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First-order phase transitions in a U(1)-lattice-gauge —Higgs theory
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A U(1) lattice-gauge theory coupled to a radially variable scalar (Higgs) field in the fundamental

representation is studied using Monte Carlo techniques. We present the phase diagram of the theory
at zero temperature on a 4 Euclidean lattice. First-order Higgs-Coulomb transitions, which suggest
the realization of the Coleman-Weinberg mechanism, and first-order Higgs-confinement transitions

are observed.

I. INTRODUCTION II. THE MODEL AND THE METHODS

It is well established that lattice regularization is a
powerful method to study nonperturbative effects in

gauge theories. Among various lattice-gauge theories,
those coupled to scalar fields have been studied as a proto-
type of the Weinberg-Salam theory, or as an effective fac-
tory to study gauge-fermion systems. The phase diagram
of these theories was first studied analytically by several
authors, ' who, for simplicity, froze out the radial mode of
the Higgs field. Some authors then made Monte Carlo
studies of these radially frozen models and observed their
rich phase structures. None of them, however, found
first-order phase transitions in the weak-gauge-coupling
region so it remained an open question if the Coleman-
Weinberg mechanism works on a lattice or not.

In previous papers Munehisa and the author studied a
Zz gauge-scalar system on a lattice without fixing the
magnitudes of the scalar field. We pointed out that there
exist some phase transitions driven by the radial degrees
of freedom of the scalar field and that these degrees of
freedom might be essential to construct more realistic
models. Recently several authors investigated Zz,
SU(2), and SU(3) lattice-gauge —Higgs theories taking ra-
dial fluctuations into account. Their results are somewhat
confusing; some of them indicate effects of the radial de-
grees of freedom while others do not. None of them es-
tablished the Coleman-Weinberg mechanism.

In this paper we present results from a Monte Carlo
study of a U(1)-lattice-gauge theory which is coupled to a
radially variable scalar field in the fundamental represen-
tation. We will see that this theory undergoes first-order
phase transitions in the weak-gauge-coupling region when
the self-coupling constant of the scalar field is small
enough. This suggests that the spontaneous symmetry
breaking of the vacuum discussed by Coleman and Wein-
berg is realized in our model. We also see that radial de-
grees of freedom of the scalar field cause first-order phase
transitions in the strong-gauge-coupling region.

This paper is organized as follows. In Sec. II we define
the model and discuss some limiting cases. We also
describe the methods of Monte Carlo simulations briefly.
Details of our methods are in Ref. 6. The results of the
simulations are presented in Sec. III. Finally, Sec. IV is
devoted to discussions.

We introduce a link variable U;z located on a link
from one site i to a neighboring site i+P, where P
denotes the unit vector in the p direction, on a four-
dimensional hypercubic lattice. We also introduce a site
variable P; sitting on site i, which is written as

Pi ——R;V;, (2.1)

where R; denotes
~ P; ~. Both UI „and V~ are elements of

the gauge group U(1) while R; is a real, continuous num-
ber which ranges from 0 to + oo.

The action of the model is

S=SG+SH,

where

SG ——Ps g [1——,
'

(U; ~U, -„U,. -„. U;, +H.c.)],
D

(2.2)

(2.3)

+ +[244' (AU;, ,4,
' „-+—H c )] (2.4)

The sum gz in (2.3) runs over all the plaquettes while the
sums g,. and g,. „ in (2.4) are over all sites and links,
respectively.

In the naive continuum limit, the action (2.2) reduces to
the conventional Euclidean gauge-scalar action:

S —+ f d4xf ,'W„~W""+ ~D„—P
~

+m PPt+A(/gal) j,
(2.5)

where

(2 6)

and a denotes the lattice spacing. The partition function
is defined by

Z= g e-~. (2 7)

When m =00 the model reduces to the pure U(1)

with i, i+@,, i+p+v, and i+v circulating around the
plaquette 0, and

~H = g P(A4 )'+m'0 0 1
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lattice-gauge theory, which is known to undergo a
second-order phase transition at Pg ——1.01,' since any
configuration having P;&0 gives no contribution to the
partition function in this case. For Pg = Oc, on the other
hand, only those configurations which are equivalent to
the total gauge-ordering give a nonvanishing contribution
to Z. Then we obtain a theory of a self-interacting scalar
field. Hereafter we refer to this theory as the pure scalar
theory. Finally, when A,~ ac, the magnitude of the scalar
field is frozen to the value ( —m /2A, )'~ for negative m
and zero for non-negative m . Thus our model reduces to
the radially frozen model studied by several authors.

