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We present Monte Carlo results for the force between static quarks, calculated on a large
(16 &(32) lattice. A simulation with high statistics allows us to compute expectation values for loop
factors of size up to 8X 8 at several values of P in the transition region. Values and errors are tabu-

lated; a fitting procedure is then used to evaluate the force between static quarks and, in particular,
its asymptotic limit, i.e., the string tension o. We find good agreement with scaling for P) 6, with a
ratio between scale parameter A and V cr approximately equal to 9.6X 10

I. INTRODUCTION

One of the most important goals of quantum chromo-
dynamics, the gauge theory of strong interactions, is to es-
tablish that quarks are permanently bound within had-
rons. In particular, one wants to determine the value of
the string tension, i.e., the asymptotic value taken by the
attractive force between static quarks at very large separa-
tion, relating it to whatever scale parameter one uses in
the renormalization procedure. Once this is achieved, any
other calculable dimensional quantity can be expressed in
terms of the string tension, whose phenomenological value
is approximately (420 MeV) . A determination of the
force between static quarks at nonasymptotic separations
is also of great theoretical and phenomenological interest.

Monte Carlo simulations of lattice gauge systems' con-
stitute a very powerful tool for computing the quantities
mentioned above and several other observables of the
theory of strong interactions. In particular, Monte Carlo
simulations gave the first compelling, albeit numerical,
evidence that non-Abelian gauge theories confine and are,
up to date, the only method to evaluate QCD observables
of nonperturbative nature directly from first principles,
with no intervening phenomenological assumption. Many
Monte Carlo calculations of the string tension o, in units
of the lattice spacing a, and of the ratio A/~o (A being
the lattice scale parameter) have already been published.
However, inconsistencies between various Monte Carlo
(MC) results indicate that the small overall volume of the
lattice and insufficient statistics may induce substantial
errors in the determination of the observables. This is put
in particular evidence by the fact that whereas the early
MC calculations of A/v cr produced numbers of the order
of 6X 10 for this ratio, values as high as 12X 10 were
found necessary to obtain agreement with results for the
lowest masses in the hadronic spectrum, when the latter
calculation was performed on a reasonably large lattice.

Notice that an increase of A by a definite factor implies a
corresponding reduction of the value of the lattice spacing
a at a given value of the coupling parameter P. a, P, and
A are related by

' 51/121
1 8~Pa=—
A 33

exp

(1.1)

in the SU(3) lattice gauge theory, P being in turn related
to the bare coupling constant g by

'(1.2)

Insofar as the string tension can be considered a rather
well-established phenomenological parameter from ha-
dronic spectroscopy, an accurate determination of A/v cr

becomes extremely important, because it provides an abso-
lute scale against which to compare whatever other di-
mensional observable one may be able to calculate. In this
paper we report the results of a calculation of the string
tension and, more generally, of the force between static
quarks on a large lattice (16 &(32) and with high statis-
tics.

Within the scope of a general program to utilize the
computational capabilities of the most powerful modern
vector processors for a variety of Monte Carlo simula-
tions, we have developed a code that can upgrade an
SU(3) link variable in 41 @sec (on a CDC CYBER 205,
for technical details see Ref. 5). The upgrade of the
524288 dynamical variables [i.e., SU(3) matrices] on a
16 )&32 lattice then requires only 21.5 sec and Monte
Carlo simulations involving hundreds or thousands of
iterations through that size lattice become feasible. Thus,
after an equilibration procedure which we describe in the
next section, we have measured expectation values of loop
factors over runs of 1000 iterations at each of 6 values of
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P, equally spaced from 5.6 to 6.6. The results, as well as
our inferences for the force between static quarks and the
string tension, are reported here. The final configurations
of the runs, which are presumed to be well thermalized,
are preserved for further analyses, about which we hope to
report in future publications.

In Sec. II we present our results. These ought to be di-
vided into two categories. Six tables list the values found
for the expectation values of the loop factors for loops up
to 8g 8 and the corresponding statistical errors, as well as
some suitable combinations of logarithms of the above,
which are useful to determine the force, and correspond-
ing errors. That much of our results is of rather objective
nature. We would be surprised if any correct Monte Car-
lo simulation on a lattice of size equal to or larger than
the one we have been considering produced results incon-
sistent with those we quote in the tables. The estimate of
the force and of the string tension from the expectation
values of loop factors is instead more subjective, because
in either case one must extrapolate to infinite-size quanti-
ties, which the Monte Carlo simulation can give only for
finite size. We apply an extrapolation procedure which
appears to give sensible results, but we acknowledge that
numbers differing by more than statistical fluctuations
could be obtained by researchers using a different method
of extrapolation. Section III is devoted to a discussion of
programming details and of the error analysis. A few
concluding remarks are presented in Sec. IV.

