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m classical electromagnetic zero-pomt radiation
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A classical splnnlIlg magnetic d1polc undcrgo1ng uniform RccclcI'at1on thI ough class1cal clcc-
tromagnetic zero-point radiation is shown to behave at equilibrium as though immersed in a thermal
bath at the Unruh-Davies temperature T=Aa/2~uk. Although the electromagnetic f1cld correla-
tion functions seen by the uniformly accelerating dipole «Io not correspond to Planck s thermal radi-
Rt1on spectrum, thc dcpaltulc from PlRnck1an form 1s caIlcclcd by additional terms arising 1n thc I'cl"

ativistic radiation damping for the accelerating dipole. Thus the accelerating dipole behaves at
equilibrium as though in an inertial frame bathed by exactly Planck s spectrum including zero-point
radiation. An analogous result was reported recently for a classical harmonic oscillator undergoing
uniform acceleration thlough classical electromagnetic zcI'o-point Iad1Rtlon.

INTRODUCTION

It was shown 1cccntly that 8 classical chaIgcd harmon-
ic oscillator undergoing uniform acceleration through
classical electromagnetic zero-point radiation behaves at
equilibrium as though located in an inertial frame with
exactly Planck's spectrum of radiation with the Unruh-
Davies temperature T=fia /2~ok. This thermal
behavior for the oscillator occurred despite the fact that
the spectrum of random radiation seen by the accelerating
oscillator was not Planckian. The terms in the relativistic
radiation-reaction force associated with the accelerations
altered tllc osclllatol cquatloil of lllotloIl ill cxac'tly siicll a
way as to compensate the non-Planckian spectrum and to
bring the equilibrium behavior of the oscillator into exact-
ly Planckian form. It was conjectured that this compen-
sation would occur for all physically allowed classical
electromagnetic systems. IQ thc present RItlclc wc show
that exactly this same compensation arises in the case of a
classical spinning magnetic dipole.

The context for our calculations is classical electron
cory 1Q which I'andoID classlcR1 1Rd1Rtlon with 8

Lorentz-invariant spectruIn ha.s been included as the
homogeneous boundary condit1GQ GIl Maxwell s cquat1ons.
This classical electromagnetic theory is often termed sto-
chastic or random electrodynamics, or, more descriptive-
ly, clRssical clcctI'o«IynaIDics with class1cal clcctI'GIDRgQct-
1c zcio-po1Qt I'Rd1atioIl. Thc theory is described in some
detail in scvcI'Rl pUbllcat1ons.

The basic model for our present calculation was treated
recently within this classical theory. The model consists
of a point classical magnetic dipole p spinning with an
RIlgular InomcntUID s 1Q 8 dircctioIl paIRllcl to p. Thc
dipole is free to point in any direction. The mechanical
moment of inertia of the systeIn is assumed to vanish so
tllat thc tolqilcs go into challglilg tllc dlrcctlon of tlM spill,
and all of the system energy is electromagnetic. As a
I'ough approximation thc system caIl bc pictu1cd Rs 8
gyioscopc with 8 pcrmancnt magnet IDGUIltcd R1GIlg thc

spin axis of the gyroscope.
If the spinning magnetic dipole is placed in a magnetic

field, then it experiences a torque and so precesses. The
precessional motion leads to the emission of electromag-
netic radiation and hence produces a tendency for the di-
pole to align its magnetic moment along the direction of
the magnetic field. However, in the presence of random
classical radiation, the complete alignment never occurs
because the random radiation produces torques which
drive the spinning dipole away from the aligned position.
The balance between the opposing tendencies of alignment
and random motion leads to an equilibrium distribution
for the orientation of the magnetic, moment. In Ref. 5 we
found this equilibrium distribution for the spinning dipole
when located in an inertial fraIDe. In the present work we
find the equilibrium distribution when the dipole is ac-
celerating uniformly through classical electromagnetic
zero-point radiation. Our present calculation shows that,
under uniform acceleration through zero-point radiation,
the spinning dipole arrives at the same equilibrium distri-
bution as was found earlier for the dipole when at rest in
an inertial frame in Plancks spectrum mcludmg zero-
point radiation.

