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A systematic nonperturbative scheme is developed to calculate the ground-state expectation values
of arbitrary operators for any Hamiltonian system. Quantities computed in this way converge rapid-

ly to their true expectation values. The method is based upon the use of the operator e ' to con-
tract any trial state onto the true ground state of the Hamiltonian H. We express all expectation
values in the contracted state as a power series in t, and reconstruct t —+ oo behavior by means of
Pade approximants. The problem associated with factors of spatial volume is taken care of by
developing a connected graph expansion for matrix elements of arbitrary operators taken between ar-
bitrary states. We investigate Fade methods for the t series and discuss the merits of various pro-
cedures. As examples of the power of this technique we present results obtained for the Heisenberg
and Ising models in 1+1 dimensions starting from simple mean-field wave functions. The improve-
ment upon mean-field results is remarkable for the amount of effort required. The connection be-
tween our method and conventional perturbation theory is established, and a generalization of the
technique which allows us to exploit off-diagonal matrix elements is introduced. The bistate pro-
cedure is used to develop a t expansion for the ground-state energy of the Ising model which is, term

by term, self-dual.

I. INTRODUCTION

It has become clear that analyzing confinement and
coinputing the properties of hadrons requires the develop-
ment of nonperturbative methods for dealing with quan-
tum field theories. Conventional renormalization tech-
niques require a perturbative framework and so, in order
to remove all divergences from the theory, Wilson' intro-
duced a lattice formulation of Euclidean gauge theories
which was transcribed into Hamiltonian language by Ko-
gut and Susskind. If one adopts this formalism, the
problem becomes one of being able to analyze this sort of
theory for all values of the coupling constant. It quickly
became clear that strong-coupling perturbation theory
could not be relied upon to study the physics of the
weak-coupling limit, i.e., the limit of interest for the con-
tinuum theory, and other techniques would be necessary.
Up to now much effort has been invested in Monte Carlo
calculations in an attempt to compute systematically the
quantities of physical interest. The drawback of the
Monte Carlo technique is the amount of computer time
required to study even small lattices; this, of course,
makes it hard to trust these results as guides to the phys-
ics of the continuum. Another drawback of the Monte
Carlo technique is that it is entirely numerical and one
has no way of getting a feeling for what is essential and
what is superfluous. In order to obtain information of
this nature there would seem to be no substitute for non-
perturbative analytic techniques which can be used to
study systematically Harniltonian systems in general. In
this paper we present a new nonperturbative scheme
which can be applied to a wide class of Hamiltonian lat-
tice theories. While this should be of general interest to
people working on many-body and condensed-matter
problems, we are particularly attracted to the method be-

cause it holds great promise of working well for lattice
gauge theories. For pedagogical reasons this paper wi11

focus on some simple Hamiltonian lattice systems in order
to present the basic ideas and show how well the approxi-
mation scheme converges. The application of these tech-
niques to lattice gauge theories will be presented else-
where.

In looking for a candidate for a nonperturbative com-
putational scheme applicable to a wide variety of prob-
lems, one is tempted to turn to variational methods.
There are many variational techniques which allow for
nonperturbative calculation of the ground state, and low-
lying excited states, of a Hamiltonian system. The princi-
pal virtue of these methods is that they allow the compu-
tation of effects, such as the existence of phase transitions,
which cannot be treated within the framework of ordinary
perturbation theory. Their principal drawback is that
there is no simple scheme for systematically improving
upon the initial result. In the section which follows we
will show how to rectify this situation and develop a non-
perturbative expansion, henceforth referred to as the t ex-
pansion, which allows one to improve systematically upon
the results of any variational, or perturbative, calculation.
The application of this method to specific examples shows
that successive approximations to quantities of physical
interest converge rapidly to their true ground-state expec-
tation values.

We begin by presenting the simple idea behind this
scheme and establish the rules for calculating in a general
theory. Next, we present the results of applying this tech-
nique to some sample problems. After the reader has got-
ten a feeling for the way in which the technique works, we
establish the connection of this method to the usual per-
turbation expansion, and present a generalization of the
basic scheme which may play an important role in the
analysis of lattice gauge theories.
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II. FUNDAMENTALS

A. The basic idea

Nonperturbative techniques such as Hartree, Hartree-
Fock, mean-field, and real-space renormahz'ation-group
approximations are variational calculations for the ground
state of a Hamiltoruan system. In each case one picks a
trial state,

I $0), which depends upon a set of variational
parameters, ja j =at, . . . , a„, and determines the best
values for these parameters by minimizing

(2.1)

Assuming that %vc have chosen such R varlational wave
function we note that the normalized state

)„,e ' "lit'o& {2.2)

is, for any finite value of I, a better approximation to the
true vacuum. To prove this expand

I p, ) in cigenstates of
H, and observe that

e 'H/'I gt&= gc„e '"'
ln & . (2.3)

It follows from (2.3) that the coefficient of the true vac-
uum state which appears in the expansion of

I
l(gt) is

larger than in
I $0}. As long as the initial state

I $0) has
an overlap ~ith the true ground s~ate, quantities like

Z(I)=&go I

ls, foI' 8 systcnl of volllIIlc V, of tllc foH11

Z (I) e
—tv'(t)

(2.7)

(2.8)

, (@.IH"Iq, &n!
(2.9)

can be taken into account by systematically rearranging
terms into 8 calculation of the function W. Actually,
what we want to compute Rrc IRtlos of thc form

(y I
e —tH/2Oe tH/2

I y
—)

O(I) =
Z I

{2.10)

which must be free of such difficulties. This suggests that
expanding (2.10) as a power series in I must yield expan-
sion for O (I), of the form

O(I) =g, &OH" &',( —I)"
n!

(2.11)

'tlon, Is straightforward. Tliere is, however, Rn Important
conceptual point which must be addressed before plunging
into such 8 calculation. This problem is that for a system
of volume V, the expectation value ($0 I

H"
I |(0) ls pro-

portional to V". Since me are interested in the limit
V~00, there seems to be a problem in defining our ap-
proximation procedure.

This problem is familiar from statistical mechanics and
is due to the fact that the normalization factor

E (I)= ( Pt I
H

I
litt ), (2.5)

Rrc guaranteed to converge to their t1Uc glound-state ex-
pectation values in the limit t~oo. This contraction of
the wave function onto the lowest eigenstate of the Hamil-
to111811 rapidly c11111111Rtcs states w111cli llavc cIlci'gics fRr
larger than the lowest state and if accurately computed
provides an upper bound upon the ground state energy for
any finite value of I.

&~. IH -™I~.&

&Pole '
l@o&

(2.6)

In general, we cannot exponentiate the Hamiltonian of a
quantum system, so some way of approximating the ratio
must be developed. Our approach is to expand (2.6) to 8
fixed order in the variable I and then use Padc approxi-
mants to reconstruct the function. This method is appeal-
ing since computing ($0 I

OH"
I fo), for

I $0) belonging
to tllc class of varlatio1181 wave fuIlctlons uIidcI' coiisidcla-

8. ClUsteI' expaG81011

Focusing on the problem of computing the ground-state
energy for a system defined by a Hamiltonian H, we see
that evaluation of (2.2) and (2.5) requires the computation
of ratios such as

wherein all of the coefficients (OH")' have the same
volume dcpcndcncc Rs O. Pursuing ac analog/ V@1th sta"
tistical mechanics, and for that matter with field theory in
general, we refer to the coefficients O„as connected coef-
ficients. A precise formulation of this result for the case
O. =H is as follows:

Theorem I. The ratio

&@OIHe '"I @0&/&Pole
'

l@o&

{—I)" (Hnii)e
N=0&Al

-'
IA&

where (H" +')'is defined recursiuely,

&H" +')'=&ll, IH" +' Iy, )

—g " (H +'&'&y, lH"- ly, &.
O

.P.
Proof. Rewrite the ratio as

(@0 I
He '

I @0) y( —I)"(yo
I

H"
I
$0)/n'

&@Die
'

I@o& g( —I) (BOIH @I)0/ mt

Replace the expectation value ( go I

H" + '
I $0}by

(y, lH"+'I@,)= g " (H&+I)'(@,IH" &I@,) . -
o .P-



can be done independently. Grouping terms and cancel-
ing the sums over m appearing in both the numerator and
denominator leads to the desired result.