II. RESULTS

~x ik =
3 Re*rUx ij) )

The action is given by

S=p g (1—w„"I&) .
x)p (v

(2.2)

(2.3)

We further represent by m~j- the average value of m";j
over a definite gauge field configuration and by O'J the
average value over spatial directions of m~j".

w/,
'"=—g w„"";, , (2.4)

l8ij =
6 ~ l8&j

IMV

P+V
P, V(3

(2.5)

N being the number of points in the lattice. (For techni-
cal reasons, which wi11 be explained in Sec. III, we limit
our averages to loops having both sides in spatial direc-

It is useful to establish our notation. We denote lattice
sites by vectors x with integer-valued components, direc-
tions by superscripts p, v, , and displacements of one lat-
tice spacing in the p direction by p, . The dynamical vari-
ables are SU(3) matrices U„" assigned to the oriented links,
x to x+P, of the lattice. We define transport operators
for rectangular loops of size ij in the p, v plane:

Up =U'. . . U' Up' - Up'»ij x x+(j —1)v x+j v x+(i —1)p+j v

&&
O' O' U" U" (2 1)x+ip+(j —1)v x +ip x +(i —1)p,

and Wilson loop factors

tions. ) Finally, angular brackets will represent averages
taken over the many configurations generated during a
Monte Carlo simulation at a definite value of P. Thus,
(8';J) will denote the numerical result obtained in our
calculation, which, of course, is the best approximation
we can achieve to the correct quantum-mechanical expec-
tation value of the Wilson loop factor itself.

The Monte Carlo simulation has been done as follows.
1000 iterations were performed on a lattice of 16 points
at P=5.6 working from a cold start with all U„"=I, ob-
taining a final configuration C~. CI was used as the ini-
tial configuration for a run of 500 iterations at P=5.8,
obtaining a final configuration C2, which was then used
as the initial configuration for the simulation at P=6.0,
etc. In this way, 6 configurations, CI, . . . , C6, corre-
sponding to P=S.6,5.8, 6.0, 6.2, 6.4, 6.6, thermalized by at
least 500 MC iterations plus those performed at the lower
P values, were generated for a 16 lattice. At this point
configurations CI, . . . , C6 on a 16 X32 lattice were ob-
tained by duplicating the configurations C1, . . . , C6 in
the time directions. 100 further thermalizing iterations
were made at each value of P, followed by 1000 iterations
in the course of which all Wilson loop factors correspond-
ing to rectangles with both sides in the spatial direction
and size up to 8&(8 were measured every tenth iteration.
Summarizing, at each value of P, 1100 sweeps of the
16 &(32 lattice have been made, starting from the already
thermalized configurations C1, . . . , C6, and Wilson loop
factors have been measured over 100 configurations
separated by 10 MC iterations each.

Let us comment briefly on our procedure. The motiva-
tion for considering a 16 )&32 lattice is in our plan to use
a few among the last configurations obtained during the
long runs as well-thermalized configurations for studies of
quark propagation and of the hadronic spectrum (in the
quenched approximation). Large extents of the lattice in
the time direction are needed for a reliable estimate of the
masses. For this reason we have measured the Wilson
loop factors on a 16 )&32 lattice, rather than the 16 lat-
tice, which would have been adequate. One might object
that the full lattice will not be completely thermalized
during the first iterations of the long runs and that corre-
lations induced by the duplication of the smaller lattice
may survive after the first 100 discarded iterations. But
this cannot certainly affect the values for rectangular
loops with both sides in the spatial direction (and indeed
should not even affect the loops extending in the time
direction, with a length smaller than half the original size;
our restriction to spatial loops was determined mainly by
programming considerations, see Sec. III). At worse, the
duplication might entail some loss of statistics, which
however is amply compensated by the final output of
well-thermalized configurations on a lattice of large extent
in time.

The results of our measurements of the Wilson loop
factors are reproduced in the upper triangular part of
Tables I to VI. The errors quoted are given by

((dw„)')
X,—1
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TABLE I. Results from the Monte Carlo simulation for the average plaquette action, the Wilson loop factors, and the X ratios,
with P=5.6.

AV. S=0.475197 (16)
W(I J) 10 6

3 4.