Although the conclus1GQ of GU1 calculation sccIns dis-
tinctly interesting, most of the intermediate calculations
are not of general interest. Hence, in order to shorten the
presentation while still making it possible for a critical
Icadcr to check GUI' woik, wc will pI'cscQt OUI' calculations
as though the serious reader had Refs. 1, 5, and 6 before
him for immediate reference. In order to prevent con-
fusion between the numbered equations in the present cal-
culations and in the references, we will include the refer-
cncc QUIDbcr along with thc icfcI"cncc s cqUat1on number.
Thus, for example, Eq. (47) in Bhabha's work in Ref. 6
will be denoted as Eq. (6-47).

The equation of motion we will use for the classical
sp1IlniIlg dipole is that g1vcIl by Bhabha 1Q 1940. Bhabha
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treated a point spinning magnetic dipole and found the
covariant equation of motion by an extension of Dirac's
technique employing conservation of energy and angular
momentum for the spinning particle and electromagnetic
field, assuming Maxwell's equations to be valid every-
where in space, right up to the point particle. The equa-
tion of motion provided by Bhabha's work of 1940 seems
quite complicated even though it corresponds to only a
special case of the still more general analysis given by
Bhabha and Corben in 1941. However, we will find that
for our assumption of uniform acceleration the equation
simplifies enormously.

We are interested in the equation of motion of the spin
in its own rest frame as this frame undergoes uniform
proper acceleration. Thus, we denote by P'"" the an-
tisymmetric spin tensor in its own rest frame, and by S"
the spin tensor in a given fixed inertial frame I, . The
simplifying restriction of Bhabha's work of 1940 is that
the spinning particle has only a magnetic dipole moment
and no electric dipole moment in its own instantaneous
rest frame. Thus in our notation we have

Then using the inverse Lorentz transformation A '"~ we
have S" =A '"~A '"~ ~, and from (1), the nonzero
elements above the diagonal for the antisymmetric tensor
S& are

SP1 py~13 SP2 py~23 S12 ~12

S13 ~13 S23 ~23

The time evolution of the spin tensor S" with respect to
the particle s proper time r is given in Eqs. (6-46) and (6-
47) of Bhabha's article as

Fill@'V ( /PE lllV QVg ill@
) (10)

S" +(u"S'"—u S'")

I SP [ g 2D clv+ gFlllclv

—g(F'" u~u" —F'"" v~v )] I
—Ip~vI,

(9)

where the electromagnetic field tensor F'~ is given by

as the only nonzero elements above the diagonal in the an-
tisymmetric spin tensor W" with

~~z +J~y +k~z (2)

where v" is the four-velocity of the point dipole as seen in

I, . The ratio between the components of the magnetic
moment p and the spin s in the particle's rest frame will
be denoted by g so that

p=gs (4)

Our interest is in the case of uniform proper accelera-
tion (hyperbolic motion) along the z axis where the four-
vector velocity of the particle takes the form relative to
the inertial frame I~

v"= = =(y 0 0 Py)
dx" dxI' dt
dr dt de.

and

y =coshar, Py =sinhar . (6)

Here a =ka is the proper acceleration of the particle, r is
the proper time along the particle trajectory, and the velo-

city of light is taken as unity so that factors of c can be
omitted. The Lorentz transformation dx", /dx, =A"
which transforms a four-vector A~ in I~ over to A~ in
the frame I, has nonzero elements following from (5) as

Ap ——A3 ——y, A3 ——Ap= —py,0 3 0 3

giving the three-vector spin in an inertial frame I, instan-
taneously at rest with respect to the dipole at the dipole
proper time r The sim. plifying restriction excluding an
electric dipole moment in the particle's rest frame takes
the covariant form in the inertial frame I„

(3)

The radiation damping tensor D& is given by

D""=d(S'"u —S' v )+(d ——, )(S"%'—S"" v)

+2(d+ —,
' )(S" v v"—S" v v")

——'(S"'"v"—S""u") + —'S "'
3 3

SPIN EQUATION OF MOTION
FOR CONSTANT ACCELERATION

We will rewrite Bhabha's relativistic equation of motion
so as to restrict it to the special case of hyperbolic motion
and to extract the equation of motion for the spin vector
s (r) in the particle's rest frame.

