significant non-Abelian effects in the flux pat-
tern even at large P.
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