&A IH ™
I 4 &

(2.15)

Q.E.D

This result is easily generalized to the case of an arbi-
trary operator O. The explicit form for the connected
matrix elements appearing in (2.11) are

& OH m
&

c
& OHm

&

where &OH & is defined to be

& OH & = g &$0 l
H~OH ~

l $0& . (2.13)
O

P

C. PRde RppI'oxlm8llt8

Having obtained

O(t)=&4. IOe '
I A&~&4. le

'
l 0.&

as a power series in t, we must decide what to do with this
information. Our approach is to use Pade approximants,
in order to obtain a good approximation to O(t) over a
larger range in t. Since there is more than one way in
which to construct Pade approximants to a function, we
have to specify the particular strategy which we will
Rdopt.

The obv1ous appI'oach ls to take thc scAes

O(t)= g, a„( t)"— (2.14)7l

and improve it by forming diagonal Pade approximants:
diagonal approximants are preferred because we expect
the function O(t) to tend smoothly to its exact value as
t —+ca. Th.crc arc howcvc1, scvcI'Rl problems assoc1atcd
with this prescription. First, there is the problem of es-
tablishing a criterion for determining the maximum value
of t for which we can trust the calculation. The natural
criterion which comes to mind is that we only trust our
calculation over the range in which several Pade approxi-
mants agree. Since computation of the ($,$)-Pade ap-
proximant requires the series for 0 (t) to order i, we see
that restricting ourselves to diagonal Pade approximants
requires going to rather high orders in t in order to check
the convergence of the calculation. At this point we ob-
serve that the use of diagonal Pade approximants is foI'ced
only if we hope to extract the t= ao value of O(t) from
our calculation. If, however, we are satisfied with a reli-
able computation of the same quantity for a finite value
of r, then the motivation for restricting attention to diago-
nal approximants disappears.

There is another method for using Padc approximants
which liberates us from the restriction to diagonal approx-
imants, converges better for small values of t, and does
not preclude extrapolation of the results to r = oo. To
motivate this approach let us consider the problem of
computing the vacuum energy E(t), defined by

Begin by noting that E(t) is a inonotonically decreasing
function of t .To prove this differentiate (2.15) with
Icspcct to t to obtain

(2.16)

III. THE HEISENBERG ANTIFERROMAGNET

A. The model

As a first test of the application of this formalism let us
consider the Heisenberg antiferromagnet in 1 + 1 dimen-
sions. This model is defined by the Hamiltonian

H = ~ Q o (i).cr(i =1) . (3.1)

Using the Bethe Rnsatz onc can solve this Inodcl exactly
and show that the ground-state energy density is

Ãexgci lii(2) +0 25 0 443 1 (3.2)

We will now study the application of the method just out-
lined to the problem of computing 8'(r) starting from a
wave function

l %0& which is a tensor product of single-

which is the negative of the expectation value of the posi-
tive operator (H —&H&) . This piece of information is
very useful since it says that if we construct Pade approxi-
mants to (2.16), then we know for sure that the approxi-
mation is breaking down if the Padh approximant to the
derivative becomes positive. %'hcn this happens we have
determined the largest value of t for which we can expect
the Pade approximant of the ground-state energy to be re-
liable. We also know that the derivative (2.16) must be in-
tegrable, and so must vanish faster than t as taboo.
This implies that we should restrict attention to
(L,L +M)-Pade approximants for M )2. By integrating
the (L,L + M)-Pade approximant from 0 to t we obtain a
larger set of approximations to E(t) without giving up the
Rblllty to cxtI'Rpolatc to t = Oo.

There is another advantage to using Padh approximants
for the derivative of the function instead of for the func-
tion itself. Namely, this method can be expected to accu-
rately reconstruct functions like E(t) over a larger range
in t. This happens because the Padc approximant con-
structs a fuilctloil with speclflied asyiilptotlc beliavioi' aild
a particular Taylor series around i =0. In general, forc-
ing the asymptotic behavior of the function affects its
reconstruction even for moderate values of t. However, if
we use Pade approximants for the derivative of the func-
tion and then integrate, errors made in reconstructing the
derivative for moderate values of r take longer to have an
effect upon the reconstruction of the function. Another
virtue of this method is that it allows accurate reconstruc-
tion of functions whose straightforward Pade approxi-

ants fail to converge well; e.g. , f(t)=t ha(nt). We will
discuss the significance of this fact in Sec. VII. Before
continuing with the devdopment of the theory behind this
technique, let us turn to a specific example.
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o'*(')
I fo& =(—1)'

I 40& (3.3)

Since the expectation values of o, and cr„v anish for this
choice of wave function, the energy density is

1 1

V
(3.4)

site wave functions, i.e., a Hamiltonian mean-field state.
The particular state we choose is an eigenstate of o,(i) for
every point i, with eigenvalues

which differs by almost a factor of 2 from (3.2).

B. The calculation

In order to compute the term of order ti' in the expan-
sion of 8'(t) we must evaluate the expectation values
(Hr+'&'. Thus, the coefficient of the term of order t is
just ($0 I

H
I $0&, or —0.25. To compute the term of or-

der t we evaluate

= g —'
I:&A I

~ (i)~ (i+1)~p(j)~p(j +1)
I @o& —&@o I

~ (i)~ (i+1)
I @0&&@0I ~p(j )~p(J+I

I @0 ] .
S,J

a, P

At this point the virtue of working with a simple product wave function becomes obvious; for the particular state which
we have chosen,

(3.6)

so long as i i&i2& . &i„. Hence, the terms in (3.5) for which i&j or j+1 cancel exactly, leaving

y ((o~&(orlop&&op&+&orlop&&orlop&+(op&(orlop&(o~& 3(o—~&&o~&&op&&op&),
i,a,P

(3.7)

where the dependence of each of the terms on the points i,
i +1,. . . has been suppressed because of the translation
invariance of the trial wave function.

This example exhibits a general feature of a calculation
done using a mean-field wave function; namely, in this
case connected means keeping only terms in H" in which
the operators touch one another. One can adopt a graphi-
cal notation wherein a link stands for a term
o (i)cr (i +1), and then the set of graphs which contri-a a

2bute up to order t are shown in Fig. 1. Clearly the
graphs corresponding to higher-order terms in the 'Taylor
expansion in t are obtained by decorating the lower-order
graphs, being careful to take combinatorial factors into
account. In this way it is a straightforward problem to
generate the various terms of the t expansion for 8'(t)

Before discussing the results obtained from these calcu-
lations there is one fact which we should point out, since
it greatly simplifies the task of carrying out these calcula-
tions. We have just observed that for a mean-field wave
function connected matrix elements correspond to terms
which are connected in the obvious sense that a11 opera-
tors touch at least one other operator. This implies that
for the example being considered, computing (HI'&' for
an infinite lattice and a periodic lattice having only p + 1

sites is the same. This is true because only terms which
correspond to chains of operators which completely wrap

FICx. 1. Connected diagrams for the Heisenberg antifer-
romagnet up to order t2.

-0.25

-0.30

-0.35

A

-0.40
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n on —diagonal

(3.3)

Q, I)

0.5
I I I-0.50

0 1

FIG. 2. Comparison of various ways for using the t expan-
sion to obtain the ground-state energy density. The curve
marked ET,~1„ is a plot of the Taylor series. The curves (1,1),
(2,2), and (3,3) are diagonal Fade approximants. Four curves
obtained by integrating the (0,4), (1,4), (1,5), and (2,4), Pade ap-
proximants to the derivative of the energy density coincide with
one another on this scale, and all have asymptotic values which
are very close to the exact answer.