Our first simplifying step makes use of the special form
assumed by the particle four-vector (5) and (6). We notice
that the higher derivatives of the velocity are proportional
to lower derivatives. Thus, from (5) and (6) we find

and

v "=(any, O, O, ay) (13)

v I'=a vt', v" ~=a2v& . (14)

Also because of the condition (3), we find that the higher
derivatives of S&" are connected to combinations of lower
derivatives of S" and higher derivatives of v" as' in
Bhabha's Eq. (6-2). But then introducing the relations
(14) into Eq. (6-2), we find

+(d ——,
' )(S'"v" S'"u")v +——,S" v

with the abbreviations of Eq. (6-3)

S'"=S"v S""=S"v S"'"=S" vV

where the dots refer to differentiation with respect to the
particle proper time ~ and d is an unknown parameter
which cannot be obtained from the conservation laws
alone. Here again the velocity of light has been taken as
unity, c =1.
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S'&= —S" U, ,

S"I'= —2S""i
S"'&=—3SI'"~,+2a S~"U, .

(15)

(16)

Combining these pieces gives the antisymmetric tensor
D& with nonvanishing above-diagonal elements

(0, 1)= ——', Py(W ' —a W ),
Next we simplify Bhabha's radiation damping tensor

Di'" in our Eq. (11) by inserting the relations (14)—(17).
This removes all the primed tensors and also shows that
all terms depending upon the unknown parameter d van-

ish exactly, leaving for our case of uniform proper ac-
celeration

(0 2) ~ Py(~ 23 a 2~ 23)

(1,2)= —', P' '

(1,3)= —,
' y(W "—a 23'13)

(25)

DPv & (S Pv a2SPv)

+2[(S" —a S" )v v' —(S" —a2S" )v v"]

+2(S" v v —S" v v") . (18)

S'"=(O,aP'",aP' ',0) . (19)

Then using v" in (5) we can obtain the antisymmetric ten-
sor

S""+(v"S' —v "S'")

with nonzero elements above the diagonal given by

(0, 1)= —Py& ', (0,2)= —Py&', (l,2) =W '

(1,3)=y&", (2,3)=y& '. (20)

Next we work with the pieces needed for the tensor D&"

in (18). We find

( S"'—a S"')v„=(0, —a& ',—aP', 0) . (21}

The nonvanishing terms above the diagonal in the

antisymmetric tensor [(S& —a S" )v v"—(S"
—a'S' )v v"] are

(0, 1)=ay& ', (0,2) =ay&

(1,3)= —aPyP' ', (2, 3)= —aPy&
(22)

The term S" i is

At this point we insert the various tensors and collect
terms in order to obtain the equation of motion for P'&".
We list some intermediate steps for the convenience of
any reader wishing to check our calculation. .

We find Si" by merely differentiating the terms listed
in (8) with respect to the particle proper time r where y
and Py are given in (6). Next S'" is evaluated from (15),
(8), and (13) giving

(2,3)= —,'y(W" —aV ") .
Then contracting D with S~ and antisymmetrizing we

find the antisymmetric tensor IS"~ "]—Ip~vI with
nonvanishing above-diagonal elements

(0 1) & Py[~12(~' 23 a 2+ 23) ~23~' 12]

(() 2) 2 Py[~13~ 12 ~12(~' 13 2~ 13)]

(1 2) =—%13(5'P 23 a 2~ 23) ~23(~' 13 a 2P 13) (26}

(1 3) & [~23~' 12 ~12(~' 23 2~ 23)]

(2 3) & y[~12(~ 13 2~ 13) ~13~' l2]