451 343
(407)

524 822
(58)

x

293 433
(77)

104470
(73)

166 319
(74)

39 370
(53)

94 546
(62)

15 114
(39)

53 793
(53)

5845
(32)

30 594
(45)

2303
(30)

17400
(40)

898
(34)

9913
(39)

350
(33)

408 154
(699)

349 055
(3601)

10465
(46)

2913
(33)

830
(29)

260
(26)

113
(30)

65
(25)

392 578
(1594)

321 588
(10376)

x
272 280

x
617

(51 027) (36)x
x

108
(26)

54
(25)

15
(30)

—1

(27)

386 122
(4337)

305 054
(29 326)

485 863
(237015)

x
—942 491 x

(881 527)
49

(37)

—4
(29)

16
(28)

18
(29)

367134
(10067)

377 741
(30 806)

231 437
(95 763)

—114035
(246 419)

—468 470
(492 532)

446 434
(2 005 278)

—63
(¹2)

.x

—4
(27)

x 14
x (35)x

47
(26)

12
(28)

379 357
(75 148)

—379 153
(387 743)

—12
(35)

5

&(I,J) 10~~6

where X, (=100) is the total number of configurations
used for the calculation and d WJ is defined as

d W,q ——W,J
—( W,J ) . (2.6)

The lower triangular parts of the tables give the values of
the XJ factors, defined as

(W,, &&W, „,) (2.7)X;J.———ln

for i,j )2. No number is quoted where any of the ( Wii )
on the right-hand side of Eq. (2.7) turned out to be nega-
tive, which can only be due to statistical fluctuations. The
values of XJ are tabulated for the convenience of the
reader, and also because the computation of the statistical
errors (see Sec. III) required the values of the correlations
(d Wizd W; 1 ) which we have measured, but are too
numerous to be put in print. The values for the mean-
plaquette action, averaged over all 1000 sweeps and all
directions (including the temporal one), are also repro-
duced in the tables.

We turn our attention now to the determination of the
force between static quarks. (For a recent MC study of
the interquark potential, on a smaller lattice, see Ref. 6.)

The potential between sources in the 3 and 3 representa-
tion of SU(3) at a separation r =ja (a being the lattice
spacing) is given by

&(W;, ))
V(r) = ——lim ln ((W;, )) (2.S)

11 1
«W'»((W-1-))
(&W; „)&«W;, , »

which can be interpreted as the force F between static
quarks at a separation r' somewhere between r —a and a.
If V were of a purely Coulombic form, r' would be given
by the geometric mean

r'=[r(r —a)]'i (2.9)

(We use, in this and the following equation, double angu-
lar brackets ( ( ) ) to denote the true quantum-
mechanical averages, as opposed to our approximations
( ).) V(r) contains a self-energy contribution; this dis-
appears in the finite difference

V(r) V(r —a)—
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TABLE II. Same as in Table I but with P=5.8.

AV. S=0.432265 (13)
~(I,J)' 10"6

4

567 638
(52)

349 098
(66)

218 616
(71)

137 508
(63)

86 586
(59)

54 523
(53)

34 353
(46)

21 602
(41)

x
321 658 x 155 643

(268) x (72)
74 519

(59)
36 421

(48)
17 921

(42)
8855

(34)
4358

(32)
2152

(33)

3 268 469
(409)

x
194777 x 29 364

(1175) x (54)
12 102

(37)
5054

(35) (28)
907
(30)

390
(29)

252 269
(701)

170539
(2038)

127 848
(8948)

x 4389
(42)

x

1592
(31)

601
(27)

236
(29)

100
(27)

246 610
(1370)

163 938
(5424)

141 131
(17318)

x
48 936 x 550

(70133) x (3 )

159
(26)

55
(28)

38
(28)

242 461
(2395)

177 749
(11361)

90458
(43 236)

269 404
(161741)

x
1461054

(3 484 590) x (37)

—18
(26)

31
(29)

247 186
(5607)

125 513
(29453)

99 973
(111991)

130671
(S21 597)

x
29

(32)x

31
(26)

241 718
(10971)

138073
(69098)

19474
(279 263)

—511 552
(843 721)

127 378
(2 247 325)

30
08)

5
X(I J) 10* 6

and, for definiteness, we shall always use such a value as
the argument for F. Thus, an approximation for F is
given by

F(r'=[j (j —I)]'~ a)= — lim XJ .
Q i~Do

(2.10)

The difficulty in using such a formula to derive F is ap-
parent from the tables: as i and j grow large, the corre-
sponding ( WJ ) become smaller and smaller, while the
magnitude of the statistical errors does not change; then
the XJ becomes worse and worse determined. The situa-
tion becomes particularly bad if one tries to also take large
j, as needed for an evaluation of the string tension
o =lim, F(r).

