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Ritz's method is formulated for electrodynamics. The wave function is expanded in terms of the
scalar basis function. For the classical electromagnetic field, the expansion coefficients are deter-
mined by the direct variation of the action functional. Quantization is performed by the path in-

tegral. This method is Lorentz covariant and makes it possible to use the derivative, unlike the
finite-difference approach, and gives the more natural gauge-invariant formalism compared to lat-
tice gauge theory. The present method is applied to a self-interacting scalar field and the perturba-
tion expansion is given in real space-time. The result is compared to the Feynman diagram method,
and it is shown that all order terms are reduced to the product of one-dimensional integrals. All

these integrals are obtained in analytic form under some conditions.

I. INTRODUCTION

The importance of numerical calculation has become
greater in physics. For field theory, Wilson's lattice gauge
theory' is widely used. The advantage of his theory is
that it is gauge invariant and can be applied to strongly
coupled fields. However, the derivative cannot be used
and approximated by the finite difference in his theory, so
that the theory has a complicated form to satisfy gauge
invariance. In fact, the action functional for the boson
field is quite different from the form in the continuum
limit.

Recently, Bender, Milton, and Sharp applied the
finite-element theory to the free Dirac field. They ob-
tained the difference equation by substituting the wave
function, which is linearly interpolated in the finite ele-
ment, into the differential field equation. They did not
show how they constructed the gauge-invariant formalism
and whether the field equations were obtained by the vari-
ational principle for the gauge field. The above two
methods are not Lorentz covariant, so that it is not clear
whether the obtained result is Lorentz invariant or not.

The purpose of this paper is to give a formulation
which overcomes the above difficulties by the use of
Ritz's method. In Sec. II, the formulation is given for
electrodynamics. The field is expanded in terms of the
scalar basis function. This basis function interpolates the
wave function linearly in the finite element of the parame-
ter space. The field equation is obtained by the direct
variation of the action functional for classical theory.
Quantization is performed by the path integral. ' The
present method makes it possible to use the derivative and
gives a more natural gauge-invariant formalism compared
to lattice gauge theory. This method also has the impor-
tant feature that it is Lorentz covariant.

In Sec. III, the method is applied to a self-interacting
scalar field and the perturbation expansion is given.
There, the comparison to the Feynman diagram method is
presented. Feynman diagrams are convenient for calcula-
tion in the energy-momentum space. It will be shown
that in the present method all order terms of the perturba-

tion expansion in real space-time are reduced to the prod-
uct of one-dimensional integrals. These integrals are ob-
tained in analytic form under some conditions. This cal-
culational procedure is simpler compared to the Monte
Carlo method, which needs much computational time.

II. FORMULATION FOR ELECTRODYNAMICS

A. Basis function

In the present method, the four-potential A&(x) of the
electromagnetic field is expanded in terms of the scalar
basis functions f, (x),

Ap(x)=Ap+, (x) . (2.1)

Here, the repeated index a implies summation over
discrete integers. The point x& in space-time is mapped
to the point t& in four-dimensional parameter t space by

t„=G„(x) . (2.2)

When the point x& is transformed to x& under a Lorentz
transformation, G„(x') satisfies

t„=G„'(x') . (2.3)

That is, the function G„(x) is a scalar. The t space is
decomposed into finite elements with the form of a hyper-
cube. The coordinate t& is divided into X& sections.

The basis function f, (t) is defined around the vertex

t&, and expressed as

fa(t) h ll(tl )h2j(t2)h3k(t3)hpl(tp) ~ (2.4)

0 form=0
h~(t) =

for m &0,
(2 5)

Here, the index a refers to the vertex (tl;, t2j, t3k tpl). T}le
function h (t) (the indices 1, 2, 3, and 0 are omitted) is
defined in the section t l (t & t +l and takes the fol-
lowing values in the section t~ &

& t & t~:
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and in the section t (t(t +~.

h (t)= ~

+]—t
for m &N

0 form=N.
(2.6)

Here, g is the lattice spacing.
Using this basis function, the wave function A (r) is, for

example, represented in the one-di. mensional space section
t &t&t +i by

A(t)=A(r )h (r)+A(t +, )h +,(r)

8~A„(x)=0,
we use the weighted residual method and impose

~A~ bgb x = bApar-pub=0.

Here,

sin[N (xp —xpb) ] 3 sin[N (x;—xib )]
gb(x) =

in(xp xp—b), , n(x; x;b—)

(2.12)

(2.13)

faces and the field far from the region considered becomes
zero, so the first term on the right -hand side vanishes.

