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The mixed U{1) lattice gauge theory is analyzed by the mean-field technique including 1/d
corrections, d being the dimension of the lattice. In order to apply the saddle-point approximation
required in the method, the convenience of considering different unconstrained degrees of freedom
for each power of the link variables in the action is shown. The phase diagram given by Monte Car-
lo simulations is reproduced with high accuracy for d =4 and 5. Generalizations to other actions
and gauge groups are also d)scussed.

I. INTRODUCTION

Lattice gauge theories' provide a powerful approach to
the study of nonperturbative physics in QCD such as the
confinement hypothesis. By Monte Carlo simulations the
hadronic spectrum, deconfinement temperatures, glue-
ball masses, " as well as many important physical magni-
tudes have been estimated. Nevertheless, it would be very
useful to develop analytical techniques for the calculation
of these quantities. Attempts in this direction are the
mean-field methods, variational techniques in both Ham-
iltonian ' and Lagrangian formulations, finite lattice ex-
trapolations, renormalization group, ' and series expan-
sions.

Recently, the gauge-invariant version of the mean-field
technique has been appliedi2 —is to some models with
great success. This approach has many advantages. Sys-
tematic corrections can be considered and Elitzur's
theorem' is satisfied, i.e., the magnetization is zero. The
phase diagrams given by Monte Carlo simulations are well
reproduced despite the fact that the predicted transitions
are always of first order.

In this paper we apply this technique to the study of a
mixed U(1) action' ' in d=4 and 5 dimensions including
1/d corrections as presented in Ref. 13. Actions of the
mixed type have been studied very carefully for many
gauge groups. We prove that in order to apply the
saddle-point technique (Sec. III) it is necessary to define
different unconstrained degrees of freedom for any power
of the link variable present in the action. In general, for
any Abelian or non-Abelian group a different variable
must be introduced for each character considered. In this
way at zeroth order the naive mean-field results are repro-
duced and the one-loop correction vanishes when the di-
mension equals infinity. Although this fact is well known
in statistical physics' i.t has not been taken into account
in lattice gauge theories for actions where the variables are
not linear. For this reason we believe that it is useful to
develop one example in detail. In this way we reproduce
with high accuracy the phase diagram given by Monte
Carlo simulations.

The organization of the paper is as follows. In Sec. II
we briefly review the main features of the U(1) mixed

model. Section III is devoted to the zeroth-order calcula-
tion. The 1/d corrections are evaluated in detail in Sec.
IV while in Sec. V the numerical results are given. We
end this paper with a short discussion in Sec. VI.

II. U(1) MIXED ACTION

Mixed actions are defined by the combination of several
characters of the group elements, on each plaquette of the
lattice. They have been widely studied in order to verify
the universality hypothesis, i.e., the continuum physics
must not depend on fine details on the lattice. They have,
in general, a rich and interesting phase structure, and an
important test for any proposed analytical method is its
capability to reproduce it.

The U(1) mixed action considered in this paper is given
by the action

Up+ U~ ~ p +Up

p1aq plaq

where Uz is a standard plaquette variable belonging to the
U(1) group defined on a hypercubical d-dimensional lat-
tice. This action has been analyzed by Monte Carlo simu-
lations, ' '8 the renormalization group, microcanonical
simulation, and analytical arguments. ' The statistical
averages are obtained through the partition function

Z = g f dU~ exp(S),
1inks

where d UI is the normalized gauge-invariant measure.
As was stated in Ref. 17 the study of this model is very

important to verify the nonconfinement characteristic of
QED in the continuum limit for d=4. The fact that with
the Wilson action a deconfining transition appears is not
enough evidence because in an extended parameter space
an analytical window" may be found.

