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(1 4+ 1)- and (2 + 1)-dimensional gravity are quantized in a gauge where the dynamics reduces to a
finite number of physical degrees of freedom. The inclusion of scalar matter fields in the (1 + 1)-

dimensional case is also considered.

I. INTRODUCTION

The quantization of gravity remains one of the out-
standing problems of theoretical physics despite more
than 30 years of research. There are indeed many aspects
we need to understand: questions of covariant regulariza-
tion and renormalization,' measurement,’ quantum coher-
ence,’ gravitational collapse and singularities,* and the po-
tential for change of topology,’~® to name but a few.
These problems are sufficiently formidable in two and
three spacetime dimensions, let alone 10 or 11, to warrant
a probe of simple soluble systems in order to provide a
sound basis for the investigation of more realistic theories.
The work reported here is an attempt to quantize gravita-
tion in 1 + 1 and 2 4 1 dimensions using canonical path-
integral methods; we will find that the only gauge-
invariant degrees of freedom are a finite number of global
variables. In 14 1 dimensions, only the volume of space
cannot be gauged away; in 2 + 1 dimensions, only the
volume and a set of global metric parameters remain.”>
In Sec. II, we review Hamiltonian methods for gravity
and path integrals of constrained systems. We proceed in
Sec. III to apply this formalism to the quantization of
1 + 1 gravity in a particular gauge.

In Sec. IV we add scalar matter to 1+ 1 gravity and
discuss some implications for the theory of quantized
strings, and conclude our discussion in Sec. V with quant-
ization of 2+ 1 gravity. The Appendix contains a
mathematical exercise needed to construct the 2 + 1 wave
function.

" II. PATH INTEGRALS,
CONSTRAINTS, AND GRAVITY
IN THE HAMILTONIAN FORMALISM

A direct route to the path-integral expression for the
transition amplitude in quantum mechanics is to partition
the evolution time 7 into N steps and approximate

i (7,8)T/N .
¢ Halm? ; one finds®

(4,717 $,0)
P
= J oy DTDbexp [1 [ wé—Hpat| . @b
T )=¢'

If the action is invariant under some continuous symme-
try, then the paths in the functional integral will be highly

30

degenerate. The symmetry is characteristically generated
by some constraint variable X, for example in a gauge
theory

X=V-E—8A=¢{V:E,A}=Ve. (2.2)

In this case, the degeneracy of paths may be factored out
using the Faddeev-Popov method;’ with the gauge-fixing
condition F[,4]=0 the amplitude becomes

Z=("Ty= [ D7D p; D1, det(X* F*}5(F?)

i foT(ncb—H—Aax“) . (2.3)

X exp

In our gauge theory example, H=E?+B? X=V-E, and
A=A

Integration over A enforces the constraint X =0; the
determinant

(X, F)

4
8(m,d) @4

det{X,F}=det

is precisely the Faddeev-Popov determinant—the Jacobian
that allows the elimination of 8(X) and 8(F), leaving only
the “physical” degrees of freedom orthogonal to the gauge
direction generated by X and the gauge constraint F.

In gravity, the symmetries are local space and time
translations generated by the local momentum 57
(i=1,...,d, where d is the spatial dimension) and the lo-
cal Hamiltonian #)(x), respectively. Being symmetry
generators, they are constrained to vanish:

#,=0, p=0,...,d. (2.5)
If we write the spacetime metric as
n*n'ga—1" 'y 06
uv= 77kgkj 8ij ’ )

then the Einstein-Hilbert action f (gd+D)1/2RMd+D may
be cast in the form!°

S= [ (g —mtar,), 2.7)

where
1 1 2
Ho= VER4+AVE ,
=g | T @ | TeVER+AVe
(2.8)

=Vl
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Here R and V are the curvature and covariant derivative
intrinsic to the spacelike hypersurface defined by the gj;,
and 7/ is related to the extrinsic curvature of that hyper-
surface in spacetime (also mw=}). The Lagrange multi-
pliers n* are simple functions of the g% and play the
same role as 4° in gauge theories (note also the similarity
of the momentum constraint to V-E =0).