I I I I I

1.5

I

around the lattice distinguish one situation from the oth-
er. It follows that one can evaluate the terms of order tI'

p+1in our expansion, i.e., expectation values of H, by
computing on a finite lattice having p+2 sites. This al-
lows us to use a computer to carry out our computation
without loss of generality. We emphasize that this trick is
very different from calculating exact results for a finite
lattice. The finite lattice we use is nothing more than a
computational device to allow us to numerically, as op-
posed to symbolically, exactly compute the terms (Hl'&'
for the theory defined on an infinite lattice.
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IV. THE (1+ 1)-DIMENSIONAL. ISING MODEI.

The Ising model in 1+ 1 dimensions has long been
used to compare different computational techniques. It is
defined by the Hamiltonian

H = —g o,(i) Ager—„(i,)o„(i +1) . (4.1)

Our mean-field (MF) variational state is a product state

By making use of this trick we compute the connected
coefficients for the ground-state energy density to order
t . In Fig. 2 we contrast the results obtained by directly
forming diagonal Pade approximants to the energy densi-
ty to the results obtained by forming off-diagonal Padc
approximants to the derivative of the energy density and
then integrating. We also plot both the behavior of the
Taylor series in the same range and the exact answer. In
Fig. 2 we display all of the diagonal Padc approximants
which can be formed with our data, and it is clear their
convergence to the exact answer is fairly slow. This
should be contrasted with the single curve which shows
that many of the off-diagonal Padc approximants agree
with one another and converge rapidly to the correct re-
sult. Of the integrable approximants which correspond to
calculations carried out to order t, the 1-5 and 2-4 Pade
approximants best approximate the exact answer; i.e.,
gt', 5 = —0.439 82 and 8'z4 ———0.441 892, versus
5',„„,= —0.44315. The fractional errors for these two
cases are 0.75 and 0.27%, respectively; this should be
compared with Anderson's calculation of this quantity in
the spin-wave approximation which is on the order of 4%.

Note that in this example the wave fun«ion
~
$0) had

no variational parameter associated with it. %e will now
turn to a second example in order to see how the method
works when there is a variational parameter to play with.

~1t.&=+ ~8, ,y, &, (4.2)

whe« the»ngle-»«states
~
8J,QJ ) are defined in terms

of eigenstates of the operator o, (j) to be

~ 8J,QJ ) =cos( —,'8J)
~
o,(j)=1)

+e 'sin( ,
'

81 )—~ o, (j)= —1 & . (4.3)

If we choose 8 and P to be constants, independent of the
point j, it follows that

z =(o, ) =-cos8,

x = (o ) =sin8cosg,

y = (01, ) =S1118Sing .

The MF approximation amounts to

(lio~H
~ pc) = —V(z+Ax ) .

(4.4)

(4.5)

Note, that y does not appear here and so must be chosen
to vanish (which also means /=0) in order to minimize
(4.5). Minimization of (4.5) with respect to 8 gives a
disordered phase (x =0, z =1) for 0&A, (—, and an or-
dered phase with a broken symmetry (x&0) for A, & —,'. lt
is known from the exact solution to this model that the
model has a second-order phase transition between these
phases located at A, = l. This differs by a factor of 2 from
the location of the phase transition predicted by the
mean-field approximation. In addition to missing the lo-
cation of the phase transition the mean-field approxima-
tion also fails to give correct critical indices, and only
gives a good approximation to the energy density for
k ~ 1, i.e., deep within the ordered phase.

B. The contraction-operator calculation

Applying our method we find the following first few
terms of the perturbative energy density by calculating the
connected matrix elements of H:

w'T, 'y)„———(z+k ) t [1—z——4M z+A. (1+2xz—3x lj

+—,
' tz[ —2(z —z) —A(18z x —4x —2y )—Az(36zx —16zx —4z) —A, (20x —24x~+4xz)] .

It is interesting to note that y dependence sho ws up for
the first time in the A,t term and is quite insignificant.
For all practical purposes one may choose y =0. This
continues to be true even to the next few orders of t.

Using (4.6) one can evaluate the 1-1 Padc approximant.
This alone causes a considerable shift of the critical point.
However, in order to do better, we would like to compute
lllgllcl Padc appl'oxinlallts. To avoid 'thc coillplcxlty of a
hand calculation we again turn to the computer in order
to evaluate the desired connection matrix elements. As
before this is done by computing connected coefficients
for a theory defined on a finite lattice. In what follows
we work to order t and therefore must compute (H )'.
This means that for our numerical calculation we work on
a lattice with eight sites. The computation was carried
out for various values of the parameter 8; the resulting

Pade approximants are studied for fixed t as functions of
8. Howcvcl', before dlscusslng flic 1'cslllts of these coinpu-
tations there is an important technical point which should
be made which relates to the question of determining the
range in t for which our Padc approximants can be ex-
pected to convelge.

For the Hamiltonian defined in (4.1), the parameter A, is
taken to range over the region 0&A, & (x). A problem
which arises at this juncture is that we compute an ap-
proximation to 8'(t) by terminating a Taylor series at a
finite order in t, hence we do not expect the Pade approxi-
mants formed from this series to converge for the same
range in t for all values of A, . The problem is to find a
way of rescaling t so as to minimize this effect. We ob-
serve that for A, »1 the Taylor series to order t", which
consists of terms up to order A,"+, diverges strongly as
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Effective Potential A. = 10
1 I l I

I

I
-1.525

-1.575

I

C).5 1

Effective Potential A. = 10

-1.650

-1.6QQG

(0)

0.5 1 1.5

Effective Potential P = 1.428

-1.61D0

I
'& I'

i & I I

1.1 1.2 1.4 1.5

FIG. 3. (a) Effective potentials for A, =10. The curves show-

ing the t =0 (mean-field theory), I; =1, t =3, and t =5 effective
potentials monotonically converge to the exact answer represent-
ed by the straight line. Solid curves correspond to the result ob-
tained from the (0,5)-Pade approximant, and symbols indicate
the result of using the (1,4)-Padc approximants. The circles
mark the curve obtained from the 1-4 Pade approximation to
the t =1 data, the crosses mark the 1-4 Pade approximation to
the t =3 data, and the sharp signs denote the results of the 1-4
Padc approximation to thc dcrivativc integrated to t =5. (b)
Same plots where the region of the minimum is magnified.

I

1 1.2 1.4G.B
o~

FIG. 4. (a) Effective potentials for A, =1.428. The notation
as in Fig. 3. (b) This is a magnification of the region around the
minimum. Note that the 0-5 and 1-4 Padc approximants for
t =3,5 disagree substantially except at the location of the
minimum of the t =1 curves.

For fixed t the functions 8'(t, 8) provide a 8-dependent
upper bound upon the true vacuum energy. For a fixed
value of t we obtain a best bound by minimizing 8'(t, 8)
with respect to 8. In this sense, the functions 8'(t, 8) com-

Effective Po ten tial ~ =

A,~ ao. This can be avoided if we rewrite the Hamiltoni-
an H so as to compactify the range of the coefficients;
e.g., use a Hamiltonian of the form

&(a)= —g [cosao, (j)+sinacr„( j)cr„(j+1)] . (4.7)

-1.20

In fact, it is only necessary to use H(a) in the contraction
operator, and continue to evaluate all expectation values

as before. The precise way in which we implement this
procedure is to let cosa =1/(1+ A 2) '~, sina =A (1
+A, )', and define 8'(t, 8) to be

(4 &)

-1.26

-1.28
I 1 I

Q Q.5

FIG. 5. Plot of effective potentials for A, = 1.