For completeness we review here the main features of
the theory following Ref. 17. The model has many non-
trivial limits. For both axes we recover the standard U(1)

odel with a second-order phase transition at P„
y, =1.005 (d=4). If y goes to infinity the link vari-
ables are constrained to take only two values +1 so we ob-
tain a Z(2) gauge theory with a first-order phase transi-
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tion at P, =0.4407 (d=4).2

Equation (1) has many interesting symmetries. Denot-
ing a link variable as U&(r), where r =(xp,xl, x2,x3) is a
lattice site and lM =0,1,2,3 are lattice directions (d =4), we
consider the transformation

Up(r)~ Up(r)

WU&(r) if x, is odd,
Ul r —+ '

Ul(r) if x& is even,

WU2(r) if x, +x2 is odd,
U2(r)~ '

U2(r) if x, +x2 is even,

WU3 (r) if x
& +x2+x3 is odd

U2(r) U2(r) if x~+x2+x3 is even,

where W is a factor which appears an odd number of
times for each plaquette. Taking 8'= —1 and changing
P~ —P the action remains unaltered and therefore the di-
agram is symmetric under a reflection with respect to the

y axis. Analogously, when 8'=exp(iver/2) and P=O we
may change y~ —y without changing S. This symmetry
implies that for y= —1.005 a phase transition is present.
This last phase may be easily identified if we look for a
nontrivial minimum of the plaquette action

S~ =P cos8~+y cos28~

in y & O. This minimum exists and is given by

FIG. 1. Schematic representation of the U(1) extended phase
diagram. An explanation of the different phases (I—IV) is given
in Sec. II.

cosO Nl

and it can be easily proved that it becomes stable below
y+P/4=0. So the phase transition at @&0 may be
thought of as a change in the ground state of the theory.

The complete phase diagram obtained by Monte Carlo
simulations' is given schematically in Fig. I. The corre-
sponding one' for d =5 is qualitatively equivalent.
Phases I and II are the usual confining and nonconfining
ones in QED. Phase III is a continuation for finite y of
the confining Z(2) phase. Finally, phase IV has "antifer-
romagnetic" characteristics due to its nontrivial ground
state.

III. MEAN-FIELD APPROXIMATION
(ZEROTH ORDER)

The naive mean-field approximation in lattice gauge
theories is obtained by replacing the link variables by their

I

average ( U) on every link of the lattice except one. By a
self-consistency equation, (U) can be found. This ap-
proach forgets Elitzur's theorem which demands that
( U) =0 due to its non-gauge-invariant character. It has
been shown' that in order to satisfy this point the mean-
field approach must be thought of as a saddle-point ap-
proximation to the partition function written in uncon-
strained variables. The important detail in the present
model Eq. (1) is that it is necessary to define different un-
constrained variables for U and U if we want to get the
naive mean field as zeroth order. Indeed this is a conse-
quence of the trivial fact that (U )&(U) . In Ref. 26
this detail has also been mentioned in the context of a
Z(4) extended gauge model. The calculations are as fol-
low's.

In Eq. (2) we introduce four new variables in each link
of the lattice through the identity

1= ~ f+ dUlldp2!dUlldU2l~[Re(Ul) Ulll~[™(UI) U21]~[Re(Ul ) Ul/]~[1m(Ul ) U2l]
links

Using the expansion

5(x)= — -e'"~,+ 00

2'
the partition function can be written as

+ oo CifVag ~Val ~0!a~ ~0!a

v v v v277 277 277 2&

(5)
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Serf=S(u~v) —I g {vaiaaE+vaiaai)+ g E0(aaE~aaE) ~

Haks links

Up +U@ Up+0 pS(u, u)=P g -+y g
P18q pj.Rq

E0{a,E,aaE) =in f dU exp ji[RC(U)aIE+Im(U)a2E+Re{ U )alE+Im(U )aXE] j

and in u (u~) each link variable is equal to UIE+iu21
(uiE+iu21) N.ote that the coupling between the UE, aE and

UE, aE fields 11Cs OIlly ln tllC Eo fuilctioll. SaII is Invariant
under the gauge transformation

UEE+ EU2E =UE ~UEcxp{ I8),
U I1+EU21 =UE ~UEcxp(2E 8),

a IE + I a2E =aE—+aE exp(E 8),
aIE+EazE =aE~aEexp(218) .

The saddle-point approximation to Eq. (6) is obtained
by minimizing S,II with respect to all the variables. The
fCSUltlDg CqURt1GDS RfC higMQ DODtflV1R1 RDd 1D OfdCf tO

solve them we look for a translation-invariant solution,

I

sum over all of them. Thus, configurations gauge
cqlllvalcilt to thc tlalislRtlo11-lnvarlRflt ollc give IdclltlcR1
contributions to the free energy and gauge-noninvariant
qURDtlt1CS VRD18h %'hCH RVCfRNCd OVCI' thC dCECQCfRCQ.