The Hamiltonian path integral for gravity may now be
written as

Z= [ DD 7IDg;8[F¥(m,g)ldet{ 7, F"}e’S .  (2.9)

In 1 + 1 dimensions, the Einstein action is a topological
invariant, so the spatial metric has no conjugate momen-
tum and the canonical formalism breaks down. There are,
however, quantum effects which give rise to a nontrivial
effective action. Polyakov has shown that in the gauge
guv=e%*8,,, the functional measure has an anomaly'!
leading to an effective action

Seff= f

The Hamiltonian generators which reproduce this result
in the conformal gauge are'

26

?772(6#‘#)2*‘“%

. (2.10)

HKo= ie “trltke M5t —¢")+Ae?,
(2.11)
X =—Vr=md'—u',

where g;=e? and k=26/487" in the conformal gauge.
Similar results are also found in the gauge specified by
Ft=(n*—a8").1

Classically, these generators form a closed algebra

{ﬁo(x),%o(y)} =e_2¢[%1(x)+%’1(y)]8’(x,y) ’
{1(x),90,0)} =[21(x)+,(») 18 (x,p) , (2.12)
{%l(X),%o(y)} = %o(X)-f-%o(y)]Sl(ny)—Ke "¢8"'(x,y)

up to the anomalous term proportional to x. Apart from
this term, this algebra is identical to the algebra of the
Einstein generators (2.8). This implies that the classical
evolution of spacelike hypersurfaces is invariant under lo-
cal space and time translations.”> Indeed, the classical
equations of motion

¢={n ¢}, T={nxm} (2.13)
are equivalent to
RP=_2). (2.14)

We would now like to quantize the system (2.11) by
choosing a gauge and evaluating the path integral (2.9).
In order to consistently implement the constraints 2%, =0,
we must quantize in such a way that there is no central
charge in the algebra (2.12). Also, we must find a regular-
ization which preserves the coordinate invariance of the
theory. Finding such regularization is not trivial—in the
conformal gauge, the regulator must preserve conformal
invariance. In fact, the central charge is related to the
regularization; the renormalization of the functional
determinants associated with gauge fixing and matter

fields produces contributions to the central charge, and
quantization of 7 and ¢ will yield additional contribu-
tions.

Our assumption is supported by the fact that there does
exist a theory of 1+ 1 gravity with no central charge
which is found by taking the formal limit k—0 in (2.12),
so that

%0=—2177re-¢7—xe¢ . (2.15)
The constraint algebra becomes

{Ho(x),500(y)} =0,

{Z1(x),2,(p)}=[71(x)+27,()]6'(x,y) , (2.16)

{1(x),200)} =[Ho(x)+ 7 o(»)]8'(x,y) ,

which may be consistently quantized. This theory, which
has been studied by Banks and Susskind,'* is just the
strong-coupling limit of 141 gravity.!> When matter
fields are added, k can be nonzero such that the gravita-
tional central charge is canceled by the charge of the
quantized matter fields.

III. (1 + 1)-DIMENSIONAL GRAVITY

In what follows, we will consider space to be a circle.
In order to fix the freedom of spatial reparametrization,
let us choose the gauge

¢'=0. (3.1
The momentum constraint ;=0 then implies
=0 (3.2)

and we have eliminated all the canonical variables (except
for global degrees of freedom; these cannot be fixed be-
cause V= [ e®dx is a geometric invariant). There now
remain no canonical variables to be fixed by 5. This cu-
rious situation arises because there are two constraints but
only one pair of canonical variables—1 + 1 gravity has
—1 degree of freedom in the sense that upon adding one
matter field, all local degrees of freedom are eliminated in
a canonical gauge (see Sec. IV).