1.5



D. HORN AND M. %'EINSTEIN

Effective Potential h. =,8333
-1.08

-1.10

-1.12

-1.14

-1.16

FIG. 6. (a) Effective potentials for A, =0.833. Notation as be-
fore. Effective potentials for higher t values have a minimum at
0=0, indicating a transition to the disordered phase has oc-
curred.

puted for a fixed value of t play the role of effective poten
tials, and we will refer to them as such. Note that since
we do not compute the functions 8'(t, 8) exactly, but at-
tempt to reconstruct them using Fade approximants, the
functions we plot are not necessarily true bounds. In par-
ticular, these potentials are reliable guides to the location
of the true minimum in 8 only to the degree in which the
Pade approximants have converged. For this reason the
way in which we extract information from our calculation
is to compare the curves obtained by constructing various
Pade approximants. We define the range of 8 for which
we can trust these effective potentials by requiring several
Pade approximants to agree. Examples of effective poten-
tials are presented in Figs. 3—6.

C. Discussion of results

Figure 3 displays results obtained for a value of A, deep
in the ordered phase. The uppermost dashed curve is
8'(0,8), which corresponds to the familiar Hamiltonian
mean-field calculation. The three curves which appear
below it correspond to effective potentials 8'(1,8), 8'(3,8),
and 8'(5,8), respectively. Solid lines represent curves ob-
tained by integrating the 0-5 Pade approximant to
dS'(t, 8)ldt, and points signify values obtained by in-
tegrating the 1-4 Pade approximants. Different symbols
have been chosen to indicate the results of the 1-4 Pade
approximant for the three different t values. This was
done in order to make it easy to see what is happening
when the 0-5 and 1-4 Fade approximants no longer agree
with one another. Obviously, for Fig. 3 this is completely
unnecessary.

Figure 3(a) exhibits the behavior of the various effective
potentials over the entire range in 8, and Fig. 3(b) shows
what these potentials look like when they are magnified to
exhibit more clearly the structure of the results in the re-
gion of the minimum. These pictures are typical of the
behavior seen in the region of A, & 1.5. In this region the
Pade approximants agree with one another to high pre-
cision and the location of the minimum of all of the effec-

tive potentials is quite close to the value obtained from the
simple mean-field calculation. The actual best values of
the energy density, however, become increasingly accurate
for larger values of t T. he interesting feature of this par-
ticular class of curves is the way in which the effective
potentials change as we go to larger values of t. Figure 3
clearly exhibits the fact that the greatest improvements in
the estimate of the vacuum energy occur for trial states
which lie far away from the true eigenstate, and that the
total variation of the estimate of the energy density over
the entire range in 8 gets progressively smaller. This is
just what one would expect if our approximation is work-
ing correctly, since the result one would obtain for t = 00
should be the completely fiat lower dot-dash line, which is
simply a plot of the exact ground-state energy density for
this value of A, .

Turning to Figs. 4(a) and 4(b) we see a much more coin-
plicated situation. Once again, the dashed curve is the
t =0, or mean-field, effective potential; and the three
curves lying below it give the effective potentials corre-
sponding to t = 1, 3, and 5, respectively. In this figure we
see that the 0-5 and 1-4 t =5 Pade approximants strongly
disagree with one another for 8&1. This same sort of
disagreement would have been seen in the picture for
A, =10 had we plotted potentials for t's greater than 5.
Presumably, the extrapolation to large t values would be
more stable if one calculated to r or t ' This . conjecture
is supported by ten-site calculations carried out for a
much smaller set of 8 values.

The most striking feature of the curves shown in Fig. 4
is the enormous disagreement between the t =5, 0-5, and
1-4 Pade approximants for 8&0.5. In fact the 0-5 ap-
proximant undershoots the exact energy. As mentioned
previously, this signifies the breakdown of our approxima-
tion since we know that the exact effective potential must
be an upper bound on the ground-state energy density for
all values of t From thi.s we see a typical feature of all
the calculations, one Fade approximant can be very inac-
curate for a range of t and 8, however, comparison of
several Fade approximants usually allows us to resolve
any ambiguity. Figure 4(b) exhibits the complicated
structures that can occur in any one Pade approximant.
Note that a reliable estimate of the energy density comes
from the point where the various approximations agree.
Had we plotted effective potentials for more values in the
region 0 & t & 3 we would have seen that the minimum for
each of these functions would be contained in the interval
1.19&8&1.4. When the curves split apart the different
approximants develop secondary minima. When this
starts to happen one has no reliable way to choose among
them. The most cautious approach in this event would be
to limit the value of t which one uses to be less than or
equal to the first t value at which the splitting occurs. In-
spection of Fig. 4(b), however, shows that one can be
somewhat bolder. Namely, one can follow the minimum
through increasing t values, then choose the best approxi-
mation for larger t values to be the value of 8'(t) at the
point at which the various Pade approximants continue to
agree. In this way, one is able to reliably extend the calcu-
lation to higher values of t than the straightforward ap-
proach would allow. Note, that in Fig. 4(b) the best point
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according to this criterion is a local extremum for some of
the Fade approximants.

Figure 5 exhibits the same set of curves for the critical
value A, =1. Now, if we follow the minimum in through
increasing values of t we find that the reliable region cor-
responds to 0&1. There is nothing particularly striking
about these curves. The only point worth making is that
for t & 5 the minimum occurs for a nonzero value of 9;
hence, this calculation incorrectly predicts the critical
point of the theory to be below 1.

The last set of effective potentials displayed in Fig. 6
are typical of the region 0.5(A, &0.9. We see that for
t &3 the minima of the various effective potentials all
move to 0=0. In fact, more careful study shows that if
we limit ourselves to t=3, then the phase transition
occurs for A, -0.9. Since we know that the mean-field
transition occurs at A, =0.5, the minimum of all Pade ap-
proximants must be at 8=0 in the region 0(A, (0.5. As
before, the values of 8'(t) at the minimum improve with
increasing t. Considering that we have only computed
our expansion to order t, we feel that these results
represent a significant improvement over mean-field re-
sults for a modest effort. This improvement is made
much more striking if we compare these results to what is
obtained by using more complicated block-mean field or
real-space Hamiltonian renormalization-group techniques;
these methods require one to work very hard to get results
which are not this good.

Having discussed the various effective potentials, we
will now explain how we obtained our values for the
ground-state energy density, magnetization, etc. In Fig. 7
we exhibit the energy density from the 1-4 Pade approxi-
mant evaluated for t =3. The choice of the 1-4 Pade ap-
proximant versus the 0.5 Pade approximant is completely
arbitrary, since for this value of t the difference between
the two functions at the minimum is on the order of a few
times 10 ". Obviously, errors of this magnitude are not
visible on the plot shown in Fig. 7. It is obvious that the
agreement between this calculation and the exact answer
is quite good. In fact, over most of the range 0&iI& oo

the relative difference between our calculation and the ex-
act answer is on the order of 10, and it grows to
4)&10 in a very narrow region surrounding the point
X=0.9. This small discrepancy shifts the singularity of
the second derivative of the energy density (i.e., the specif-
ic heat) from A, = 1 to X=0.9.

The last two curves are plots of our computation of the
magnetization; i.e., the expectation value of the operator
g(o„(j))/V computed according to Eqs. (2.11)—(2.13).
The crosses in Fig. 8 correspond to the values of the mag-
netization computed for asymptotic t, i.e., values of t for
which the magnetization has become a constant. Since
the 0-5 and 1-4 Fade approximants agree with one another
to an accuracy which would not be visible on the plot we
do not bother to indicate which is plotted. The solid
curve shown in Fig. 8 is a plot of the function

M(A)= 1—
2 0. 1S

(4.9)

which is to be compared to the dot-dash curve which is
the exact magnetization as a function of A, , i.e.,

—g (o.„(j))=[1—(1/A, ) ] '
J

(4.10)

The crosses in Fig. 9 present the same data, except that we
are plotting lnM(A, ) versus the variable in[1 —(0.87/A, ) j.
The solid curve is a straight line of slope 0.18 chosen to
pass exactly through the point in the lower left-hand
corner of the graph. It is clear from this graph that it fits
a power law of the type (4.9).