Then Elitzur s theorem is satisfied showing the consisten-
cy of the approach. Repeating the above steps Eqs.
(5)—(12) for a more complicated U(1) action, like

p'll gS= g gP„, (13)
plaq n

the mean-field results are reobtained if we introduce dif-
ferent unconstrained variables for each integer EE. A simi-
lar situation occurs for non-Abelian models with or
without matter. In this case a different variable must be
considered for each character of the gauge group and for
each local power of the matter field.

The free energy per unit link to zeroth order and, in the
presence of a nontrivial solution to Eq. (12), is

With the help of this further approximation the resulting
CqURtlODS RfC

v =—f dURCUexp(S), u= —f dUReU exp{S),1 1

Z Z

RDd

a =2PUI, P=P(d —1),
a =2yu I, y =y(d —1),

Z= UCXP S

(12b)

After a little thought one recognizes them as the naive
mean-field equations when {U) and {U2) are considered
as "order" parameters. 2 Equation (12) has three types of
solutions. The trivial one (u=O, u=O) in the strong-
coupling regime, an "ordered" solution (u+O, u&0) asso-
ciated with the nonconfining @EDphase, and another one
(u =O,v&0) which corresponds to the Z(2) confining
PhRSC.

Nevertheless, the present method implies that if a de-
gCDCfRCQ OCCUfS bCt%'CCD SOEC COQflgUfRtlODS GDC mUSf,

Ev ————u —+u +ua+ua —ln f dUexp(S), (14)
2 2

while for the trivial root ( v =u=0) the corresponding free
CDCfgg 18 ZCfO.

A similar discussion to that given in Ref. 13 shows that
Eo 18 AC CXRCt, fCSQlt 1D thC llmlt, d = Oo. %C W1B ShO%'

explicitly (Sec. IV) that the corrections vanish in this lim-

1D OfdCf CO ObtRlB thC PhRSC dlRgfRIA Rt ZCfOth OfdCf %PC

must compare the free energies in different phases and
look for their crossing which is interpreted as a phase
transition. To zeroth order we only need to look for the
solutions of the equation

+v(P„y, ) =0 .
Numerically solving Eq. (15) we obtain the phase dia-

gram shown in Figs. 2(a) and 2(b). Although qualitatively
correct, the transitions are appreciably shifted to the .

WCRk-CGUP11Dg fCglOD 1D COEPRflSOD With MODtC CRflO
81mU1RtlODS,

Equations (12) and (14) must be slightly modified in or-
der to consider also the "antiferromagnetic" phase. This
CRQ bC dOQC 1QtfOdUClDg R DC%' P1RqUCftC VRflRMC 8~ 1.C.,
instead of proposing a complete translation-invariant solu-
tion Eq. (11),we make the ansatz

UE =UEE+EU2E=U cxp(18),

aE =aEE+EaxE =a cxp(18),

aE =aiE +Ea21 =a cxp(21 8),
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1.0—

0.5—

(a)
Taking 0=n /2 in the y & 0 axis we obtain the same

free energy as in the y &0 (0=0) case. Then a phase tran-
sition appears in the @&0 region giving a qualitatively
complete phase diagram. In the next section it is shown
that the inclusion of 1/d corrections improves these re-
sults appreciably.

We remark that another approach is possible
without introducing an unconstrained variable for U . It
consists of the factorization of a Z(2) variable for each
plaquette in the partition function, i.e.,

Z(P, y)= g J dU, —,
'

links +l =+

I

0.5 1.0 P 1.5

r

Xexp p g o&ReU&+y g ReU&
plaq plaq

(19)

(b)
The saddle-point equations have now the expected three
phases in y&0. Nevertheless, we evaluate the one-loop
corrections in this case. They are finite when d = op and
the agreement with the Monte Carlo phase diagram is
p001.