To achieve a reasonable estimate of F and o one must
strike a balance, finding a way to use the information con-
tained in X~~ both for large i and j, where the value of X
is, in principle, closer to the quantities one wishes to cal-
culate, and for smaller i and j, where the precision in the
determination of X is much larger, but where the relation
between X and F is less direct. This requires some
method of extrapolation, which will necessarily involve
subjective criteria. We proceed as follows. We notice that

(2.11)

for small i. The simplest possible interpolation for XIJ
consists in assuming a superposition of a constant term
and a term with a behavior as in Eq. (2.11):

CJ
XgJ 'bJ + 0

i (i —1)
(2.12)

For all values of P and j we have therefore plotted the
values of XJ(P) as functions of the variable
x = I/i (i —1) and fit the points in terms of a straight line
b +cx. The intercept bJ was then taken to give the extra-
polation of XJ for infinite i, i.e., the force I at separation
a [j(j—I)]'~2. Figure 1 illustrates our procedure for a
definite value of P (=6.2). The upper part shows the fits
to the points X,J at fixed j ranging from 2 to 8. In the
bottom part the intercepts bJ thus obtained have been

if, in Eq. (2.10), the roles of i and j are reversed and, in-
stead of taking i &&j, one considers i &&j (provided j is
large enough), the same formula will give F at separation
r'=[i (i —I)]'~2a. Assuming a Coulombic behavior for
small r', one expects then a behavior
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TABLE III. Same as in Table I but with P= 6.0.
A&. S=0.406328 (11)
W(I,J) 10 6

265 482
(231)

593 638
(38)x
X

x

383 539
(55)

190020
X

x

252 592
(60)

101 256
(65)

167 161
(64)

55 181
(54)

110746
(62)

30 280
(45)

73 386
(58)

16649
(39)

48 650
(51)

9152
(34)

32244
(46)

5054
(33)

211 810
(294)

141 116
(725)

X 46 855
(63)

x

22 688
(46)

11 166
(39)

5522
(32)

2723
(31)

1353
(31)

194212
(430)

188411
(755)

118212
(1229)

108 821
(2542)

94 023
(3551)

78 577
(55 512)

x 10QQQ

X

58 604
(20 395)

X

4550
(32)

1952
X (42)x

X

2044
(27)

8QQ

(25)

966
(28)

385
(26)

441
(25)

147
(24)

186603
(1496)

105 988
(4378)

95 829
(12962)

92 112
(36 307)

—139889
(108900)

377
X (38)

X

132
(26)

31
(27)

187 343
(2276)

108499
(8856)

42 349
(25 12Q)

—17218
(74 867)

318467
(204 616)

—536 87Q

(444 336)
79

x (34)

—7
(26)

182 387
(4360)

1Q5 579
(19927)

86 012
(56 860)

178 599
(175077)

5

X(IJ) 10 6

468 804
(863 928)

—39
(34)

TABLE IV. Same as in Table I but with P= 6.2.

AV. S=0.386286 (10)
$Y(I,J) 10 6

4

613653

x (41)

233 023
(184)

410 181
(60)

217 184
(79)

279 506
(69)

123 485
(71).

191 382
(67)

71 680
(58)

131237
(63)

41 914
(47)

90000
(58)

24 573
{41)

61 733
(51)

14431
(37)

42 349
(49)

8441
(32)

181056
(226)

112395
(702)

62 746
(72)

33 212
(55)

17 838
(42)

9639
(35)

5224
(32)

2818
(31)

165 148
(349)

92 292
(774)

75 193
(2303)

16 306
(53)

8254
(35)

4208
(30)

2148
(30)

1119
(27)

159325
(509)

84 978
(1378)

59 285
(3367)

46 596
{10243)

3988
(44)

1923
(31)

940
(28) (28)

156786
(867)

155 237
(1554)

81 559
(2737)

80 366
(5220)

58 138
(7062)

59 699
(13046)

55 414
(14357)

44062
(32 513)

91 759
(47 439)

—57 731
(64 332)

846
(41)

x
—142 981

(163561) x

438
(28)

262
(34)

225
(26)

131
(26)

159444
(2556)

80 843
(9322)

35 194
(25 257)

97 525
(66 881)

—83 520
(137338)

22 133
(249 324)

x x—317669
(578 429) X

91
(41)