In order to approximate the I.orentz condition

1=—(r +i —t)A(t )+—(t t )A—(t +, ) .1
(2.7) Lpgab —f Bpjggbdx ~

(2.14)

For this basis function, the expansion coefficients in Eq.
(2.1) are equal to the value of the field at the vertex
around where the basis function is defined and the wave
function in t space is linearly interpolated in the finite ele-
ment. Since the wave function is linearly interpolated,
there is no rapid oscillation in the finite element. That is,
the regularization can be performed by the use of this
basis function.

This method has another important feature. Since the
transformation function G&(x) in Eq. (2.2) is scalar and
the parameter t space is independent of the Lorentz
transformation, the basis function f, (x) is scalar. Then,
the following formulation becomes Lorentz covariant.

B. Classical electromagnetic field

The action functional for the classical electromagnetic
field is given by

The quantity N is a large number and gb becomes

3

g =5(x —x ) n5(x; —x; ) (2.15)

when N~ 00. Then, the condition becomes
1

Qb=Aq L~ b=0.
This equation corresponds to the condition

8~A~(xb )=0 .

(2.16)

(2.17)

In Eq. (2.16), the limit N —v ao cannot be taken because
there is a discontinuity of B&A& at the vertex. Then, the
second term of Eq. (2.11) on the right-hand side approxi-
mately vanishes.

Therefore, the variation 5' becomes

5'= —f A B+,5A~B+~dx

S =Sg+Sl,
S) ———

4 Fp~ x,
SI f j&A&dx,

(2 g) where

= —5A~M~A„~,

~„=f ag, ag.dx.

(2.18)

(2.19)

where F&„ is the electromagnetic field strength, which is
represented by a derivative unlike lattice gauge theory and
ss given by

Fpv= dpAv dip . (2.9)

Therefore, the field is local in this theory unlike the
finite-difference approach. The quantity j„is the current
four-vector.

The variation of the action functional is performed
with respect to A„~ which excludes the value of the field
on the initial and final spacelike hypersurfaces. ' Then,
6Sy becomes

5S~= —f B„A„B„5A„dx+f BQ„B„5A„dx . (2.10)

In the second term of these integrals, we integrate by
parts. Then, we have

f a~„a„5A~x= f a~„5A„d~„fa„a„A„5A„dx—,

(2.11)

where do.
& is the hypersurface element. The variation is

not performed on the initial and final spacelike hypersur-

Here, index a refers to all basis functions. On the other
hand, the index p excludes the basis functions defined
around the vertex on the initial and final spacelike hyper-
surfaces.

For the action functional SI, we obtain the variation

5S1=5A~ fj vfpdx

where

=5A~b~, (2.20)

b~= fj„fpdx . (2.21)

With the aid of the variational principle, we get, by in-
terchanging the indices p and v,

M~A~~ ——b~p . (2.22)

The above equation corresponds to the Maxwell equation

—QA~ ——jp . (2.23)

In solving the above field equation, the values of the field
at the first and second time-steps are given as the initial
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condition. Then, the field at the third time-step can be
obtained if the first and third steps are given as the initial
and the final time-steps, respectively. Iterating the above
procedure, the field at all time-steps can be calculated.

P(x)=P,fa(x) . (2.24)

C. Quantum electrodynamics

For the quantum theory, the Dirac field is expanded in
the same form in Eq. (2.1),

For convenience in the discussions, the following condi-
tions are imposed:

U „=0 for m =0, X„+1,

&,=3 .
(3.3)

Then, we can regard the index m as going from 1 to K„.
The obtained results can be easily generalized in the case
where these conditions are not imposed.

~hen the lattice spacing is taken to be g„=gt =g the
action functional becomes

The action functional is given by

S = ——,
' f F„„dx—f p(y„a„+m )p dx + fj„A„dx,

(2.25)

S = Ug UbMgb

M.,= ——,
' f (a„f.a„f, a,f.a,f—, )dxdt .

(3.4)

where the current four-vector j& is denoted as

J„=tenor„f, (2.26)
Here, the matrix Mas, necessary for the following discus-
sions, is given by

and y& are Dirac matrices. The quantization is performed
by the path integral. ' Then, by the use of the approxi-
mated Lorentz condition (2.16) the transition amplitude
T;~ is given by

T f=—f D'[A„]D[g ]a[g„]5(Q )exp(iS) . (2.27)
1

Here, the indices p, q, and r exclude the values on the ini-
tial and final spacelike hypersurfaces. Quantities p& and
g„are Grassmann numbers and Z is the normalization
constant. The integration is performed, for example, by
the Monte Car1o method.

