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(1 + 1)- and {2+1)-dimensional gravity are quantized in a gauge where the dynamics reduces to a
finite number of physical degrees of freedom. The inclusion of scalar matter fields in the (1+ 1)-
dimensional case is also considered.

I. INTRODUCTION

The quantization of gravity remains one of the out-
standing problems of theoretical physics despite more
than 30 years of research. There are indeed many aspects
we need to understand: questions of covariant regulariza-
tion and renormalization, measurement, quantum coher-
ence, gravitational collapse and singularities, " and the po-
tential for change of topology, to name but a few.
These problems are sufficiently formidable in two and
three spacetime dimensions, let alone 10 or 11, to warrant
a probe of simple soluble systems in order to provide a
sound basis for the investigation of more realistic theories.
The work reported here is an attempt to quantize gravita-
tion in 1+ 1 and 2+ 1 dimensions using canonical path-
integral methods; we will find that the only gauge-
invariant degrees of freedom are a finite number of global
variables. In 1+ 1 dimensions, only the volume of space
cannot be gauged away; in 2+ 1 dimensions, only the
volume and a set of global metric parameters remain. '

In Sec. II, we review Hamiltonian methods for gravity
and path integrals of constrained systems. We proceed in
Sec. III to apply this formalism to the quantization of
1 + 1 gravity in a particular gauge.

In Sec. IV we add scalar matter to 1+ 1 gravity and
discuss some implications for the theory of quantized
strings, and conclude our discussion in Sec. V with quant-
ization of 2 + 1 gravity. The Appendix contains a
mathematical exercise needed to construct the 2 + 1 wave
function.

II. PATH INTEGRALS,
CONSTRAINTS, AND GRAVITY

IN THE HAMILTONIAN FORMALISM

A direct route to the path-integral expression for the
transition amplitude in quantum mechanics is to partition
the evolution time T into N steps and approximate

iH l(R.,P)T/N
e ' '

', one finds

T= f, ,
&mDPexp i f (mP H, i)dt . (2.1). —

P(T )=P'

If the action is invariant under some continuous symme-
try, then the paths in the functional integral will be highly

det IX,FI
=det

5(sr, g)
(2.4)

is precisely the Faddeev-Popov determinant —the Jacobian
that allows the elimination of 5(X) and 5(F), leaving only
the "physical" degrees of freedom orthogonal to the gauge
direction generated by 7 and the gauge constraint F.

In gravity, the symmetries are local space and time
translations generated by the local momentum A;
(i = 1, . . . , d, where d is the spatial dimension) and the lo-
cal Hamiltonian A o(x), respectively. Being symmetry
generators, they are constrained to vanish:

Ap ——0, p=0, . . . , d . (2.5)

If we write the spacetime metric as

k l 02 l
I gkl 9 I gli

k (2.6)
I gkj gij

then the Einstein-Hilbert action f (g'"+")'~ R'"+"may
be cast in the form

gpv=

5— g; g A

where

(2.7)

~' +tcVgR+XV g,
tc g

' ' (d —1)
(2 &)

Vj.n; . —

degenerate. The symmetry is characteristically generated
by some constraint variable P, for example in a gauge
theory

X=V E~5A=eIV'E, AI =Vs. (2.2)

In this case, the degeneracy of paths may be factored out
using the Faddeev-Popov method; with the gauge-fixing
condition F[m, P]=0 the amplitude becomes

Z—= (,e'H ) = f &~'&P;&A,,dettX', F I5(Fs)
T

Xexp i f (mP H —A,,.X—') . (2.3)

In our gauge theory example, H=E +8, +=V' E, and
A, =A .

Integration over A, enforces the constraint X=O; the
determinant
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S,g= f 2 (d„p) +A,e ~
48m

(2.10)

The Hamiltonian generators which reproduce this result
in the conformal gauge are'

A p
—— e ~n. +~e &( ,'P' P")—+A,e—~,1 — 2

2K
(2.11)

Vn =~—P'

where g~t ——e ~ and a.=26/48m in the conformal gauge.
Similar results are also found in the gauge specified by
F~=(q~ a5 p)."—

Classically, these generators form a closed algebra

[A p(x), A p(y) j =e ~[A ~(x)+A ~(y)]5'(x,y),
[A &(x),A &(y)j =[A &(x)+A ~(y)]5'(x,y), (2.12)

[~](x)~p(y) j = [~p(x)+~p(y)]5'(x, y) —~e ~5"'(x,y)

up to the anomalous term proportional to a. Apart from
this term, this algebra is identical to the algebra of the
Einstein generators (2.8). This implies that the classical
evolution of spacelike hypersurfaces is invariant under lo-
cal space and time translations. ' Indeed, the classical
equations of motion

P= jg A, Pj, ~=tq A, mj

are equivalent to

Z"'= —2X .