5
X(IJ) 10 6
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TABLE V. Same as in Table I but with p=6.4.

AV, S=0.369319 (9)
W(I J) 10 *6

4

630692
x (35)

432 924
(46)

302 761
(51)

212 709
(56)

149 652
(55)

105 306
(51)

74 125
(49)

52 170
(46)

210 197
(166)

240 834
(60)

143 377
(57)

87 069
(52)

53 214
(46)

32 608
(39)

19986
(36)

12 274
(34)

161015
(181)

97 126
(450)

x 77 457
x (62)

43 534
(50)

24 844
(43)

14239
(33)

8164
(29)

4702
(32)

145 762
(253)

140 755
(430)

77 407
(574)

68 552
(1043)

56 594
(1605)

52 378
(2034)

23 121
x (54)

x
x

27 232
(5957)

12 522
(37)

6599
(39)

6873
(35)

3474
(27)

3833
(32)

1894
(27)

2093
(28)

1014
(27)

138 340
(717)

66 819
(1691)

43 261
(4101)

41 758
(8549)

35 254
(21 272)

1765
(35)

950
(30)

488
(28)

138 372
(1174)

136286
(1686)

66 811
(2871)

64 179
(5401)

27 678
(7205)

53 065
(13372)

22 383
(14853)

20 679
(26 669)

5

X(I,J) 10* 6

12 847
(30953)

42 215
(61 470)

133003
(101 161)

102 117
(147 118)

—76085
(438 205)

448
(42)

x

207
(28)

104
(36)

TABLE VI. Same as in Table I but with P=6.6.
AV. S=0.354327 (9)
W'(I J) 10 6

4

645 625
(37)

453 127
(52)

323 889
(59)

232 537
(64)

167 160
(65)

120214
(65)

86 458
(62)

62 190
(58)

192 622
(140)

262 304
(67)

162 059
(66)

101 992
(58)

64 554
(53)

40987
(46)

26007
(39)

16535
(35)

145 773
(167)

86 346
(341)

91 842
(65)

53 945
{52)

32 111
(42)

19284
(41)

11551
(37)

6920
(35)

131717
(193)

69 036
(429)

47 202
(1134)

30 225
(48)

17 226
{37)

9950
(34)

5702
(33)

3274
(30)

127 296
(366)

61 388
(711)

43 481
(1475)

30 365
(4251)

9524
(43)

5337
(32)

2993
(28)

1692
(30)

124 568
(610)

125 285
(846)

55 638
(1236)

57 600
(2116)

38 987
(2589)

44229
(4990)

30 310
(5368)

21 568
(8916)

31 222
(16377)

22 989
(19597)

2898
(41)

x
x

11046
(51 449) x

1589
(30)

861
(39)

919
(28)

484
(28)

123 428
(1381)

59 539
(3529)

42 355
(7358)

15490
(16761)

—23 140
(32 411)

28 335
(67 846)

x
—68956
(151285)

292
(40)
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with

4a(r)
3I'

(2.13)

the scaling formula. The broken lines represent the scal-
ing behavior obtained with 0/A =10793, i.e., the average
of the values of P=6.0, 6.2, and 6.4. This corresponds to
a ratio A/~o. =9.63X10 . The fact that the point for
P=6.6 lies slightly above the scaling curve may be ex-
plained by the maximum separation being still too small
to put into evidence the asymptotic behavior of the force.
But for the points at P= 5.6 and 5.8 the maximum separa-
tion is certainly larger than the distance at which the
force should become constant (see next figures) and one
concludes from our results that either one is still outside
the scaling domain, or that higher-order corrections to the
asymptotic scaling behavior are important.

In Fig. 4 all the values found for the force are plotted in
physical units of I'/cr and r~cr, assuming for the lattice
spacing a (P) the scaling behavior of Eq. (2.1) and for the
ratio A/V o the number quoted above. While the points
for /3) 6 appear to lie on a universal curve, confirming
scaling, the results for P=5.6 and 5.8 are too high. This
agrees with the deviation from the asymptotic behavior of
cr discussed in connection with Fig. 3. However, if one re-
scales the numbers obtained at f3=5.6 and 5.8 not by the
asymptotic scaling relation, but assuming for oa the re-
sults of the numerical simulation, one obtains the graph
reproduced in Fig. S. Now all of the points agree rather
well with a universal function I' =F(o ).

