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Neutron interferometry performed in a noninertial frame is essentially influenced by dynamical

diffraction effects occurring in the interferometer crystal which hitherto have not been taken into

account. %'e have developed a corresponding theory from which a corrected phase shift is obtained

which applies likewise to interferometry performed under the influence of gravity or on an accelerat-

ed neutron interferometer. The theory also predicts fading of interference contrast with increasing

acceleration as was observed in the Colella-Overhauser-Werner gravity experiments but could not be

explained unambiguously.

Interferometry with thermal neutrons' is best accom-
plished with the single-crystal interferometer also used for
x-ray interferometry. ' The principal layout of beams
with such an instrument is shown in Fig. 1. Beams are
split, recombined, and superimposed by Bragg diffraction
occurring in crystal wafers 8, Mt, Mn, and A which are
all manufactured and remain coherent parts of a suffi-
ciently large perfect single crystal of (usually) silicon. The
phase shift P arising between interfering beams I and II
may be calculated by evaluating the integral

P= IIi k(r).dr

around the closed path formed by I and II. k(r) is the
wave vector along this path. In the case of neutrons

k=p/fi, where p is the momentum to be determined
from Schrodinger's equation

ts

m; is the inertial mass of the neutron. V'(r) denotes the
sum of all pertinent contributions to the potential, i.e.,
when applicable, those due to gravity (—ms g. r ), to an ac-
celeration a of the frame of reference (m;a r), to perfect
crystal diffraction [V,(r): lattice periodic scattering po-
tential of the crystal], etc.

Colella, Gverhauser, and sterner (CQW) have exper-
imentally checked the validity of introducing gravity and
reference-frame rotation into (1) in the manner described
above. Measuring phase shifts on an interferometer
which performed forced harmonic oscillations, we recent-
ly checked whether a potential m; a r allows correctly for
an acceleration a applied to the reference system.

Evaluating their experiment COW assume that
Pendellosung effects which are typical for dynamical dif-
fraction by a perfect crystal do not play a role in calculat-
ing the net phase shift due to gravity within the crystal
medium. ' However, for the case of dynamical diffrac-

FIG. 1. Neutron interferometer consisting of splitter (S), mir-
rors (Mq, Mql), and analyzer (A) with thicknesses tU (U=S,
M&, M», A) and distances Z~ ( V =S, 3;i =I,II). Via Bragg re-
Aection the incoming neutron beam is split up into the beams I
and II, which are reflected and recombined. The normal of the
reflecting net planes is parallel to the x axis.
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V'(r)= V, (r)+ V(r) (3)

into (2) with V(r)—:—mgg. r in the case of gravity and
V(r)—=m;a. r in the case of an accelerated frame, one
gets" corrected dispersion surfaces with branches 1 and 2,
on which, under the action of V(r ), the tie-points of wave
fields travel in much the same way as they do in a uni-

formly bent crystal. Denoting p as the normalized local
slope of the neutron trajectory, Werner derived for the
change occurring over a traveling distance dz (Fig. 1)

2
—1/2 2a„m

b k Ixtl
[p (1—p) ]= +tan6g

tion by just one crystal slab, Werner" has recently treated
the influence of gravity on the dynamical diffraction pro-
cess. Developing his approach further and applying it to
the crystal sections S, Mi, M«, and A of the interferome-
ter of Fig. 1 when calculating the closed path integral (1)
we obtain an essential correction to the gravity-induced
phase shift. Furthermore, from our theory follows the
fading of interference contrast observed in the COW ex-

periment, which so far was unexpected and thus tentative-

ly attributed to bending of the interferometer.
Introducing

The upper index i denotes outside wave vectors. Lower
indices o, h denote the wave vector traveling in the o, b
direction (Fig. 1). Index 1 (2) and the upper (lower) sign
are valid for the branch-1 (2) wave field, respectively.