The remaining terms on the right-hand side of
Bhabha's equation of motion given in (9) involve the an-

tisymmetric electromagnetic field tensor Fl' in (10) with
above-diagonal elements

y 01 E1 y 02 E2 y 03 E3 y 12 g3

Then combining this tensor with the four-vector v" we
find the antisymmetric tensor F"" (F& v~v"—F" v~v").—
The terms in the calculation of this tensor appear in
forms such as (y —1)E' Py 8 . These can—be rewritten

in terms of the electromagnetic fields w' and 4' seen in
the I, frame instantaneously at rest with respect to the ac-
celerating particle. Thus, for example,

(y' 1)E' Py—'~'=0—'y'E' Py'~'—
Py(yB2 PyE') = —Py&— , (28)

where we have used the standard Lorentz transforma-
tion' A =y(8 PE') connectin—g the electromagnetic
fields in I, and I,. Transforming all the fields in an
analogous fashion, we find the antisymmetric tensor

F" (F" v v" Fv —v")—
S " 1v(0, —a 3' ', —aP,O),

and the antisymmetric tensor

(S" v v"—S v v")

(23} has nonzero above-diagonal elements

(0, 1)=Py&, (0,2)= —PyAP ', ( l, 2) =3k

(1,3)= —yA, (2,3)=yA',
(29)

has nonvanishing above-diagonal elements

(0, 1)=a Py&', (0,2)=a Py&

(1 3) 2y~ 13 (2 3) a2y~ 23
(24)

where, appropriately, only the magnetic fields in the rest
frame of the particle appear. Now contracting this tensor
with S", we find the antisymmetric tensor
IS& [F "—(F v v' —F" v v )]I—Ip~vl with nonvan-
ishing above-diagonal elements
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(0, 1)=Py(~12m' —u23u3),

(0,2) =Py(P' A' +P' A ),
(1,2) =W13u'+ W23u2,

(1 3)=y(P' A —W' A'')

(2 3)= —y(W "A'+P'"A")

(30)

ing along the z axis in I„the magnetic field A p=kAp
seen in the rest frame of the particle is the same as the

field Bp seen in the fixed inertial frame I„93p
——Bp. The

random magnetic field 3F zp(O, T) seen at the rest position
of the spinning dipole was evaluated in earlier work. "
We showed that the accelerating particle finds a Gaussian
random field with a spectrum

The equations of motion now follow from Eq. (9) with
the tensors given in (20), (26), and (30). We find that the
same equations for P' '3 and P' appear twice while that
for P' ' occurs only once as

13 (~12~ 1 ~23~ 3)

2[~12(~ 23 a 2~ 23) ~23~ 12] (31)

—P 23= (~»~3+W12~2)

Q7 a
p, (ai) = 1+

7T C CEO

2

—,
'

irrco coth
a

(35)

S=p XBp——,'c p X[@ (a/c) —(p kk. p—)]

Thus for our present work we must modify the analysis
for a spinning magnetic dipole in an inertial frame so that
the equation (5-1) becomes from (34)

2[~13~ 12 ~12(~ 13 a2~ 13)] (32)
+P X Bit(0,~), (36)

12 (~13~1+~23~ 2)

2[~13(~ 23 2P' 23)—3g
~23(~ 13 a 2~ 13)] (33)

Rewriting the equations in vector form from (1) and (4),
and restoring the factors of c, we find (31)—(33) become

s=pX& '"— 2

p X ji (p —kk—.
1u ) . (34)

3c c

This, finally, is the equation of motion of a spinning mag-
netic dipole which undergoes a uniform acceleration
a=ka. We notice that for zero acceleration, a=0, this
reduces to Bhabha's Eq. (6-51) for a spinning magnetic di-

pole fixed at rest in an inertial frame. The noninertial
character of the particle's motion modifies only the
radiation-reaction term.

THERMAL BEHAVIOR OF THE SPIN

In this paper we wish to evaluate the equilibrium
behavior of a classical spinning magnetic dipole when it
undergoes uniform acceleration through classical elec-
tromagnetic zero-point radiation. In order to find this
behavior we follow a recent calculation of the behavior of
a spinning magnetic dipole at rest in an inertial frame in a
magnetic field Bp ——k8p along the z axis. Using the ap-
proximation that the magnetic moment was sufficiently
small compared to the spin so that the dipole made many
precessional revolutions during a small change of the
orientation angle 8, we obtained a Fokker-Planck equation
for the orientation angle between the spin direction and
the z axis. The calculation for the present situation fol-
lows so closely that of the earlier analysis that we will

simply note the few changes from the previous calcula-
tion.