The solid line in Fig. 5 represents the expected asymp-
totically free behavior at short distances

8 —)',
(

p=56 o

5.8 ~

6.0 +

6.2
6.4 o

x

b

The scale parameter A, appearing in Eq. (2.14) can be
theoretically related to the lattice scale parameter and
one finds

A, =30.19 . (2.15)

r cr

FIG. 5. Same as in Fig. 4, but with a rescaling according to
the MC data for the string tension at P=5.6 and 5.8. The line
represents the expected short-distance behavior.

a(r)= [ln(A, r) ~+ I",, lnln(A, r) ]
11

p-„56 o

5.8 ~

+

6.2 ~
6.4

x

(2.14) With our value for A/v 0. this equation converts into

A, =0.29V o,
which is the value we have used in drawing the curve.
The agreement between our data and the expected short-
distance behavior is remarkable. One scarcely needs to
emphasize that no adjustable parameter enters in the
determination of the theoretical curve. The consistency
we find at short distances gives strong support to the
correctness of the numerical analysis.

b

FIG. 4. Force versus separation, in physical units, assuming
the asymptotic scaling formula for the relation between lattice
spacing and string tension.

III. COMPUTATIONAL DETAILS

The whole calculation has been done with the CDC
CYBER 205 at ICS, Fort Collins, Colorado. The code
has been written so as to take full advantage of the vector-
ized capability of that mainframe. The characteristics of
the program for the Monte Carlo simulation have been
presented elsewhere. About the calculation of the Wilson
loop factors, let us mention here that our data structure is
organized into sets corresponding to definite values of the
time coordinate (time-slicing) which are input and output
to magnetic disc as required. Thus, for the MC upgrad-
ing, U" variables corresponding to three consecutive
values (say t —1, t, and t + 1, if t is the time coordinate of
the variables being upgraded) are at any moment present
in fast memory, while the variables with t +2 and t —2
are input and output, respectively. Such data structure
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makes it much less demanding, insofar as input/output
operations and memory requirements are concerned, to
calculate the loop factors for rectangles with both sides
spacelike, than for rectangles extending in the time direc-
tion. Thus, we have limited our averages to spatial loop
factors.

The calculational procedure is then straightforward: at
the completion of every tenth MC iteration, in a loop over
time all hyperplanes at t =const are brought into fast
memory. As a first step all the transport factors corre-
sponding to the loop sides, i.e., to segments of length up
to 8, are calculated and stored in fast memory. In a sub-
sequent step the four transport factors associated with the
loops of all possible sizes up to 8&8 are combined into
the expression for w"",J. All operations are done in fully
vectorized fashion, with vector length equal to the (three-
dimensional) volume of the lattice, i.e., 16 . We have used
32-bit arithmetic, as in the MC simulation. As mentioned
in Ref. 5, the effects of round-off errors are brought well
below the uncertainty due to statistical fluctuation by re-
normalizing the U" matrices every few iterations (in our
case 5). In particular, they are renormalized immediately

before the calculation of the loop factors begins. Also,
one can easily convince onself that the effect of round-off
errors in the calculation of & 8;.J ) cannot produce any sig-
nificant loss of precision. Not content with the argument,
we checked this point by calculating the averages over a
few configurations in 64-bit arithmetic, and we found
values for & WJ ) never differing from those evaluated in
32-bit arithmetic by more than 10 (i.e., by one unit in
the least significant digit in the tables). The CP time for
the calculation of all (spatial) loop factors (up to 8 X 8) on
a definite configuration is 79 sec. In the course of the up-
grading, the exact value of the total action is constantly
recomputed, by adding to the correct sum (initialized
every few iterations) the variation induced by the change
of the individual link variables.

A question which arises in most Monte Carlo simula-
tions is how often one should measure the observables.
Trying to find some guidance, we evaluated the autocorre-
lation of the individual loop factors. Namely, if w„"';~' '

represents the value of w„"';J [see Eqs. (2.1) and (2.2)] at
the kth iteration, the autocorrelation p,z(l, k) is defined as

pj(l, k) =

(w„"",t' '
&w;, ) )(w—„";,"+"

&w;,—) )

p, v&3

Npv(k)
w;,

2 NI wk+I)
w;,

2 1/2 . (3.1)

X
p, v&3

X
p, v&3

Representative values for this quantity, evaluated over ten
consecutive sweeps of the lattice, are reproduced in Table
VII. One sees that the Wilson factors of loops of large
size have negligible autocorrelation even after a single
pass through the lattice, but that the factors for smaller
loops remain substantially autocorrelated in the course of
several iterations. To include into our sum quantities
with some degree of statistical independence, we decided
to separate the measurements of the Wilson loops by 10
MC upgradings. This also represents a reasonable balance
between the amounts of CP time dedicated to the upgrad-
ing and to the measurements. Notice however that our re-
sults for the autocorrelations refer to fluctuations of the
local quantities; the lattice average O'J might still exhibit
long-range correlations. A statistics of 100 measurements
would not be sufficient to put these autocorrelations, if
indeed present, into evidence. In any event, the expecta-
tion is that, because the simulation is performed away
from the possible critical points (including the deconfin-
ing transition, with our size lattice), correlations with a
range exceeding a few hundred MC iterations (and thus
comparable to the duration of our simulation) should be
highly suppressed and would not introduce applicable bias
on the results.