IV. 1/d CORRECTIONS

0.5—

0.5 1.0 P
FIG. 2. The phase diagram predicted by mean-field calcula-

tions (continuous line) at zeroth order in (a) d=4 and (b) d=5
in comparison with Monte Carlo results taken from Refs. 17
and 18, respectively (a solid circle indicates a first-order transi-
tion while an open circle indicates a second-order one).

for, e.g. , the same links where in Eq (3) we .apply the W
factor. Stated in other words, we want the factor exp(i8)
or exp(2i8) to appear only an odd number of times for
each plaquette. The corresponding saddle-point equations
are Eq. (12) with the change

o;~o. cose,

ex~a cos28,

and a new equation

—Pv 4
cos0=

4

In this section corrections around the zeroth-order solu-
tion are evaluated by the steepest-descent method. For
simplicity we deal only with the y ~0 region. Although
the calculation is tedious we quote it here in detail because
it is very illustrative on some technical aspects like the
treatment of the zero-frequency mode. We begin with the
corrections in phase II (Fig. 1). The corresponding ones
for phases I and III are simpler and they are discussed at
the end of the section.

The first step consists in a shift of the integration vari-
ables

ll U +Zllr U ll U+Zll r

U2l +Z2lr 2l + 21 r

(20)
+11 ~++P ll ll ~++8 ll

a2l ——0+P2l, n2l ——0+@2l

and an expansion of the resulting effective action up to
quadratic terms in the new variables (there are no linear
terms because we are expanding around a minimum of the
action). The integration in the p,P variables is straight-
forward due to its local character. The resulting expres-
sion for the partition function is

z(,y)=
exp( —Fo) + oo dZ~l dZ~l

(D,D,)-" & -- ~2. ~2.

The free energy is

I'o ————
U cosO — U cos28P ~

2 2

+va+ v a —ln I d U exp(S)

X eXP(Seff(quad) ) ~

where we have defined

eff(quad) Squad g (+abdal +FaZ al GaZalZal ) r

links

a =. 1,2

(21)



ELBIO DAGOTTO 30

A.

Da =Qa —4Q. Q.

E =Q~/D, ,

F~ =Q, /D

G, =Q, /D, ,

(23)

(24)

and the integrals Q„Q„Q, are listed in the Appendix.
I

S~„,d is the action Eq. (13) expanded up to quadratic
terms. Note that the coupling between the fields z and z
is present only through the G, factor. The information
that U and U are, in fact, related variables lies somehow
in this coupling.

Next we turn to momentum space. This calculation has
been done in Ref. 13 for the U(1) Wilson action so we
quote here only the result:

exp( Fo—) +~ dz, „(p) dz, &(p)z(P, y) =
~2m.

where

+n'
X exp — g d [z jpA»zl +z lpApHlv+z2p+pP2y+z2p+pv 2u 5»( lz lp 1v+ G2z2y zv)]

(2m)

(25)

A„(p)=5„„E~+ 1 —g cosp~ — (1+e ")(1+e "),

Q»(p)=5» E2+ 1 —gcospq — (1—e ")(1—e "), (26b)

A&„(p)=A&„(p) (E~ ~F~,a/u ~a/u ),
Q&,(p) =Q»(p) (E2~Fz,a/u~a/u ),

(26c)

(26d)

and z&(p) and z&(p) are the Fourier transformations of z~

and z~. Note that in the spirit of the forthcoming 1/d ex-
pansion we neglect in A and A a cosp&. The resulting
eigenvalues p,po of A and q, qo of 0 are easily found be-
cause they can be written as a scalar plus a rank-1 matrix.
We give them here because they will be used in subsequent
calculations:

p =E& —
2

+
2 &

g(1—cospg),

61
1

2

G2
1

2

62
21

(29)

CtPO=E1-
2U g (cospq),

GI —1 u

(27)

[the momentum dependence is understood and the first in-
dex in Y, W corresponds to real (1) or imaginary (2) fluc-
tuations]. Then the exponent in Eq. (25) can be written as

q =Ep — + g ( 1 —cospg ),
J „(YpAp, 1;+8'@BE,JY, ) .

(2 )" (30)

o,eo=&2—
2U

where p and q are (d —1) degenerate while po and qo are
not degenerate. The corresponding eigenvalues for A
and 0 (denoted by p,po and q, qo, respectively) are found
from Eq. (27) changing E, +F, and a/u &a—/u. —

se define the 2d-dimensional vectors Y and W and the
(2d &(2d)-dimensional matrices A and B as follows:

As usual for continuous groups due to the local gauge
invariance of the model a zero-frequency mode appears.
%'e shall show explicitly that it occurs among the ima-
ginary fluctuations, i.e., in the 8 matrix. In order to
avoid it we must introduce a gauge condition which
selects only fluctuations orthogonal to the zero mode.
This can be performed by the standard Faddeev-Popov
trick, i.e.,

z21
2n.