While the results presented in this section are by no
means in perfect agreement with the exact answer for the
(1+ 1)-dimensional Ising model, the reader should recall
that they are to be compared to the results of the mean-
field expansion which predicts a phase transition at
A~ =0.5 aild a iilagiletlzatloil M(A. )MF wllicli is giveil by

Energy Density for t=3
I I

[
I~7 1.0
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FIG. 7. Energy density from (1,4)-Fade approximant evaluat-
ed at t =3. Crosses represent calculate values, solid line is the
exact answer.

FIG. 8. Linear plot of magnetization versus A,. The broken
curve is the exact result, and the solid curve represents a fit to
our calculated values by a function having the same form but
with a different exponent and A,
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O, O

l n(Magnetization) =.18+ ) n4,
'1 —(,87/X) ) Hence, it follows that our series can be written as

E(t)=E(x,t)

I I t I I I I

—1 O

FIG. 9. A ln-ln plot of our results for the magnetization.

M(A, )MF—— 1— 0.5

ao ( t)II +II
=&H, &~ y, "+1(a~v"+I&, (5.2)

o (n+p)!

where the symbol (Hg V"+')' stands for the appropriate
sum of connected matrix elements. The next question is,
how must this series be resummed in order to obtain the
usuaI pcrtuI'batlon cxpanslon. To do this ln thc most
straightforward manner we will present the discussion in
a way which directly parallels the usual development of a
perturbation expansion.

To estabIish the connection between our contraction
formula and perturbation theory in x we consider the
operator e ' applied to the lowest eigenstate of Mo,

~
I)!o), i.e., consider ratios of the form

Pole '
l@o

For now focus on the energy E(t) which can be written as

By computing out to sixth order 111 t wc arc able to sig-
nificantly improve these predictions in a systematic way.

V. TWO-PARAMETER EXPANSIONS

A. Thc coImcctlon to pcrtUI'bstion theo~

The contraction technique we have introduced is based
upon expanding in a parameter t which does not appear in
the Hamiltonian. Therefore, it is applicable even when
there is no identifiable small parameter which can be ex-
ploited to develop the more familiar perturbation expan-
sion. NcvcrthcIcss, thcI'c al c sltuatlons, such Rs ln thc
case of the (1+ 1}-dimensional Hamiltonian Ising model,
where such an identifiable parameter does exist and so one
is tempted to ask how our method relates to more familiar
tccllillqucs. This scctloll llas two pllrposcs: fli'st, , wc will
establish the precise connection between our expansion
and the usual perturbative expansion; second, we will indi-
cate the way in which one can exploit this connection to
simplify the problem of computing connected coefficients
for a class of interesting problems.

Begin with a HRIIllltonlan

where x is to be identified with the small parameter ap-
pearing in the usual perturbation expansion. The opeIator
Ho is referred to as the unperturbed Hamiltonian, and its
complete set of eigenstates will be denoted as

~
P„),with

eigenvalues E„. In particular, the lowest eigenstate of Ho
will be denoted by

~
Po). For the case of the Ising model

discussed in Sec. IV C x is to be identified with A, or 1 jA,
depending upon whether we are considering the weak- or
strong-coupling expansion. Since the connected coefficent
of the term of order t" in our expansion for the ground-
statc energy density 18 obtained bg computing cxpcctatlon
values of (Ho+x V)"+', it is obvious that each term of or-
der t" is a polynomial of order n +1 in the parameter x.

&4o I
c '

I Po&
(5.4)

U(t„t, )U(t„t,)=U(t„t, ) . (5.6)

The operator U(t) —= U(t, 0) satisfies the differential equa-
tion

dU(t)
dt

=xV(t) U(t), (5.7)

The solution to (5.7}is the time-ordered exponential

U(t) = T exp —x J V(r)dr (5 9)

Expanding U(t) in x one obtains a power series in x
whose coefficients are complicated functions of t. It fol-
lows from (5.7) that the function E(t) is simply

(@o /
V(t) U(t)

f @o)

&Po I
U«}

I lo&

Substituting the Taylor expansion for U(t) in both the
numerator and denominator of (5.10) we obtain an expres-
sion for E(t) which suffers from the same problem ad-
dressed by Theorem I, namely, the coefficients of x"
diverge as V"+'. The solution of this problem proceeds
as before; we observe that the ratio (5.10) must, term by

In analogy with the construction of the interaction repre-
sentation we define the operator

(5.5)

This is not a unitary operator, as in the Schrodinger prob-
IcIQ, howcvcr lt docs obcg thc saIQC gI'oup propert/
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term as a power series in x, be free of all volume diver-
gences. Hence, we know that

&q. ~
V(t)U(t) ~y. &

&4 I
«t)

I 0o)

where each connected matrix element appearing on the
right-hand side of (5.11) is proportional to one power of
the volume. Once again, connected matrix elements are
defined recursively by

( V"+'(t))'=(d tVt(t)T f V(t)dr ()tt —g " (V"r' t(t))' t)tt T f V(r)dr t)D) .
p=1

(5.12)

We have now established two equivalent expansions for
E(x, t), namely,

E(x,t)=E,'+x g, ( V" +'(t))'
yg l

(H"+'(x) )
(o

( t)tt

n=0
(5.13)

Expanding ( V" +'(t) )' as a power series in t, and
(H" +'(x) )' as a power series in x we obtain the double-
power-series expansion of Eq. (5.2). Now, however, we
are able to identify the connected matrix element
(H pV" +')~ either as the coefficient of t"+t' appearing in
the expansion of ( V" +'(t))', or as the term of order
x"+' appearing in the coefficient of t "+~ in our original t
expansion.

We now argue that by inserting a complete set of inter-
mediate states into (5.11) using the recursive definition
(5.12) and taking the limit t~ao we obtain the familiar
perturbation expansion. To see how this works consider
the first few terms of the expansion, i.e.,

E(x,t)=Ep+x(Pp ~
V

~ Pp)
t (E()—E )

n&0 En —Eo

+ e ~ ~ (5.14)

B. Exploiting the double expansion

Note, that it is often true that V connects
~ Pp) to one,

or at most a small number of other eigenstates of Hp.
When this happens then it is quite simple to compute the
analog of (5.14) directly and use it to generate the t expan-
sion. From a computational point of view this observa-
tion can greatly simplify the task of computing connected
matrix elements for the general t expansion.

where we have inserted a complete set of intermediate
states and explicitly carried out the necessary integrations
over the v. variables. It is this integration which converts
an expression free of energy denominators into one with
such denominators. Taking the limit t —+oo we see that
the decreasing exponential in the term of order x van-
ishes leaving us with the familiar result of second-order
perturbation theory. Note that expanding this term
around t =0 one finds that it starts like t, as it should,
and that the energy denominators disappear, as they must,
when we expand this result as a Taylor series in t.

A more important point relating to the general struc-
ture of the two-parameter expansion has to do with the
general question of convergence, both of the Taylor series
and sets of Pade approximants. On the one hand, the gen-
eral t expansion amounts to first summing over all orders
in x corresponding to the same power in t and then con-
structing Pade approximants to the resulting Taylor series
in t. On the other hand, perturbation theory corresponds
to summing over all terms multiplied by the same power
of x in order to obtain a sum of decreasing exponentials in
t; then, taking the limit taboo. Which of these pro-
cedures can be expected to work best obviously depends
upon the region of x and t under consideration. In the re-
gion x && 1, where we might expect perturbation theory to
be rapidly convergent, it is in general preferable to use the
Taylor expansion in x, leaving the t dependence in the
form of decreasing exponentials. In this case one is not
exploiting the contraction approach at all. However,
when x is large and simple perturbation theory in x can
no longer be trusted, the contraction approach comes into
its own. In addition, perturbation theory is usually only
an asymptotic series; the fact that the contraction ap-
proach is expected to converge gives us a prescription for
resumming the finite-t perturbation expansion in order to
render it more convergent. We will discuss questions of
convergence in Sec. VII.