When evaluating the integral of Eq. (1), the variation of
y with z,

2a„m
y(z) =yo+tan6~ 2 z=yo+bz, (10)

has to be accounted for. For the path sections within the
crystals, the phases of the transition factors' (i

I
az I j)

connecting the amplitudes in front of and behind a partic-
ular crystal wafer a [a=S, Mi, M», A (Fig. 1)] when the
wave is diffracted from the i direction to j direction (i =0,
H; j=o, H) via the wave field on branch U (U= 1, 2) are
obtained by integrating the expressions (7) to (9) along z.
Terms originally linear in y give

f
(yp+bz)dz=yp(zf z;)+——(zf —z; ) .f 2 2

S

On the other hand, root terms give'

Zff [(y +bz) +1]'/ dz

k„—=X,-',
(4) 1

f fy (y 2+1)1/2 y (y 2+1)1/2

where the upper sign stands for the branch-1 and the
lower sign for the branch-2 wave field. Xt is the Fourier

component of order ht of the normalized potential,

V, (r)/E. a„ is the component of the acceleration a anti-

parallel to the reciprocal lattice vector ht. A,, is the wave-

length in vacuum.
Let, as usual, b,6—:6—6s be the deviation from the

exact Bragg angle 6& and y the corresponding deviation
normalized to +1 at the limits of the dynamical reflection
range. Then

l&t I

b,6= —y . =+p(1 —p)
sln26g sin26&

so that using Eqs. (4) and (5),

(y 2+1)1/2+

(y; +1)'/'+y;
(12)

Subscripts i (fl denote the entrance (exit surface) of the
wafer, respectively. Not only the phase factors are influ-
enced by the acting acceleration but also the modules of
wave amplitudes. Their modification is calculated by pos-
tulating particle conservation separately for either branch
of the dispersion surface. For the complete interfering
beam paths I and II (Fig. 1) we obtain transition factors

(olllo)
(olsUIO)

U=1,2

Za„m
dy =tan6s dz .

b2k 2jX,
I

(6)

x
U=1,2 U=1,2

(13)

It can be shown that (6) also holds outside the crystal.
When the neutron enters the parallel-sided crystal wafers
the wave vectors change accordingly

(ollllo)

U=1,2
(0 IS. I

H)

k„5i 2
=—(K11—Kpi 2) z

1 I ol=
2~ IX, I

+"-"+"
L

k„5'12=(Kg —Kg12) z

I&pl
y+(y 2+ 1)1/2

2~o l&t I

5=(Kh1, 2 K01,2) z y/ p

Ap is the dynamical extinction length .
(9)

X g (HIMiiUIO) g (OIAUIO) .
U=1,2 U=1,2

(14)

The terms of Eq. (11) give, with ideal geometries (i.e.,
Zs=Z" =Zs Zw=Zs =Zw, ts=tz) a phase differ-I II I II

ence between beams I and II of

bPo=n. (t~Zs+tMZ&+2ZsZ~),
0

(15)

which apparently is independent of y. This part was also
calculated by Greenberger and Overhauser. ' However,
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TABLE I. Oscillation frequencies q for six wavelengths A, be-
tween 0.1060 and 0.1831 nm for the COW interferometer. q,„p
as measured and qco~ theoretical value by COW; ccQ~ bending
correction according to COW, qdy result of .dynamical treat-
ment given in this paper.

counts

4000

3000

2000

I i

Z =1.060 A

(nm) q exp qcow qcow+ &cow qdyn

0.1060
0.1136
0.1232
0.1419
0.1628
0.1831

32.98
37.85
44.87
60.30
80.74

103.27

30.50
35.26
41.77
56.41
75.92
98.98

32.98
37.92
44.66
59.73
79.73

103.27

32.14
37.10
43.77
58.79
78.74

101.89

0.3

I la. u.j

0.225—

0.15

an additional phase shift Pd is given through expression
(12) and its evaluation shows that the dependence on y
does not drop out of the equations. Since usually the
beam divergence is larger than the dynamical acceptance
range of the interferometer crystal one has to use spheri-
cal waves which implies integration with respect to y.
Following the treatment by Bauspiess, Bonse, and
Graeff, ' we calculated interferograms for the COW inter-
ferometer (Zs ——Z~ ——34.518 mm, ts ——tM tq ————2.464
mm) and the six wavelengths used in the COW experi-
ment. The results, obtained with a, the acceleration nor-
mal to the Bragg planes ranging from —6.5 msec to
+6.5 msec, are summarized in Table I. By Fourier
transforming the calculated interferograms we determined
qdr„which should be comPared with q,„~=Pcow/sing,
the corresponding value measured and qcQ~ the value
calculated by COW. Pcow is the measured Phase shift
and P the angle by which the interferometer was rotated
about the incident beam. COW attributed the difference
between q,„~ and q( ow to bending (or warping) of the in-
terferometer under its own weight with the elevation angle

From two interference measurements performed with
Mo X~ x-rays and the 220 and 440 reflections, respective-
ly, COW concluded a dependence of q,„~—qcow on A,

proportional to k and consequently added the correction
ccow-A, to q,„~. The reason for such a variation with A,

could not be found. It appears unlikely that a simple
change of path length' is the cause for the observed
discrepancy since a deformation of this amount would