Let us describe our method for Monte Carlo simula-
tions. Each gauge variable and each site variable on a lat-
tice are updated, by means of the Metropolis method, "
once in one sweep. We measure the average plaquette
(Sa) and the average squared length of the scalar field

), defined by
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FIG. 1. Phase diagram of the theory at A, =O. 8

(2.8)

and

(2.9)

respectively. Here F denotes the free energy of the sys-
tem:

F= lnZ,1

&Sit.
(2.10)

III. THE RESULTS

N»«being the number of lattice sites. We investigate
behaviors of (Sa) (( ~P ~

)) for fixed values of m (Pg)
and A, by increasing or decreasing values of Pg (m ) by
small amounts. A few hundred sweeps are performed
first in such a simulation to get a proper initial configura-
tion. We also measure ( i P ~

) as a function of the num-
ber of sweeps, which we call hereafter time evolution of
( i P i ). The maximum value of R; in (2.1), which is
denoted by R „,is set at a finite value in each simula-
tion. We chose the values of R,„ large enough so that
the effect of the finite upper bound should be negligible.

Most simulations are performed on a 4" lattice with
periodic boundary conditions for both the gauge and the
scalar variables. Some calculations are also done on a 6
lattice, which show no significant difference except that
values of (Sa ) or (

~ P i ) fluctuate less on the larger lat-
tice.

Pg ——l.00+0.05.
Another line of transitions is observed to extend from

Pg ——0.0 to Pg (1.0. Figure 3(a) shows ( i P ~
) versus

m at Ps
——0.0, in which we see a clear discontinuity of

( i P i ) together with the hysteresis effect. In Figure 3(b)
we plot time evolution of ( i P i ) at Ps ——0.0 and
m = —3.95. The result shows that two states having dif-
ferent values of ( i P i ) coexist there, which indicates the
occurrence of a first-order phase transition. From these
results we conclude that the radial degrees of freedom do
cause the first-order Higgs-confinement transition. (Note
that the gauge-group degrees of freedom are completely
irrelevant at Pg

——0.0.) Singular behaviors similar to Fig.
3(a) are also observed when Pg ( 1.0.

In the region where Pg ) 1.0, which seems to be most
interesting from the theoretical point of view, we find that
the system shows another kind of hysteresis effect. In
Fig. 4 we plot ( i

iI)
~

) at Ps=1.5 as a function of m .
We see that the singularity of the transition is strong
enough to suggest the occurrence of the first-order transi-
tion. It is hard, however, to confirm the order of the tran-
sition by measuring the time evolution of ( i P i ) because

P g increased

o P& decreased

In this section we present the results of the simulations
for several values of A, . First we discuss the results at
A, =0.8. Figure 1 summarizes the phase structure of the
theory. Our results suggest that the second-order phase
transition of the pure U(1) gauge theory, which corre-
sponds to the m = Oo case, survives in the region
m & —1.5. In Fig. 2 we plot (Sa) at m = —1.0 as a
function of Pg. The result indicates that the system un-
dergoes the second-order phase transition at
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FIG. 2. (So) vs pr at A, =0.8 and m = —1.0. At each value

of Pg 100 sweeps are performed and the last 50 configurations
are used to calculate (Sz).
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FIG. 3. (a) ( i/ i ) vs m at X=0.8 and p~=0. 0. At each
value of m~ 400 sweeps are performed and the last 100 configu-
rations are used to calculate (

i P i
). (b) Time evolutions of

(
i p i ) at k=0.8, pg

——0.0, and m = —3.95. "H start" means
that the system starts from the configuration in which
R;=R and V;=1 for a11 sites i. "C start" means, on the
other hand, that the system starts from a configuration where
every V; is chosen randomly while all R;=0.0. In both starts
we set U;,„=1for all links.

the expected discontinuity is not large enough compared
with the fiuctuations on a 4 lattice.

We, therefore, looked for the first-order phase transi-
tions at large Ps by going into the region of smaller A, ,

0
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FIG. 5. (a) ( i p i

2) vs m at A, =0.1 and pg=1. 5. At each
value of m 800 sweeps are performed and the last 100 configu-
rations are used to calculate (

i P i
2). (b) Time evolutions of

( i/ i ) at A, =0.1, Pg ——1.5, and m = —0.460, —0.488, and
—0.520. Initial configurations are the same as those in Fig.
3(b).
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FIG. 4. ( i(t i ) vs m at A, =0.8 and P~=1.5. At each value
of nz 400 sweeps are performed and the last 100 configurations
are used to calculate ( i P i ).

where the discontinuity is expected to be larger. Figure 5
shows several results at A, =0.1. In Fig. 5(a) we plot
( i(()

~
) at Ps ——1.5 versus m, in which we see much

greater discontinuity compared with Fig. 4(b). Figure 5(b)
gives plots of time evolutions of ( i (()

i
). Although there

is considerable fluctuation in the data because of the small
lattice size, we can see that two metastable states persist at
m = —0.488. The gap of ( i P i') between these two
states seems to hardly depend on the values of ps', gaps
calculated from the last 5000 configurations of 10000
sweeps are 0.57+0.12 at ps = 1.2, 0.54+0. 10 at pg

——1.5,
and 0.60+0.12 at pg

——1.8. Thus, we come to a very im-
portant conclusion that the radial degrees of freedom
change the nature of the transition in the weak-gauge-
coupling region.