Another point is that there is no reason why the param-
eter t appearing in our general formulas cannot be re-
placed by a complex parameter z, so long as we take the
limit %(z)~Do. This would correspond to the usual
Gell-Mann —I.ow expansion, if we take matrix elements
between two different states defined by taking z =t (a+i)
and z*=t(e i). Section VI—is devoted to the theory of
such expansions and we will delay discussion of this point
to that section.

Finally we would like to point out that the perturbative
technique combines with the variational approach in a
straightforward fashion. The trick is to replace the varia-
tion of the parameters in

~ Pp) by an equivalent variation
of parameters in a "shadow Hamiltonian, " ' i.e., an un-
perturbed Hamiltonian Ho whose lowest eigenstate is

~
gp). This is useful since in a general case it is easier to

change parameters in the Hamiltonian than in the wave
function. Another virtue of this approach is that it is
often easier to guess, on physical grounds, what operators
(or order parameters) should be varied in Hp,' whereas it
may be quite difficult to find the correct direction to
choose in Hilbert space. Subtracting the shadow Hamil-
tonian from the true Hamiltonian we obtain a separation
of the type of (5.1), however, in general this no longer
leads to a simple perturbation theory and can prove
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cumbersome in practice. The decision of whether to use
the perturbative technique or directly calculate the t ex-
pansion should be made on the basis of the problem to be
studied.

VI. BISTATE CONTRACTION SCHEME

To this point we have focused on a contraction scheme
based upon taking diagonal matrix elements of operators.
This method is powerful and easy to implement for a wide
variety of Hamiltonians; nevertheless, there are problems
for which it is desirable to be able to compute with off-
diagonal matrix elements. For example, consider the
problem of computing the ground-state energy density or
string tension for a non-Abelian lattice gauge theory. For
a non-Abelian theory there is only one gauge-invariant
mean-field state which can be written down, i.e., the infi-
nite coupling vacuum. If we restrict our analysis to diag-
onal matrix elements and product wave functions, then we
lose the ability to introduce a variational parameter. As
we have already seen, however, without a variational pa-
rameter we give up a considerable amount of accuracy. A
variational parameter can be introduced by using a mean-
field wave function which is nontrivial, but such a wave
function is no longer gauge invariant; hence, we are un-
able to trust computations of the string tension, etc., ob-
tained in this way. It is therefore highly desirable to
develop a scheme which allows us to introduce a varia-
tional parameter without abandoning the explicit gauge
invariance of the computation. The technique which we
will now discuss, which exploits two states and computes
off-diagonal matrix elements, has this virtue. The appli-
cation of this approach to the study of lattice gauge
theories is currently under investigation, and wi11 be
presented elsewhere. %'e will show here that this bistate
computational scheme is useful whenever we can con-
struct a good approximation to the vacuum wave function
of a Hamiltonian system for two widely different values
of the coupling constant, because in that case it allows us
to construct an expansion about both points simultaneous-
ly. As an example of this aspect of the scheme we will
show how it can be used to construct an explicitly self-
dual series for the energy density of the Ising model in
1 + 1 dimensions.

A. General formalism

Ez(t)=(X, ~H )X, )

z(I (x, [

-' ~x.))
df

(6.2)

Begin by considering two different states
~ fo) and

~
Xo). Using either of these states by themselves we can

construct the improved states
~

tP, ) and ~x, ), and use
them to construct two independent approximations to the
vacuum energy, i.e.,

E„=(y, ~H ~y, )

d(ln(go
~

e '
~ fo) )

df

and

both of which have the true vacuum energy as an asymp-
totic limit. Next consider the expression

Z(ln(yo
~

e-'~ ~X,))
Egg(t) =-

dt
(6.3)

We will refer to this as the bistate contracted energy. As
a matter of convenience we will assume that

~ Po) and

~
Xo) have been chosen so that E&z(t) is real. In contra-

distinction to E~ and Ez, (6.3) is not, by itself, an upper
bound on the vacuum energy. It is, however, guaranteed
to converge to the true energy in the limit t~ oo. To con-
vert this information into a form which does provide a
bound we make use of the Schwarz inequality

IEyx«) I
&

I &0 IH Ix & I
(6.7)

The right-hand side is yet another expression that tends to
the desired asymptotic limit, which, however, cannot be
exploited since our treatment of the cancellation of
volume factors in the f expansion does not apply to this
quantity, whereas it does apply to E~z(t). We should
point out that since our proof of Theorem I did not make
use of the state appearing on the left- and right-hand sides
of the expectation value, and in fact did not even require
that they be the same state, the result of Theorem I gen-
eralizes to the bistate situation. Hence, all of the tools
which we have developed carry over directly. The only

&
I & @o I

e '
I @o&&Xo I

e '"
I
Xo & .

Integrating (6.1), (6.2), and (6.3) with respect to t we can
solve for the various quantities which appear in (6.4). For
example, we find

(qo ~

e '
~
qo) =(qo

~
t//o)exp —J Ey(~)dr, (6.5)

and analogous expressions for the other matrix elements
of e ' . Inserting them into the Schwarz inequality leads
to the result

, (y. ( q. )&x. ~x.&

[E&(~)+Ez(r)]dr & 2tE„„, (6.6)

which tells us that the left-hand side of (6.6) is an upper
bound upon the true vacuum energy. In addition, i.t tells
us that this quantity is always greater than or equal to the
minimum diagonal approximation to the energy. Having
recast the bistate computation into the form of an upper
bound we may exploit this bound by varying the left-hand
side of (6.6) to fix the choice of the parameters in

~
go)

and
~
Xo). Note that it is necessary to integrate to large t

values if one wishes to render the role of the logarithmic
term in (6.6) negligible. To do this reliably, however, will
generally require computation of many connected matrix
elements. If one can extrapolate to large t one may apply
the criterion of a stationary point in parameter space to
2Pt JE~z(~)dr directly, although it is not truly an upper
bound. In practice there should not be much difference
between these two methods for reasonable t values.

The Schwarz inequality (6.4) can also be used to obtain
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B. Application to the Ising model

As an example of the application of the bistate method
to a specific problem let us consider our previous example,
the Ising model in 1+ 1 dimensions. In this model we
know the form of the vacuum wave function at opposite
extrema of the coupling A, (i.e., strong and weak cou-
plings), the problem is to construct a way of simultane-
ously interpolating from both ends of parameter space to
the region A, = l. This kind of extrapolation is just what
the bistate scheine does for us. If we let

~ QQ& and ~XQ&

be the exact strong- and weak-coupling ground states,
respectively, we have a systematic procedure that allows
us to approach the true vacuum throughout the entire
range of couplings. More specifically we choose these
states to satisfy

o3(')
I PQ& —

I 4Q& ~i(i)
I XQ& —

I XQ& ~ (6.9)

It is obvious that
~

QQ& is the vacuum of the Ising Hamil-
tonian

H — g (73(i) 1,g—o i(i)o i(i + 1 ) (6.10)
l

in the limit A, =O; and
~
XQ& is one of the two degenerate

vacua in the limit I,= oo.
Perhaps the most amusing feature of this application of

the bistate technique is that the t expansion which is gen-
erated has the very interesting property of being term by
term self-dual. To our knowledge this is the only sys-
tematic expansion which exhibits this discrete symmetry
of the exact theory. For nonexperts we point out that the
duality transformation for the Ising model in 1+ 1 di-
mensions amounts to replacing the point variables o. by
another set of Pauli spin matrices ~ associated with the
links of the lattice. If one denotes every link by the point
to its left, the relations between these two sets of operators
should be

o3(i)=xi(i —1)ri(i),

~3(i)=a i(i)o i(i = 1) .
(6.1 1)