1000
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FIG. 3. Intensity as a function of the rotation P (in degrees)
around the incoming beam for the COW interferometer at
A, =0.1060 nm. Full line: Values measured by COW. ' Broken
line: Dynamical theory, contrast adapted to the maximum ex-
perimental value. (The theoretical contrast is 1 for ideal
geometry and a=0. The curve is symmetric around a=0 be-
cause only linear acceleration was taken into account. ) Note
contrast fading also in the theoretical curve.

counts

certainly cause even larger phase differences, e.g., by the
rotational moire effect' or within the crystal wafers
themselves through deformation-induced tie-point migra-
tion.

We also calculated an interferogram at A, =0.1839 nm
for our interferometer crystal used with D18 at Grenoble
(Zs =Zw =Zw =27.2936 mm, ts ——tM = t„:t=4.3954—
min) (see Fig. 2). Because of the large ratio t/Zw as
compared to that of the interferometer crystal used by
COW the discrepancy of the semiclassical theory (i.e.,
neglecting dynamical phase effects) with the experiments
is larger. According to that theory q=68.28 rad, whereas

. by Fourier transformation of the interferogram of Fig. 2
we get q=70.73 rad. Furthermore, from Fig. 2 we see
that with larger effective accelerations a the phase shift
no longer varies linearly with a. From the position of the
first minimum we find for small a q=76.35 rad. This
value is confirmed by a recent experiment in which the
interferometer crystal at Grenoble was subjected to de-
fined accelerations. The prediction of the semiclassical
theory is significantly different from the result of that
measurement.

Furthermore, the dynamical theory predicts the fading
of contrast at high accelerations in good agreement with
the measurements of COW as can be seen in Figs. 3 and 4
(full line: COW experiment, broken line: dynamical
theory, contrast adapted to its experimental value). The
cause of fading can be explained by Eqs. (13) and (14).
For simplicity we consider a symmetric interferometer
(Zs ——Zq). Because the transition factors depend on t, y,

0.075—
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FIG. 2. Calculated intensity as a function of the acceleration
in the x direction for the D18 interferometer at A, =0.1839 nm
{ideal geometry assumed).
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FIG. 4. Same as Fig. 3 except for X=0.1419 nm.
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FIG. 5. Theoretical contrast as a function of acceleration for
the six wavelengths used in the COW experiment (ideal
geometry assumed).

FIG. 6. Calculated contrast as a function of the
acceleration-induced phase shift for the COW and the D18 in-
terferometer (ideal geometry assumed). The D18 curve
stretched by the factor (t/Z~)D &q (t/Z~)co~ coincides with the
COW curve.

and hp, for the transition factors of the two interfering
beams, to remain equal it is not only necessary that split-
ter and analyzer have equal thickness' but also that y
remains constant over the whole interferometer which, ac-
cording to Eq. (10), is no more the case in a noninertial
frame. Since the y dependence is weighted by

t tA,=const
p (4d —A, )

(d= distance of the reflecting net planes) the fading effect
should increase with t and A, . Indeed, the calculated con-
trast as a function of acceleration as well as the measure-
ments of COW show this A, dependence (Figs. 3—5). The
contrast as function of the acceleration-induced phase
shift is shown in Fig. 6. It is independent of A, , for phase
shift and contrast depend in the same way on tlap. How-
ever, it depends on the ratio tlZit of wafer thickness to
distance as can be seen from the curve calculated for the
D18 interferometer (Fig. 6). The ratio t!Zrr of the D18
interferometer is —", times that of the COW interferometer

and so the D18 curve stretched by this factor coincides
with the C0%' curve.

It has been shown that dynamical diffraction theory is
essential in describing neutron interferometry in noniner-
tial frames, for it not only explains the acceleration-
(gravity-) induced phase shift but also the fading of con-
trast. First hints on the incompleteness of the semiclassi-
cal COW theory were given by the COW experiment. Fi-
nally, an experiment with an accelerated interferometer
confirmed the dynamical theory while the predictions of
the semiclassical theory failed. The dynamical theory and
the latter experiment not only showed in connection with
the COW experiment the equivalence of inertial and grav-
itational mass, but also demonstrated that in quantum
mechanics the peculiarities of the apparatus, i.e., the
dynamical diffracting interferometer crystal, has to be
taken into account.
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