The above formalism is invariant under the gauge
transformation

—1 for a =(m, 2), b =(m+1,2)
M,b=t 1 for a =(m, 2), b =(m, 2+1)

0 for a =b =(m, 2),

using Eqs. (2.5) and (2.6) with

,
3

for m =n

h h„dt =
for m =n+1

6
0 for other case,

(3.5)

P(x)~g(x)exp(ie8),

~„(x) ~„(x)+a„e.
(2.28)

Thus, this method gives the more natural gauge-invariant
formalism compared to lattice gauge theory, in which the
action functional for the boson field is quite different
from the form in the continuum limit and complicated.

dh dh„ di=

2
for m =n

1
for m =n+1

0 for other case .

III. APPLICATION TO SCALAR FIELD
In the classical theory, the following equation is ob-

tained by the variation with respect to U 2..

A. Free field

In this section, the method given in Sec. II is applied to
a scalar field. For simplicity, the calculation is performed
in two-dimensional space-time, and real space-time is tak-
en so as to coincide with the parameter t space. At first, a
massless scalar field is considered. The action functional
is taken to be

+m Um —1,2+ Um, 1+ Um, 3 Urn+1, 2 0 ~

For the initial condition

Uk, i Uk+1, 2 1 Uth, i

U~ 2 ——0 (m&k+1),
the solution becomes

(3.&)

(3.9)

S = ——,
' f (a„ya„y a,ya, y)dx dt . —

The scalar field P is expanded as

0 = Uafa = Um, afm, a

(3.1)

(3.2)

Here, index a refers to the vertex (x,t) =(mg„,ng, ),
Quantities g„and g, are the lattice spacings. The integers
m and n go from 0 to N„+1 and 1 to N„respectively.

Uk+2 3 —1 U 3 —0 (m&k +2) (3.10)

Ty ——— D Um 2 exP iS1
(3.11)

This result shows that the pulse is propagated exactly
with the velocity of light and the amplitude is conserved.

The transition amplitude in the quantum theory is
given by
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If the integration is performed with respect to U 2 at
first, the factor 5(F~) appears, so that the transition am-

plitude becomes zero if Eq. (3.8) is not satisfied. There-
fore, the field in quantum theory also has to satisfy, at
least in this case, the field equation which has the same
form in the classical theory.

S =So+Sr ~

S,=-,' f (a„ya„y+a,ya, y+m'y')dx dt,

Si ———f Pdxdt.
6

(3.12)

Using the expansion given by Eq. (3.2), the action func-
tional becomes (the lattice spacings g„and g, are not
necessarily equal in this case)

B. Self-interacting field

The self-interacting scalar field is useful to study the
fundamental characteristics of the interacting field and to
investigate the effectiveness of the computational method.
The (Euclidean) action functional is taken to be

provided that the inverse matrix M p q exists. Then, the
action functional So& is transformed to

Sos =Soc+C

Soc——Up Mpq Uq,

C 4 BpM pqBq

(3.19)

R R =RR =1. (3.21)

Therefore, the action functional Soc is further
transformed to

(3.22)Sop ——Up"M~ Uq',

with the diagonal matrix Mp q.
Thus, the transition amplituae in the Euclidean mea-

sure becomes, using Eqs. (3.15) and (3.19),

The matrix Mz z is diagonalized by the transformation

Up" ——Rpq Uq,
(3.20)

U„"=U„',

where Rz ~ satisfies

S =Sp+SI,
Sp ——U, UbM, b,
SI a Ub c+abc

where

(3.13)
T~t =exp( —Soy —C) (exp( —SI ) )

Here, (X) means

(X)=—f D[ U&]Xe xp( —Soii+C) .
1

(3.23)

(3.24)

—,
' f (g„f,Q„f&+Q,f Q,fb+I f f&)dxdt,

(3.14)

N, t ———f f,fbf, dxdt .

The action functional for the free field is rewritten as

This integral is rewritten using Eqs. (3.19) and (3.22),

(X)=—f D[UplXe px( —Soc)
1

3 U" X p —S" (3.25)

So =So~+Spa
dSpy= Uv UwMvw ~

Spa= UpMpq Uq —Bq Uq .