It follows that H(A, ) turns into AH(A, ') for the one-
dimensional system in which the links (which are dual to
the lattice points) form an equivalent system to the one we
started with. The duality relation should hold for every
energy level of the Hamiltonian

E„(A,) =A,E„(A, ') . (6.12)

Performing the duality transformation on
~ fQ& and

~
XQ &

one finds that they interchange their roles. Since in this

chance which must be made is that there is an arbitrari-
ness in the definition of connected matrix elements having
to do with the normalization one chooses for the states

~ QQ & and
~
XQ &. Since these normalizations are arbitrary

one may choose, without any loss of generality,

(6.8)

In this case, all definitions of connected matrix elements
are as before except that all operators are to be taken be-
tween (pQ ~

and ~XQ&.

basis all the matrix elements that we need will be real it
follows that they will automatically be self-dual; thus
guaranteeing that the resulting energy function will obey
(6.12).

In our treatment of the Ising model as a bistate calcula-
tion we fixed the two states

~
1iQ& and ~XQ&, and therefore

have no variational parameters with which to play. As a
result the energy, calculated to the same order in t as in
Sec. III, is less accurate over the entire range in I,. There,
the biggest error was on the order of 10 at the phase
transition, and on the order of 10 elsewhere; here, on
the other hand, the relative error is on the order of 10
throughout. Another feature of this result is that to this
order in t the calculation does not show a phase transi-
tion. The second derivative of the energy density, howev-
er, does peak at A, =l, the self-dual point. This means
that consecutive higher orders in t are required to slowly
build up the singularity associated with the second-order
phase transition at the correct point.

C. Gauge theories

%e expect the bistate calculational scheme to be partic-
ularly useful for local gauge theories. Characteristically
such models can be easily solved in the strong-coupling
regime, but they are very difficult to tackle in the weak-
coupling regime, which happens to be the one of interest.
The difficulty arises because local gauge invariance has to
be maintained by the vacuum wave function. This rules
out a mean-link ansatz, that could otherwise be appropri-
ate for the weak-coupling region unless it is properly pro-
jected onto its gauge-invariant part. While one can for-
mulate a gauge-projected mean-field calculation, ' it is in
general prohibitively complicated to implement. The bi-
state approach manages to allow us to use nontrivial prod-
uct wave functions without going through such a comph-
cated procedure. If one uses the strong-coupling wave
function for

~ QQ&, one is free to use any state for ~XQ&

without worrying about its gauge properties. The fact
that

~ gQ & and H are gauge invariant, guarantees that only
the gauge-invariant part of

~
XQ& will be involved in the

calculation. This provides an enormous simplification of
the problem.

A particularly straightforward series is developed if one
uses a mean-link state for

~
XQ&. In this case, since both

~
tpQ& and ~XQ& have no link-link correlations, we find

that connected diagrams are still ones which touch in con-
figuration space. With this ansatz the bistate approach al-
lows for calculations in the weak-coupling regime that
were up to now unique to strong-coupling perturbation
theory.

D. Complex t

Finally let us return to the remark that we are free to
choose the parameter t to be a complex variable z. In par-
ticular we could choose z to be z =(i+E)t, where e is a
small positive real number. In this case the state

(6.13)

becomes the usual time-dependent state of the
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Schrodinger representation in the limit e—+0. Now let us
recall that the usual formulation of perturbation theory
for Green's functions, etc. , involves the computation of
time-ordered products of fields between states 1$(t) ) and

I g( t—) ) in the limit t~ &x&. Clearly, this can be thought
of as an example of a bistate calculation taken between
states

I
g(z) ) and

I
g(z*) ), where z is taken as indicated

and the limit e—&0 is to be understood. Aside from the
fact that it is always interesting to be able to establish the
connections between different approaches, this observa-
tion is interesting because it raises the question of whether
or not this formalism can be used to calculate scattering
amplitudes as well as energy levels. It also raises the
question of whether the series in the complex variable z
and perturbative parameter x can be rendered even more
convergent by resumming it in a manner which is dif-
ferent from the one we have used in this paper.

VII. ANALYTICITY GF THE t EXPANSION

and rewrite the norm Z (t) as

Z(t)=&Pole '
IA&

= pc„*c„e

—tE„+S(E„)
e

En

(7.2)

S(E„)
e " =pc„c„ is the sum over all eigenstates of H hav-

ing energy E„. This procedure maps the problem of com-
puting Z(t) into the problem of computing the partition
function for a classical system at temperature 1/t, with
entropy S(E„). Thus, if this equivalent classical system
exhibits a finite-temperature phase transition, then quanti-
ties like 5'(t) will be nonanalytic in t; higher derivatives of
this function will exhibit singularities. Obviously, if the
c„'s vanish sufficiently rapidly as a function of E„ there
will be no problem, the extreme case being that all but a
finite number of the e„'s vanish. Our discussion of
theories in one spatial dimension was protected from this
problem because in one spatial dimension there are no
phase transitions at finite temperature.

We hasten to emphasize the fact that while this is a
possible problem this lack of analyticity only manifests it-
self for some choices of a trial wave function; in general,
it can be avoided if one chooses a wave function with

Up to now we have discussed the t expansions as if
E(t) and Z (t) are guaranteed to be analytic functions of
t, independently of the initial states

I go) and
I
Xo). This

is not necessarily the case. If one starts with a wave func-
tion which is a sufficiently bad approximation to the true
ground state of the system, then Z (t), etc. , may be nonan-
alytic. If this occurs it will affect the convergence of the
Pade approximants, and so it is important to be aware of
this possibility.

The simplest way to see that this can happen is to ex-
pand the state

I go) in a complete set of eigenstates of H,
i.e.,

(7.1)

some care. Presumably, this sort of effect will be signaled
by the fact that several Pade approximants will exhibit
singular behavior at the same value of t.

We will now discuss several examples and present a cri-
terion for telling when, within a class of trial wave func-
tions, one may encounter nonanalyticity in t. This cri-
terion is a conjecture and certainly does not have the
status of a theorem, but we believe that it generally pro-
vides a guide to when we can get into trouble. We will
show that if we use the wrong wave function, Ising sys-
tems can present some difficulties as soon as the dimen-
sion of the spatial lattice is greater than or equal to 2. On
the other hand, QCD-like models are not expected to
present any difficulties if the spatial dimension of the lat-
tice is less than or equal to 5. We reemphasize that this
argument does not mean that one cannot use the t expan-
sion to analyze spin systems in two and more dimensions;
rather, it says that if one does, one has to be more careful
in choosing the starting wave function for a spin system
than for a gauge theory. We conclude with the example
of similar problems which can be encountered for a
quantum-mechanical system with a single degree of free-
dom. This example is included in order to show how
changing the wave function can avoid difficulties.

H=g[ —0,(j ) —Ao„(j )cr„(j +n)]. (7.3)

As in the (1+ 1)-dimensional Ising model, these theories
exhibit ordered and disordered phases. The completely
disordered phase corresponds to the case A, =O, and the
completely ordered phase to the case k= oo. We denote
the vacua of the A, =O and I,= oo Hamiltonians by

I go)
and 1$ ), respectively. As in the (1+ 1)-dimensional
theory, we can use the general class of mean-field wave
functions which depend on the single parameter 8 to in-
terpolate between

I
tI}o) and 1$„).