Thus, in order to fix local time translations, we must
choose a noncanonical gauge such as

n°=const . (3.3)

With the gauge choices (3.1) and (3.3) the Faddeev-Popov
determinant is

SFY aO {2/0"#} ]
det | ——————— | =det '
8(gauge transf) 0 {1,4'}
=det(dp) X det({#,¢'}) . (3.4)

As before, the determinant of canonical variables just
serves as the Jacobian needed to eliminate the constraints.
The determinant det(d,) yields formally just the deter-
minant A, which may be shown to give simply a renor-
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malization of the Hamiltonian density (2.11).!*
All that remains in the theory are the global variables II
and ® defined by

M= [ dxnlx,n), e*= [ dxet™?. (3.5

Note that in the elimination of 7°, we must separately in-
tegrate out the part of n° which is a constant in both
space and time since this mode of 7° can be absorbed into
the definition of T:

T . or d¢
(Md—n°Ho)de= ["7 |II —H, |d(n%) .
f 0 N o f (7% o |am
(3.6)
The transition amplitude reduces to
z= [dr 9N 2%
Xexp i fT no— —l—e P2 _pe® | |dr},
0 2k
3.7
i.e., quantum mechanics with the Hamiltonian
H=-LTe*m—2®, (3.9
2k

where we have taken the simplest Hermitian ordering for
the kinetic term.

Additional justification for this ordering is provided by
an analysis of the strong-coupling (k—0) limit,'* in which
this is the only ordering for which the wave function ¥[¢]
solves the local Schrodinger equation

iq‘r(x)e —400)7(x) — A #) (3.9)

Y[¢]=0

without ambiguous terms proportional to 8(0).
The integration over T enforces the constraint H =0:

[ areHT=8(A) (3.10)
so that the wave function 9 solves
El’zs%e"‘b%—kkeq’ Y[®]=0 3.11)
or, changing variables to V=e®= f dx e?,
L& 5 lwiv=o. (3.12)
2k 8V?
The solution ¢[ V] is
Yl V1=ae'V 2 4 pe=IV2AV (3.13)

Expectation values of quantum operators & are calcu-
lated using the integration measure d®=dV /V,

dv
O)= | —¢*0¢.
(o)=[ Sv*ov
It seems meaningful in our gauge to talk of the expansion
rate of the “world,” even though this is not a coordinate-
invariant object; the two branches a =0 and b =0 are
eigenstates of the operator

(3.14)
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My=e®N~V (3.15)

with eigenvalues +V'2kA, corresponding to uniformly ex-
panding or contracting universes. From the equations of
motion (2.13) we find

2

. J15%
R=II=— T_;.x , (3.16)
which yields the expectation values
f eR"
=(—2A4)". (3.17)

[e

Thus, the expectation values of covariant quantities, with
the exception of the volume, have no dispersion. The
volume, however, fluctuates wildly since all volumes have
unit probability for A > O (the situation for A <0 is some-
what better behaved—large volumes are exponentially
damped.) In calculating (3.14) we must impose an ultra-
violet cutoff to control the logarithmic integral f dv/v;
when the cutoff is removed the result is finite so long as
we factor out the volume dependence of any quantity of
interest. '

IV. ADDING MATTER FIELDS

When a scalar field is coupled to the geometry, we find
that the constraints are sufficient to eliminate all canoni-
cal variables using the methods of Sec. II, save for the glo-
bal degrees of freedom. The Hamiltonian and momentum
densities are »

Hog= ?1’(_—77'2 “t7 4 ke P2 /2—¢") —Ne?

—¢
+e—2—(P2+X'2)+e¢U(X) ) 4.1)

H1=m¢ —a' +PX',
where X and P are the field and its conjugate momentum.

A convenient gauge is

¢'=X'=0. (4.2)

Proceeding as before, we arrive at a quantum-mechanics

problem for the wave function; the Hamiltonian is

1

2K
In the special case where U =0 we find that the solu-

tion to Hy=0 is a Bessel function

H= IIVZ—?»V+7117P2+ VU(X) . 4.3)

WV, P)=[(m/2)V2kAV Y2 o (V2kAV) (4.4)
with a=(kP?+ +)'/2. The asymptotic forms
Ja(z)~ila—, z—0 4.5)
I'(a+1)
172
~ " cos lz———}a—% , Z—> 0 , (4.6)

show that the solution behaves like the sum of the solu-
tions for an expanding and a contracting universe for
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large volumes, and that the small-volume behavior will be
regular, the probability for finding the universe at small
volumes no longer diverges logarithmically.