Here,

Bq ———2U„M„q ———2 U„Mq„,

M„"„=5(u, w)M, ~,
with

(3.15)

(3.16)

because the Jacobian is unity. In Eq. (3.23), the factor
exp( —So& —C) corresponds to the normal product (exter-
nal line) in the Feynman diagram. ' The expectation
value (X) for the background free field corresponds to
the product of the Green's functions.

The transition amplitude is expanded as

T,&
——exp( —S» —C)( (I)—(S,)+-,' (S,')+ ) .

(3.26)

1 for u=w
5(u, w = '

0 for u~w . (3.17)

Since Spc is expressed as

Soc= grlpUp
P

(3.27)

Hereafter, the indices U and m refer to the field values at
the initial and final time-steps. On the other hand, the in-
dices p, q, r, s, t, and u exclude these values. The indices
a, b, and c refer to all field values.

Following the technique for the Gaussian integration
given in Appendix A of Ref. 5, the variable Up is
transformed as

Up ——Up ——,
' M '~Bq,

I= dUp" Up' exp —
qp Up' (3.28)

with the diagonal element rI~ of M~ ~ (in this case, the
summation rule for the index p is not applied in repeti-
tion), all order terms with the multifold integral are re-
duced to the product of the following one-dimensional in-
tegral, using Eqs. (3.13), (3.18), and (3.20):

U„' =Uv ~

(3.18) It is much simpler compared to the multifold integral.
When qp is positive, this integral becomes
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(2j —1)ll

2J 2J+1

~0 for k =2j+1 .

(3.29)

Mqq ——ha b

0 ha
(3.30)

The indices p and q refer to the vertex (x,t)=(g„,j g,)'
and go over p, q =(i,j)=(1,2), (2,2), (3,2).

The matrix elements become, using Eqs. (3.6) and (3.7),
for the massless case

(3.31)

(3.32)

Then, thc diRgonal clement 'g& is obtained Rs

a+v 2b

a v2b . —
(3.33)

All these values are positive when

I11 tllis case, 'thc determinant of Mp q 1s givcii by

Det[M ]= gI) &0,

(3.34)

(3.35)

so that the inverse matrix M '&
&

exists.
Therefore, since the condition (3.34) is satisfied, all or-

der of perturbation expansion terms can be obt»ncd in an-

alytic form with R, finite value, independently of the cou-

The above calculational procedure can be used, when
thc illvcrsc matrix M & &

exists and thc diagoIlal clc-
ments q& are all positive. Here, 8 simple case is investi-

gated where N„=3 in Eq. (3.3). The matrix M~ ~ is given

by

pling constant. Accordingly, the transition amplitude is
obtained for the strongly coupled field by summing up the
Rll order terms~ as long Rs thc pcrturbatlon scrIcs docs not
diverge. In addition, when X„, X,—+00, the transition
amplitude for the conventional local field theory is ob-
tained. This calculational procedure is n1uch simpler
compared to the Monte Carlo method, which needs much
computational time.

IV. PURTHER OUTLOOK

The present paper has shown the effectiveness of the
Ritz's method. In this paper, we restricted the basis func-
tion to the linear-interpolational type. In the above for-
mulation, the derivative has the discontinuity on the
boundary of the finite element. However, this problem
does not occur if the higher-order polynomials are adopt-
ed as the basis function. Furthermore, there remain many
possibilities for the selection of the basis functions. For
example, the basis function can be chosen which has the
form of the products of the linear-interpolational-type
basis function in time coordinate and exp(ipJxj) in space
coordinates. In this representation, the initial and final
states can be described in momentum space. If this basis
fullctio11 is llscd 111. pa1RIIlctcl' t spRcc, R11d tllc cxpRIlsioil
terms for large momentum are truncated, this formalism

gives the relativistic cutoff.
In thc variRtlon, it is possible to usc thc I Rgrangc mul-

tiplier theory for the initial and final conditions. Then, a
more general basis function can be used in which the ex-

pansion coefficient does not coincide with the field value

at the vertex. The same procedure can also be applied to
the I.orentz condition.

In this paper, we restricted the discussion of the formu-

lation to usc it as the computational method. H0%'ever, I
think there might be some possibility that the real physi-
cal phenomena in a short-distance area can be described

by the above or similar theories. However, it is bcyolld
the scope of this paper, because no experiment has been

performed for such phenomena in a short-distance area.
More detailed discussions will be given elsewhere.
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