The equation of motion for our accelerating dipole is
Eq. (34) where we separate the magnetic field 4' '" into
the fixed magnetic field A p along the z axis and the ran-

dom magnetic field 3F zp(0, ~). Since the particle is mov-

where the random field B21(0,7) has a spectral function

A (k, A, ) with

~ ~ ( k, A, ) =[1+(a /ceo ) ]—,
'

@co coth(m.

ceo�/a)

. (37)

Note that in Eqs. (36) and (37) we have adopted the nota-

tion of Ref. 5, using S as the spin vector we had denoted

by s above in the earlier part of this paper and also using

821 (O, z) for what we had denoted by A'zp(0, ~) above.
Now we can follow Ref. 5 except for the following

changes. When treating the radiation damping, we do not
use the earlier energy conservation arguments but rather
use the equation of motion as was done in the second half
of the discussion of radiation damping in Ref. 5. In our

approximation which computes p~ and p from the unper-
turbed precession, we have from (5-5)

p =Pp sing(P),

p, = —Pp sing(P)

(38)

(39)

where (39) corresponds to (5-12), so that the quantity
needed in the radiation damping is

[p (a/c) (p —kk p, )]= —

lapsing(P)

[1+—(a/cP) ] .

Hence the radiation damping for the present accelerating
situation follows when Eqs. (5-13) and (5-11) are modified

by a factor of [1+(a/cP) ). Thus Eq. (5-11) is replaced
here by

d0 2 p '
4 a

sing($) 1+
3 c Bp cp

'2

(41)

All of the calculations of Ref. 5 now proceed as before
until we come to Eq. (5-35). The additional factor in (41)
for the radiation reaction changes (5-35) into

dP(8) S 2 [1+(a/c'g) ] ~

g g p(8) 0
dg

~

1u&p m Pi '(
~

r) ) )

(42)
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T=fia /2irck,

we see that the effective spectral density becomes

sr' (~ill) = —,
'

fico coth(irc co/a )
[1.+(a/cii) ]

(43)

exp(fico/k T) 1—
which looks just like Planck s spectrum including zero-
point I'adiation. Thus the spinning magnetic dipole in
responding to the effective spectral density responds just
as lt did 111 Rll Inertial flanM wltll exactly Plallck s spcc-
trurn as given earlier in (5-39). We have proved what we
set out to show.

But then we see that the alteration In the radj. ation damp-
ing has the effect of replacing the spectral density
n. A (

~
il

~
) of Ref. 5 by an effective spectral density

jn A ( (ii [ )/[I+(a/cil) ]I .

Substituting for A (
~
ii

~
) from Eq. (37) and then intro-

ducing thc Unruh-Davlcs tcIIlpcratuI'c

In order to treat a classical point spj.nning magnetic
moment undergoing uniform proper acceleration, we turn
to Bhabha s relativistic equation of motion and then spe-
ciahze it to the case of uniform acceleration. We find that
the equation of motion for the classical spin in its own
rest frame takes the familiar form corresponding to a
spinning magnetic moment in an inertial frame except for
an alteration in the radiation damping term. Now the
equilibrium distribution for the orientation of the spin rel-
ative to the direction of acceleration and of the external
constant magnetic field depends upon the balance of the
radiation damping effects and the random torques due to
the random magnetic field seen by the accelerating dipole.
The spectrum of the random magnetic field seen by the
accelerating dipole departs from Planckian form at the
Unruh-Davies temperature by a factor of [1+(a/cco) ].
However, the change in the radiation damping term pro-
duced bp thc accclcration is precisclp such as to cancel
this departure from Planckian form. In its own rest
frame the spinning magnetic dipole takes the same equili-
brium distribution as it would in Planck's spectrum in an
1IlcrtlR1 fl Rlllc.
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