In the course of the calculation we accumulated all of
the products 8'z 8;J . The final sums have been used for
the analysis of the statistical errors, as follows. Let us as-
sume that the values found for the 8'J. have a Gaussian

distribution around the correct, quantum-mechanical
averages « WJ ) ), but that there is no statistical correla-
tion among the errors

dW,, —= W,, —«W,, )) (3.2)

found in the course of different measurements. Let us
also denote the error of the final average by

d& W;, )—= & W;, ) —« W;, )), (3.3)

(3.4)

N, being the total number of measurements. (Let us re-
call that we use simple angular brackets to denote aver-
ages over measurements, e.g. ,

The quantities ( d & WJ )d & WJ ) )'~ are the numbers quot-
ed as statistical errors in the measurement of Wilson loop
factors in Tables I to VI.

About the X ratios, an estimate of the error can be ob-

and by overbars averages taken over the above-mentioned
Gaussian distribution. Under these assumptions the best
estimate for the quantities d & WJ )dW; J ) is given by

d & W;J )d & 8'; J ) = ( & 8';J W; t ) —
& Wgj ) & W; t ) ),
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TABLE VII. Autocorrelation between square Wilson loops. Correlations are computed between all

the square loops, at a given size, corresponding to an initial configuration and those corresponding to
another configuration created by applying 1, 2, 4, 6, 8, and 10 Monte Carlo sweeps to the original con-

figuration. The values are similar for all P values. Presented here are the correlation values for P=6.0
and P=6.6.

1

2
4
6
8

10

0.343
0.138
0.037
0.009
0.004
0.003

0.304
0.126
0.038
0.014
0.007
0.004

0.200
0.070
0.017
0.008
0.003
0.007

0.113
0.029
0.004
0.004
0.000
0.002

P=6.0
0.058
0.009

—0.002
0.000

—0.001
0.003

0.036
0.006
0.002

—0.002
0.003
0.001

0.020
0.000
0.000

—0.002
0.001

—0.002

0.010
0.002
0.002
0.000
0.001

—0.001

1

2
4
6
8

10

0.309
0.115
0.022
0.007
0.001
0.000

0.301 0.231
0.117 0.085
0.029 0.026
0.012 0.012
0.005 0.007
0.003 0.003

0.144
0.044
0.011
0.002
0.000
0.000

p=6. 6
0.085
0.019
0.006
0.002
0.000
0.000

0.047
0.011

—0.002
0.002
0.002
0.000

0.029
0.006
0.000
0.001
0.000
0.000

0.016
0.001

—0.001
—0.002
—0.002

0.000

tained assuming that the errors in the Wilson loop factors
are so small that a linear expansion can be made. One
finds then

X's with negative values have been effectively removed
from the fits by assigning them an arbitrarily large error.
Both bJ and c& are given by expressions linear in the X,z,
let these be of the form

(3.5) bj ——QB~,X,J& cj ——g Ci, X,J . (3.7)

where a, b represent pairs of indices tij I and the sum runs
over a, b =Ii jI, Ii —1 jj, Ii j—1},fi —1 j —lI. The
numbers I (dX~& ) I

'i, with the averages ( d 8', ) (d Wb ) as
in Eq. (3.4), are reproduced in the tables as statistical er-

rors for the X ratios. These errors thus do take into ac-
count correlations between loop factors for loops of dif-
ferent size; of course, the expansion leading to Eq. (3.5)
breaks down if the error for X,J turns out comparable in

magnitude to X,J- itself. In such cases the quoted errors
have just indicative value. Negative values for the loop
factors can only be produced by statistical fluctuations; if
any of the W;i in the formula for Xj is negative, the ex-

pression does not make sense and four asterisks appear in
the corresponding entry in the tables.