In order to interpret the result (4.4), it is helpful to ex-
plore the classical physics of the Hamiltonian (4.3). The
classical equation of motion

. . 2
K%=§ % +A+2P—I:2 @7
and Hamiltonian constraint
. 2 2
SH=%|2| -2 %z—zo 4.8)
together yield the solution
P 2 172
V= eri cosh | [— , 4.9)

describing a universe which contracts from large volumes
down to a minimum ¥V, =P/V2A and then “bounces”
back into an expansion phase. In deriving (4.4), though,
we have integrated away all references to an external time
parameter. How then, can we compare the two? In the
classical system, the probability of finding the universe in
the range (V,¥V +AV) is proportional to the time spent in
that interval

V+AY Vg
Ja=], TK

2
—1

y —172
av',

P

2A (4.10)

which is asymptotically proportional to AV/V for
V>>P/V'2\ and falls to zero sharply at V;,=P/V2A.
For the quantum system, the probability is

V+AV gy’

Prob(V,V +dV)= [ S (V)
~47, Vo> @.11)

and decays like a power law [cf. Eq. (4.5)] for volumes
less than about V,;,. Thus the classical regime is the re-
gion of large volumes, and quantum mechanics causes a
smearing of the wave function into the classically forbid-
den region ¥V < V;,. For a plot of the classical and quan-
tum probability amplitudes for kP?=2 as a function of
volume, see Fig. 1.

Our approach runs into trouble if we consider 1+ 1
gravity coupled to more than one scalar field, since in this
case it is no longer possible to find an explicit solution to
the constraints. Unfortunately, this is one of the most in-
teresting cases, because 1+ 1 gravity coupled to D +1
massless free scalar fields is precisely the theory of vibrat-
ing strings in D + 1 dimensions. We can use the methods
developed here to shed some light on the difficulties of
quantized strings. We have

Hy= ?lK—n-e ¢ txe 454 —¢")—Ae?
+3e P2 +X,'),

(4.12)
H=md'—m'+P*X,, a=0,...,D .

- ' |
=z —-— Classical
r —
> ;\. Quantum
= i
- A
o — ) —
i P,
m o\
o | .
- I \.
a | ~,
| ~._
AN A
f
vV
FIG. 1. Volume probability for 1+ 1 gravity with matter
field.

In the conformal gauge gﬂv=e2¢8,m we have precisely
Polyakov’s result in Hamiltonian form.!? Another popu-
lar gauge is the light-cone gauge

X*to«t, Pt=const, (4.13)

where X*T=X%+XP. Because of the Minkowski signature
of the embedding space, the constraint #,=0 can be
solved to give

P‘=?1K—7Te“¢‘rr+lce —#( 142 —")—he?

+Le~d(P24XY), (4.14)

where i=1,...,D—1. Substituting this solution into the
action we find

S= [ (wp+P,X,)dx dt

-

Té+PX;— e PP+ X2

dxdt .

ﬁe ¢t ke ~HP?/2—¢") —Ae?

(4.15)

Thus, the gravitational field ¢ acts as a sort of longitudi-
nal oscillation of the string, exponentially coupled to the
transverse fields X;. Even though the constraints have
been solved, the effective theory appears quite formidable.
Finally, a third gauge choice is also interesting to con-
sider. We may, as in the soluble examples previously con-
sidered, eliminate the gravitational field with the gauge
¢'=7"=0. (4.16)
Here the Faddeev-Popov determinant is not quite a Jaco-
bian, because we are fixing both elements of a conjugate
pair; rather, we find
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‘{%0’77’} {17’}
Wt (#od) (18]

=det({FF(x),#F"(y)}) X const

=125 (x)Xconst , 4.17)

where the superscript grav indicates the purely gravita-
tional part of the full Hamiltonian density. Thus, the
path-integral measure depends on the energy in the
volume fluctuations. The Hamiltonian becomes

H=——VHV —AV+ f —(P 2. x:0dx ,  (4.18)
subject to the quantum-mechanical constraints
0=H ot ¥ = EI;VHyz—KV +3 V(P £XL)? . (4.19)

But these constraints, apart from the single additional de-
gree of freedom, are just those of the covariantly quan-
tized string,'® they are notoriously difficult to satisfy
without destroying either unitarity or Lorentz invariance.
It would appear that fundamental progress in quantizing
strings is still lacking, and will require a better under-
standing of the quantized vacuum since the difficulties
with central charges, unitarity, etc., can be traced directly
to the divergent zero-point fluctuations of the fields.