1=bFp g I d$„5(gauge condition (P„)), (31)

Z ld 8'
Z11 Z21

z2d
)

(28) where the "natural" gauge is deduced once we know the
eigenfunction of the zero mode.

The corresponding eigenvalues A, for the matrices A
and 8 can be easily deduced using Eq. (27). They are
given by
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~01 z Ip0+po —[(po pO) +Gi ] j

~z3= 2 Ip+p+[(p —p)'+Gi']'"j,
A,o

——0,
B~1=90+9'0 i

~xi =—' Iq +q+ [(q —q)'+ G~']'" j

(32)

Each eigenvalue involving p,p, q, q is (d —1) degenerate
while the rest are nondegenerate. All are positive definite.
The existence of a zero eigenvalue in matrix 8 was
demonstrated numerically in the whole P-y plane. An an-
alytic proof of this fact is not easy because the integrals

Q, Q and Q do not have a simple closed expression. The
zero-mode eigenfunction is the 2d-dimensional normal-
ized vector

where

62/2 E2 —a/2uk=
Fz —a/2u Gz /2

(34)

Fz(p) = g C„"(p)gz z(p),
n=1

2d~ (p)= g C„(p)g'"'(p),
n=1

(35)

Closely following Ref. 13 we expand the fluctuations
Eq. (28) in eigenfunctions of A and B (gz"' and gz"',
respectively)

q(0)(p)
d

2(1+k ) g (1—cospi)
A, =1

lPi
1 —e

) —e"'
(33)

k(1—e ')

k(l —e ")

transformationwhere the Jacobian of the
~p& ~p +Cn, Cn ls one

Introducing Eq. (31) in the partition function Eq. (25)
we obtain

exp( —Fo) dC„"(p) dc„(p) + dp ai w aliiZ(P ) )= ~»y II f kpp II 5(g f )exp I g (C A +C A )
(DiD2) q„2' 2m ~

—~ {2~)
(36)

Of course, the gauge still remains to be selected. We would need the 5 function to be proportional to 5(CO(p)) in order
to eliminate the divergence caused by the zero mode. This is the natural gauge condition. It can be easily proved that
the condition

d d

f(z, r)= g (z,„„—z,„,„„)+kg g,„„—r,„,„„)=0,
@=1 p=l

for all sites of the lattice, satisfies this requirement because in momentum space it can be written as

5[C'(p) l

(37)

2(1+k ) g (1—cospi)

Once the gauge condition is known b,Fp can be evaluated. In our 1/d expansion it is approximately given by

d

EFp ——detC, C„y ——g (u+2ku)(25„y —5„y+~—5~@ q) .
@=1

(39)

Then the integrations over C„"(p) and C„(p) can be performed. Collecting all the contributions one gets for the free ener-

gy per unit link in phase II

+n d»pI » ln g 2(l —cosp&) + —,
' ln(DiD2),

(2m )"

+m

Fii Fo+ I ——
» [in(4A2As )(d —I)+in(4A&A, ~ )]+ f » [in(4A2ks)(d —I)+in(2Ai )]

2d —~ (2m )» (2~)»

1
1

2m(1+k )

(u +2ku )2
(40)

where the first term comes from the real fluctuations, the second one from the (2d —1) nonzero modes in the imaginary
fluctuations, the third and fourth terms from the integration on the zero mode including the Faddeev-Popov factor and
the group volume, and the last one froin the a,a integration.

The integrals must be evaluated in a 1/d expansion as in Ref. 13. The final result is
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1 u a-
Fn ——Fp+ . ln 1y2 —Qi+ —Qi

V V

r

2(qp+qp)(1+k )( —. D2)+ R — +ln
2 + T—

4 (u +2uk) 4
—in(4ird)

(41)

where

R= —2—Qi,
V

T = —2 —Qi+ —
Q2

V

In the P axis it can be proved that F is equal to the free
energy given in Ref. 13.

Equation (41) will be used in the following section for
the evaluation of the phase diagram of the model. The
corrections to the other phases are simple to calculate. In
phase III, for example, the free energy per unit link in-
cluding P corrections to lowest order can be written ap-
proximately as

Equations (45b) and (45c) are the corrections between
phases II-III and I-III, respectively.