The fitting procedure leading to the estimate of the
force and of the string tension has been done minimizing
with respect to bi and ci the sum of the squared devia-
tions from the line

X,J =b~+cj ii (i —1),
weighted by the corresponding errors in I;J, i.e., minimiz-
ing the form

2

(3.6)

Then, assuming again a Gaussian distribution for the er-
rors dXJ. and neglecting this time correlations between
different Xii, one estimates errors

(db) ) = g BJ, (dXq )

(3.8)

(dc') = g Ci, (dX;i)

We used Eq. (3.8) to determine the errors in the force and
string tension. As we have previously emphasized, these
errors reflect purely statistical fluctuations, and do not
take into account possible biases introduced by the extra-
polation procedure.

IV. CONCLUSIONS

Our results constitute, we believe, a determination of
the force among static quarks and of the string tension,
not affected, because of the large size of the lattice, by
finite-volume effects. The results are self-consistent, in
the sense that the extrapolations to infinite time (i~&x& )

lead to values of the force in good agreement, at any fixed
p, with a Coulombic-plus-constant behavior and, more-
over, for almost all of the p but the last (p=6.6), the
points at largest separation always fall .in the domain
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where the constant behavior has already set in (this can be
seen from Figs. 4 and 5).

The string tension appears to scale in agreement with
the expected asymptotic-freedom behavior for P) 6. The
corresponding ratio A/v cr is larger than that found in the
early MC studies of the string tension, which were limited
by severe finite-size effects, and a little smaller than what
would be needed to obtain good agreement with experi-
mental values in the most recent calculations of the spec-
trum. However, the latter are also almost certainly affect-
ed by several approximations, including the one of
neglecting internal fermionic loops, and thus the remain-
ing discrepancy does not represent an irreconcilable incon-
sistency of the theory.

The results at P=5.6 and 5.8 are definitely outside the
domain of asymptotic scaling. It is interesting that, if the
scale of forces and distances is adapted to the measured
values of o, the data for the force lie on the universal
curve also at these two lowest values for P. This might
indicate that scaling has already set in, although higher-
order corrections are relevant in the expression for the P
function. This might also explain why determination of
observables done at values of f3 smaller than 6 seem in
better agreement with a lower value for A/V cr (closer to
the original determination), than the one proposed here or
the even larger one suggested by some studies of the spec-
trum.

Another noticeable point is that, as has been remarked
already, the approach to the asymptotic scaling curve is
from above. This implies some activity in the curve for o.

as a function of P in the region from 5 to 6, which may be
attributed to the presence of a neighboring singularity in
an extended coupling-constant space, where the action
also contains a term in the adjoint representation of SU(3).
It would be interesting to have accurate results of the
string tension along lines in this space that proceed far-
ther away from the singularity. We have adapted our
code to the simulation of a system with both terms (fun-
damental and adjoint representations) in the action, and
shall report about the results in a future publication.

Note added. It has been pointed out to us that it would
be valuable to have an estimate of the error in our deter-
mination of the ratio A/~o. The problem in evaluating
such error is of course that, while we can quantify the er-
rors due to statistical fluctuations and have done so, there
are larger margins of uncertainty introduced by the neces-

sary extrapolation procedures, which cannot be unambigu-
ously identified. Thus, for instance, the statistical errors
induce an uncertainty

A/V cr = (9.84+0.08) && 10

for the ratio obtained at P=6.2, the lowest point in the
bottom part of Fig. 3. This error, indicated by the small
error bars in the same figure, is however almost certainly
smaller than the error due to the fact that even the points
at 6, 6.2., and 6.4 follow only approximately the scaling
curve. A more realistic estimate of the error may be ob-
tained comparing the value quoted above, i.e.,
9.84&(10, with the value we obtained averaging the
data at P=6, 6.2, and 6.4, namely, 9.63&&10 . In a
study of universality, which will be published shortly, we
find, among other things, that the graphs for the force
versus separation in physical units cannot discriminate be-
tween those two values for A/~cr Th.us it would be sen-
sible to allow for an error h(A/V o ) of at least
0.21X 10 . The situation becomes even less clear if one
tries to estimate the true error in A/v o., i.e., not the local
degree of uncertainty in the region P-6, but rather the
difference between the value presently determined and the
theoretical value that would follow from an exact calcula-
tion of cr, extrapolated to the continuum limit P= ao. In
absence of an exact calculation of o (whose availability,
incidentally, would detract much from the interest of the
present work) the best estimate of such error comes from
the comparison of numerical and theoretical values for
the ratios of scales following from different choices of the
action. In the study of universality mentioned above we
find that those two ratios differ by about 15% for a
specific choice of actions.
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