We now ask what happens if we attempt to use the con-
traction technique to construct 1$ ) starting from

I go).
More precisely, we wish to compute the t dependence of
the function

Z(t)=&Pole ' lko&, (7.4)

where the state
I go) is defined to be the state for which

o (i) ld'o&=14'o& . (7.5)

In effect we want to know if we get the correct ground-
state energy, etc., using that wave function which lies
furthest from the true vacuum. Our conjecture is that if
this works, then we can expect our general calculation to
be free of trouble. Conversely, if this calculation exhibits
a phase transition in t, then we can expect to have prob-
lems.

Note that the state, which is an eigenstate of all o, ( i )
with eigenvalue 1, can be rewritten in terms of eigenstates
of o„( i ) as

A. Ising mode1s

Consider a higher-dim. ensional spin system of the Ising
type, i.e., theories defined by Hamiltonians of the form
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(l &+l )),1

2
(7.6)

simple modifications of the starting wave function can in
general avoid these problems.

where V stands for the number of lattice sites. This prod-
uct state is, up to the normalization factor of (I/V2),
just a sum over all of the eigenstates of the A, = ao Hamil-
tonian

Hence, we see that with this choice of
l Po)

tm(i )m(j)

m( i )=—1, 1

& i, j&

which is immediately recognizable as the classical Ising
model in d dimensions (where d is the spatial dimension
of our lattice).

It is easy to show that in the case of one spatial dimen-

sion

and

Z (t) = [cosh(t) ] (7.9)

(7.10)

which explains our interest in being able to use Fade ap-
proximant for functions of this type. The fact that this
function is analytic for all finite values of t is just a
specific example of the fact that there are no phase transi-
tions at finite temperature in one dimension. If the spatial
dimension of our lattice is 2 or greater, however, then we
know that the classical statistical mechanics problems
does exhibit a phase transition. Hence, for these theories
if one uses the A, =O wave function to calculate physical
quantities one can run into problems with analyticity in t.
Presumably, a variational ansatz, is capable of avoiding
such problems.

Note that if one chooses for
l 1(o) the wave function

and chooses for H the A, =0 Hamiltonian

H= —+erg( j ), (7.11)

the same sort of argument indicates that there is nothing
to worry about. In this case we obtain 8'(t)= —tanh(t),
as in the case of the one-dimensional theory, and every-
thing is completely analytic. Apparently, the difference
between these cases is that when starting from the disor-
dered vacuum the contraction operation has no way of
choosing between the two possible ordered vacua of H.
Obviously, if we start from one of the two ordered states
and try to contract onto the single totally disordered state
the situation will be better. In any event, the lesson we
wish to leave the reader with is that one can, if one is not
careful, run into problems with analyticity in t; however,

B. Gauge theories

Let us now apply the same argument to the case of a
lattice gauge theory. In this case the basic variables, the
fields of the model, are continuous functions taking values
on a compact Lie group. %'e will show that for these
gauge theories a t expansion built upon the simplest
strong-coupling wave function can be expected to generate
a nonanalytic function of t when the spatial dimension of
the theory is greater than a critical dimension d, . For-
tunately, we will find that for an Abelian theory d, =4
and for a non-Abelian theory d, =5. Thus, for the
theories of physical interest we do not expect to have any
difficulty with the application of our methods in their

simplest possible form.
Consider a lattice gauge theory defined by a Hamiltoni-

an of the form

gE~ 2g (—TrUp+H. c.),
2

l, a 8 p

where I stands for lattice links and p for plaquettes.
Choose for

l Po) the wave function which is annihilated
by all of the electric field variables. Following the logic
used for the spin models let us analyze the zero-coupling
Hamiltonian H obtained by dropping the Ea term from
(7.12). As before this represents the worst possible
mismatch between wave function and Hamiltonian, and
so our conjecture is that if the Z(t) is analytic in this case
it will be analytic for finite g. Evaluating the norm of the
contracted state we obtain

&&ole '"lfo&= J +«iexp ', y(. . . ((Trv, +H. c.),
I

(7.13)

which can be immediately recognized as the Wilson action
for a Euclidean lattice gauge theory in d dimensions; re-
call our problem is assumed to be formulated in d+1
space-time dimensions. If the gauge theory under con-
sideration is Abelian, then we know that for d =4 the
theory exhibits a phase transition; hence, we could expect
problems for r expansion for an Abelian theory in five
space-time dimensions. For a non-Abelian theory the be-
lief is that the Wilson theory does not have a phase transi-
tion below d =5, and so the r expansion is expected to
converge for all theories in the interesting case of four
space-time dimensions. Hence, we believe that this
method will run into no difficulties for the case of a pure
gauge theory in 3 + 1 dimensions.

C. The anharmonic oscillator

We will now show that one can run into difficulties
even when dealing with quantum-mechanical problems of
one degree of freedom when the quantum variables of the
problem are continuous and noncompact. To see how this
occurs, and to see what must be done to avoid it, we con-
sider the anharmonic oscillator. The anharmonic oscilla-
tor is defined by a Hamiltonian of the form
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H=p +x (7.14)

2 & 2 2Hp=p + 4' x

1~o0o= 2 toto
(7.15)

Clearly, in this example we will run into no difficulties
with volume factors, so much of the formalism of con-
nected graphs is not essential. Nevertheless, one still has
to divide the expectation value of H by the norm of the
improved state, and so the formula is still useful.

I.et us choose
~
Po) to be a Gaussian wave function,

i.e., the ground state of some harmonic-oscillator
shadow-Hamiltonian

P„(t)= 1—Ht
2n

(7.18)

tion. We will conclude our discussion by presenting this
alternative since it is a useful technique for a class of in-
teresting problems.

The fact that the Taylor series for the exponential of
the Hamiltonian has no radius of convergence around
t =0 does not reflect on the logic of the contraction tech-
nique; it merely implies that the approximation of e
by a power series in t is not possible. There is another ap-
proximation of the exponential which can be used in this
situation, and that is to approximate it by polynomials,
P„(t) defined by

n

Since co is directly related to the width of the wave func-
tion we see that we may vary co so as to obtain the best ex-
pectation value for

since

e ' ~= limP„(t). (7.19)

Ep= pH x (7.16)

J e ~'e 'dx- (7.17)

which diverges for t &0. This is the problem which the
Pade approximants were trying to reproduce, and since it
is an effect due to choosing a bad wave function no clever
modification to the Pade approximant prescription will

really be able to rescue the situation.
Clearly, the problem encountered here is simple to

solve; only one has to choose for
~ go) a wave function

which vanishes sufficiently rapidly as x~ ac. This is the
route that should be chosen for multidimensional models
with noncompact variables where one has to rely on the t
expansion to deal with problems associated with factors of
volume. However, it is interesting to note that for the
simple quantum-mechanics problem there exists an alter-
native to choosing a better behaved starting wave func-

It is a straightforward matter to compute ihe t expansion
for this problem; unfortunately, the results are quite
disappointing since the straight Pade approximants fail to
converge well near t =0, and so it is difficult to under-
stand how to continue to larger t's. The difficulty en-

countered in this calculation can be easily understood if
we apply our conjecture and study the properties of the
Z (t) which corresponds to contracting an arbitrary
Gaussian wave function using the simplified Hamiltonian
H =x". In this case the problem of computing

(trjo
~

e '
~ fo) reduces to the computation of an integral

of the form

To use (7.18) and (7.19) we approximate the norm of
~ g, )

by

(7.20)

and hold e=tl2n fixed while increasing n. With this
prescription the limit n —+co coincides with the limit
t~ 0O.

This approximation has two advantages.
(1) Using it in (7.20) yields a positive norm for every

value of n.
(2) It is free of any singularity in t yet it converges uni-

formly as n~ao. If one computes with this procedure
for e &0.01 and n =20 one obtains the ground-state ener-

gy to 15 significant figures. The convergence is extremely
rapid.

This concludes what we have to say about questions of
convergence of the t expansion, except to emphasize that
this is a subject which merits considerably more study.
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