The results are shown in Fig. 3(a) for d=4 and in Fig.
3(b) for d=5. The agreement with Monte Carlo simula-
tions in a 4" lattice is excellent in both cases. Note that
a more careful analysis using a 6 lattice gives
P, (y, )=1.005 (d=4) in the P(y) axis improving the
agreement with our mean-field result. Nevertheless, all
the transitions are incorrectly of first order as usual in
mean-field techniques applied to gauge models. For ex-
ample, the u parameter jumps from 0 to a value greater
than 0.9 between phases I and II.

p2 p2
Frrr- — +Frr o 7+ 4dSd

(42)
1.5

{a)

where on the right-hand side Fii represents the 1/d ap-
proximation to the free energy in the y axis with y re-
placed by y+P /4. The inclusion of the P corrections
are necessary in order that the transition between phases I
and III has the correct curvature.

For phase I the correction to the v, u, v, K=O solution is

1.0—
I

P2+ 1&
2

8
(43) 0.5—

Note that higher-order loop correlations also include 1/d
terms. However, in Ref. 13 it has been conjectured that
they vanish in the /3 axis [y axis] as (1—u) [(1—u) ].
This fact can be easily extended to the whole plane. 0.5 1.0

V. RESULTS

The phase diagram at zeroth order was obtained in Sec.
III solving the equation

1.0—

{b)

F[P.,F.,u(P. ,F.),u(P. F, )]=0 . (44)

Following Ref. 13 the shifts in critical parameters
(bP„b,y, ) due to the inclusion of the 1/d corrections are
evaluated for large d from the expressions

~P. I in= —,[~i(P. F.) —~n(P. y. )l (45a)
0.5—

~Pc Inm= —,[~m(P. 7.) ~n(P. Pc)] (45»
I

. I i-III '~ [~ (~&ice&) ~I n(&p&r. )] (45c)
2

V

where ~ are the 1/d corrections in each phase.
Equation (45a) corresponds to the correction to P, for

the transition between phases I and II (Fig. 1). We also
evaluate the corresponding one for y, proving that both
ways give similar results for the predicted phase diagram.

0.5 l.0 I3

FIG. 3. The phase diagram predicted by mean-field calcula-
tions (solid curve) including 1/d corrections in (a) d=4 and (b)
d= 5. Monte Carlo results are from Refs. 17 and 18, respective-
ly (a solid circle indicates a first-order transition while an open
circle indicates a second-order one).
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VI. CONCLUSIONS

In this paper we applied the gauge-invariant version of
the mean-field technique (including 1/d corrections) to
the U(1) extended model in d=4 and 5. The predicted
phase diagram is in excellent agreement with the results
from Monte Carlo simulations. For the application of the
saddle-point technique we proved that it is necessary to
introduce different unconstrained variables for U1 and
UI . The generalization to other gauge groups or in the
presence of matter is immediate.

We remark that in spite of the satisfactory results ob-
tained (Figs. 3) we do not prove that higher-order correc-
tions are small. Indeed d =4 and S are not large enough.

We finish this section with a comment on future appli-
cations of the method. It has been proved that mean-field
techniques are very accurate in the prediction of phase di-
agrams, but due to its local nature the continuum limit,
where long-range fluctuations are important, is beyond its
capabilities. For instance, in Ref. 31 it was explicitly
proved that the predictions for Wilson loops are not accu-
rate even for a small one (2&&1 links). Perhaps the only
way to obtain physical results (string tension, glueball
masses, etc.) is to reach the scaling region for P not too
large. A similar observation is valid for other local tech-
niques like the variational one in Lagrangian and Hamil-
tonian formulation with local trial states. One way to im-
plement this program could be to obtain the consistency
condition for a large number of exactly treated variables
(Bethe-Peierls approach). However, it is not known how
to adapt the saddle-point trick to this case. This fact
deserves further study.

After completion of this work we received a report
where results identical to ours are obtained using the co-
variant gauge.
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Q2 = —
~ ( sin 2f )

Qt ——((cosP) (cos2$) —(cosP cos2$) ),
Qq ———( sing sin2$ ),

where

(A 1)

(A2)

(A3)

(A4)

(A5)

(A6)

(f(p)) =
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All these integrals Eqs. (Al) —(A6) admit closed expres-
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APPENDIX

The combination of integrals Q„Q„Q, which appear
in Sec. IV are listed here:
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