V. (2 + 1)-DIMENSIONAL GRAVITY

In 2 + 1 dimensions, the Einstein action (2.7) exists, al-
though the classical equations of motion allow only flat
spacetime as a solution® (there is no gravitational radia-
tion in 2 + 1 dimensions).

There are only a finite number of physical degrees of
freedom, even though the theory is perturbatively non-
renormalizable. Again, if we assume the existence of a
coordinate-invariant regulator, we may apply the canoni-
cal formalism. If we choose a gauge where the constraints
can be solved explicitly, we will not have to confront the
difficult question of regularization. In what follows, we
consider space to be closed with a toroidal topology. A
convenient gauge is specified by choosing the metric to be
spatially constant

g,-,-=g,~j(t) . (5.1)
(For other spatial topologies it is possible to choose a
metric with constant curvature described by a finite num-
ber of parameters known as moduli.”®) The constraints
2¢,=0 imply that 7" is spatially constant

mi=71) . (5.2)
The Hamiltonian density (2.8) may be rewritten
1 | O S A U
Hoo=— | —= A_L-_ 2
» ‘/Eg 8T T 5T V2 T
+kVgR +AVyg , (5.3
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where

gi=¢""y,

(5.4)
Fi=g /2l Lgiiy)
are the degrees of freedom orthogonal to the local volume
Vg and its conjugate 7.!7 We again choose the ordering
such that 5, is Hermitian in the measure'®

d,u(g)= I‘I @gijg—(d+1)/2 .

i<j

(5.5)

In the gauge (5.1), and using the formalism of Sec. II, we
see that the wave function of the world satisfies

1({1_ ~
o= [; ngjgkl'”' ik il _VHV +AV |Y[V,g]=0
(5.6)
with
) i 8
My=—>, #V=—>+ (5.7)
Y% 58;

Since the 7 ¥ are the generators of symmetric, traceless
deformations of the metric, it is natural that those defor-
mations are elements of symmetric space SL(2,R)/SO(2)
and that

A=717] (5.8)
is the covariant Laplace operator on that space.* The

eigenfunctions e, ,[g] of A are “plane waves” on
SL(2,R)/SO(2) satisfying

Bpp=p*+5)esp » (5.9)

where p is a “wave number” and b is its “direction vec-
or” (see the Appendix). Inserting (5.9) into (5.6), this
equation takes just the form of (4.3), and so the solution
to the Schrodinger problem for the volume may be read
off from (4.4). We find the wave function of 2 + 1 gravi-
ty in the gauge (5.1) to be
172

Jii‘/iz( Vv ZKAV)eb,p(é‘) .

(5.10)

Y= %x/zxw

It is again instructive to contrast this result with the set
of classical solutions. The most general classical solution
in the gauge (5.1) is

gy =Ay%e” ™+ By%e~V¥ 1 (4B +BA); (5.11)

where 4 and B are symmetric matrices satisfying the con-
straint

tr{4 ~'B} =0, for 4 nondegenerate ,
(5.12)

tr{B~'4} =0, for B nondegenerate .

The formula (5.11) is easily verified in the vierbein for-
malism. The constraint implies that the volume of space
shrinks to zero at a finite time. Physically, this is clear
because the Hamiltonian is just like the (1 + 1)-gravity
theory with a scalar field except that the conformal de-
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FIG. 2. Volume probability for 2 + 1 gravity.

grees of freedom gj; contribute with the opposite sign
compared to the scalar field. Thus, the volume feels an
attractive 1/ V2 potential rather than repulsive—the world
is drawn towards zero volume, which is reached at finite
time. The wave function (5.10) reflects this feature in that
the probability amplitude ¥ *1 does not approach zero as
V approaches zero [cf. the asymptotic form Eq. (4.6)].
The classical and quantum probabilities are shown in Fig.
2. Note that the quantum amplitude follows the classical-
ly expected value even more closely than in 1 + 1 dimen-
sions, and also has no zeros as may be seen from the
asymptotic form (4.5).