Let us comment on the A, dependence of the transitions.
In the region where pg ( 1.0 our data show that the singu-
larity weakens rapidly as A, grows and finally disappears.
Therefore the Higgs and the confinement phases are
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) of the pure scalar theory vs m~ at
A, =0.4. At each value of m 100 sweeps are performed and the
last 50 configurations are used to calculate ( i P i

). (h) Same
as (a) except that'400 sweeps are done at each value of m and
the last 100 configurations are used to calculate (

i P i
).

IV. DISCUSSIONS

In the previous sections we discussed the phase struc-
ture of the U(l)-lattice-gauge —Higgs theory with radial

analytically connected in the region where A, is large. As
for the Higgs-Coulomb transition, on the other hand, the
singularity seems to survive at large A, , although the hys-
teresis effect is observed only for small values of A, .

Finally, we present the results for the pure scalar
theory, which corresponds to the Ps ——ao case. Figure 6
shows the behavior of ( i P i

) at 3,=0.4 as a function of
m . We see that a weak hysteresis effect observed in Fig.
6(a), where 100 sweeps are done at each value of m, van-
ishes in Fig. 6(b) with 400 sweeps at each point. This
singularity becomes strong as A, decreases, but we did not
see any signal of first-order phase transition in the region
we investigated: A, &0.1. Thus, all the results indicate
that this theory has higher-order phase transitions.

degrees of freedom. Our results for large A, are in good
agreement with those of the radially frozen model. 3

%'hen k is small, on the other hand, the theory undergoes
the first-order Higgs-confinement transitions in the region
where pg &1.0. We also see that the first-order Higgs-
Coulomb transitions, which suggest the realization of the
Coleman-Weinberg mechanism on a lattice, take place for
Pg ) l.0 provided A, is small enough.

Some of our results stated above are in good agreement
with those given by Gerdt, Ilchev, and Mitrjushkin.
They studied the Z~ lattice-gauge —Higgs model with ra-
dial degrees of freedom for the cases Pg

——0.0 and ao. For
large values of X, Z~ is expected to be a good approxima-
tion to U(l). We found that our results at p~=0.0 are
quantitatively consistent with theirs for %=200. We,
however, did not observe any first-order phase transitions
they found at pg ——ce.

Quite interesting is whether the Coleman-Weinberg
mechanism works in non-Abelian lattice-gauge —Higgs
theories. Discussion by Coleman and Weinberg indicates
qualitatively similar results to the Abelian case. However,
only higher-order phase transitions have been observed in
Monte Carlo studies of the radially frozen non-Abelian
models. Recently Gupta and Heller investigated the
SU(3) adjoint Higgs model allowing for radial fluctua-
tions. Their results suggest the existence of the first-order
phase transitions in the region where A, is small. Kiihnelt,
Lang, and Vones, who studied the SU(2) fundamental
Higgs model, found, on the other hand, that the critical
line in the model's phase diagram is second order every-
where. More studies would be necessary to this problem
before we draw a definitive conclusion.

It is also interesting to study the first-order transitions
of gauge-Higgs models in three dimensions. This problem
has been discussed by people who study transitions in su-
perconductors and in liquid crystals. ' ' Halperin, Lu-
bensky, and Ma' argued that some transitions in these
matters should be weakly first order. The estimated size
of the transition is too small in superconductors to be ex-
perimentally detected, but is sizable in liquid crystals. So
far, however, no such transitions are observed in the ex-
periments. Some recent theoretical work' pointed out,
therefore, the existence of the gauge-Higgs models which
escape the mechanism suggested in Ref. 12. Since the ra-
dial mode of the Higgs field had been excluded in these
discussions, Monte Carlo study of our model in three di-
mensions would be worthwhile in order to get a better
understanding in this field.

Phase structure of a lattice-gauge —Higgs model at fi-
nite temperature is another attractive subject. As is well
known, it has much to do with cosmological studies. For
example, the so-called inflationary scenario for the early
universe is based on the existence of a symmetry-restoring
first-order phase transition of such a model. At present
our knowledge of the model's phase structure is not
enough. There is a conjecture by Banks and Rabinovici'
which says that the Abelian fundamental Higgs model
does not undergo a symmetry-restoring phase transition at
finite temperature. They also suggested that, if the Higgs
charge is a multiple of the basic unit, two of the three
phases observed at zero temperature disappear above some
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critical point. Recently Karsch, Seiler, and Stamatescu'
made a Monte Carlo study of the SU(2) adjoint Higgs
model at finite temperature. They established a line of
deconfinement transitions, but found no unambiguous sig-
nal for the symmetry-restoring transition. As they point-
ed out in their paper, one should consider the effect of the
radial degrees of freedom in the Higgs action to get a de-
finitive view of the phase structure.
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