Finally let us examine qualitatively how these results
are modified when we consider different spatial topolo-
gies. When space is topologically a sphere, we can fix a
gauge where the metric has constant positive curvature
and the volume is the only dynamical variable—the con-
formal metric gj; has no dynamics. The Vg R term in the
Hamiltonian contributes a repulsive 1/V potential, and
the universe will have a smooth classical bounce solution
that does not reach zero volume—much like the 1+ 1
case with scalar field. When space is a closed surface
with n >2 handles, we may choose a metric which has
constant negative curvature. In addition to the volume,
there will be 6n —6 real parameters (known to mathema-
ticians as the moduli of the space) describing the global
geometry.” In fact, the two degrees of freedom in gy in
our torus example are an example of these moduli. The
parameters will all enter into the Hamiltonian (5.3) with a
kinetic energy opposite in the sign to the volume kinetic
energy; these energies and the Vg R potential energy will
push the volume towards zero. Thus the more involved
the topology is, the more singular the dynamics becomes
at small volumes.

VI. DISCUSSION

We have considered quantized gravity in 1+ 1 and
2 + 1 dimensions, as well as matter fields coupled to grav-
ity in 1 4+ 1 dimensions. The Hamiltonian version of the
path integral has proved useful in isolating the physical
degrees of freedom in those cases where the gauge con-

straints allow an explicit solution. Such instances typical-
ly reduce the problem to a finite number of degrees of
freedom, quite similar to the minisuperspace model of
DeWitt* and others, but less suspect in that no approxi-
mations are involved beyond the (admittedly delicate) as-
sumption of a regulator which preserves the algebra of
7y and 57;. There are no great surprises—the wave
functions correspond quite closely to what one would ex-
pect from an analysis of the classical equations of motion,
together with the smearing of probabilities mandated by
the uncertainty principle. There is no need for a modifi-
cation of the framework of quantum theory in order to fit
geometrodynamics into it, at least at this level. In addi-
tion, we now have a stepping stone from which we may
proceed to consider, e.g., a nontrivial matter field (i.e.,
massive or self-interacting) in 14 1 dimensions, or ex-
plore the possibility of topological metamorphosis. A
parallel analysis should be possible for low-dimensional
supergravity.

Of course, it may be that qualitatively different effects
occur when there is an infinity of physical modes in the
system. Then an explicit regularization is necessary, a
question we have carefully avoided here. It seems that
herein lies the major difficulty of quantum gravity.
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APPENDIX: SL(2,R)/SO(2)

We describe here some of the elegant mathematics asso-
ciated with space M =SL(2,R)/SO(2) of the 7{. The ex-
position is a direct transcription of the beautiful exposi-
tion of Ref. 15 to 2 4+ 1 dimensions. Any element §EM
may be written

g§=NAA'N', (A1)

where the matrices 4 and N are of the form
e+t /V8 1 T}-z“

A= 0 e—r/E[ N= o 1 |’ (A2)
the natural metric on M is

G (dg,dg)=tr{g ~'dgg —'dg)}

=dri4e="¥dn? (A3)

The Laplace operator on M is

A== E%jx/@ G'Jk'ékl-
with (A4)

Gijkl= %(gik§j1+§i1§jk_~ij§kl) .
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In terms of the line element (A3) this operator becomes
3’ 1 9 V3r 0%

3}‘_2— - _\/__5 3; te on?’
To find the eigenfunctions of A, let us first solve for
those that are independent of n:

A= (A5)

ep(r)=ePHIVB Ao — _(p24L)e, . (A6)
Then, just as we can generate all two-dimensional plane
waves by rotating a plane wave traveling along the x axis
(the y-independent solution), we can generate all the plane

waves on M through the action of SO(2) on the n-
independent solution e, ()

ep,b(§)=ep(3‘§B) , (A7)

where BESO(2) and r is determined from B'gB through

the decomposition
B'§B=NAA'N*. (A8)

The integration measure for inner products is deduced
from (A3),

dg=e~""2drdn . (A9)
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