(2.13)

We would now like to quantize the system (2.11) by
choosing a gauge and evaluating the path integral (2.9).
In order to consistently implement the constraints A &

——0,
we must quantize in such a way that there is no central
charge in the algebra (2.12). Also, we must find a regular-
ization which preserves the coordinate invariance of the
theory. Finding such regularization is not trivial —in the
conformal gauge, the regulator must preserve conformal
invariance. In fact, the central charge is related to the
regularization; the renormaliz ation of the functional
determinants associated with gauge fixing and matter

Here R and V are the curvature and covariant derivative
intrinsic to the spacelike hypersurface defined by the g;J,
and m; is related to the extrinsic curvature of that hyper-
surface in spacetime (also m =n';) T. he Lagrange multi-
pliers g& are simple functions of the g " and play the
same role as A in gauge theories (note also the similarity
of the momentum constraint to V E =0).

The Hamiltonian path integral for gravity may now be
written as

Z= f &r)"&H~&g~5[F"(m.,g)]det[A p,F je'

In 1 + 1 dimensions, the Einstein action is a topological
invariant, so the spatial metric has no conjugate momen-
tum and the canonical formalism breaks down. There are,
however, quantum effects which give rise to a nontrivial
effective action. Polyakov has shown that in the gauge
g&„——e ~5&„, the functional measure has an anomaly"
leading to an effective action

fields produces contributions to the central charge, and
quantization of mand P will yield additional contribu-
tions.

Our assumption is supported by the fact that there does
exist a theory of 1+ 1 gravity with no central charge
which is found by taking the formal limit ~—+0 in (2.12),
so that

~e-&~—Xe& .
1

2K

The constraint algebra becomes

(2.15)

III. (I + 1)-DIMENSIONAI. GRAVITY

In what follows, we will consider space to be a circle.
In order to fix the freedom of spatial reparametrization,
let us choose the gauge

P'=0 .

The momentum constraint A ~
——0 then implies

(3.1)

(3.2)

and we have eliminated all the canonical variables (except
for global degrees of freedom; these cannot be fixed be-
cause V= f e~dx is a geometric invariant). There now
remain no canonical variables to be fixed by A p. This cu-
rious situation arises because there are two constraints but
only one pair of canonical variables —1+ 1 gravity has
—1 degree of freedom in the sense that upon adding one
matter field, all local degrees of freedom are eliminated in
a canonical gauge (see Sec. IV).

Thus, in order to fix local time translations, we must
choose a noncanonical gauge such as

g =const. (3.3)

ith the gauge choices (3.1) and (3.3) the Faddeev-Popov
determinant is

5F
'

BP jA PP'j
det =det

5(gauge transf) 0 [~i~4'j

=det(Bp) X det( [A &,P'j ) . (3.4)

As before, the determinant of canonical variables just
serves as the Jacobian needed to eliminate the constraints.
The determinant det(Bp) yields formally just the deter-
minant ko which may be shown to give simply a renor-

[A p(x), A p(y) j =0,
[A &(x),A &(y)j =[A t(x)+A ~(y)]5'(x,y), (2.16)

[A &(x),Pl p(y)} =[A p(x)+col p(y)]5'(x y)

which may be consistently quantized. This theory, which
has been studied by Banks and Susskind, ' is just the
strong-coupling limit of 1+1 gravity. ' When matter
fields are added, a can be nonzero such that the gravita-
tional central charge is canceled by the charge of the
quantized matter fields.
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malization of the Hamiltonian density (2.11).'

All that remains in the theory are the global variables II
and 4 defined by

II(t)= f dxvr(x, t), e '"= f dxe~'"". (3.5)

Note that in the elimination of vP, we must separately in-

tegrate out the part of ri which is a constant in both
space and time since this mode of ri can be absorbed into
the definition of T:

II&=e II- V (3.15)

IIy
+A, (3.16)

which yields the expectation values

with eigenvalues +Y2aA, , corresponding to uniformly ex-
panding or contracting universes. From the equations of
motion (2.13) we find

OT
II@—gH t= II —H d gt

0 d(g t)

(3.6)

()")
(1)

(3.17)

The transition amplitude reduces to

Z= f dT&II &@

T
)&exp ~ i II4—

0
e H —Ae dt

2k

(3.7)

i.e., quantum mechanics with the Hamiltonian

Thus, the expectation values of covariant quantities, with
the exception of the volume, have no dispersion. The
volume, however, fluctuates wildly since all volumes have
unit probability for A, & 0 (the situation for A, & 0 is some-
what better behaved —large volumes are exponentially
damped. ) In calculating (3.14} we must impose an ultra-
violet cutoff to control the logarithmic integral f d VjV;
when the cutoff is removed the result is finite so long as
we factor out the volume dependence of any quantity of
interest.

0= He II—Ae
2K

(3.8)
IV. ADDING MATTER FIELDS

where we have taken the simplest Hermitian ordering for
the kinetic term.

Additional justification for this ordering is provided by
an analysis of the strong-coupling (a~O) limit, ' in which
this is the only ordering for which the wave function f[P]
solves the local Schrodinger equation

When a scalar field is coupled to the geometry, we find
that the constraints are sufficient to eliminate all canoni-
cal variables using the methods of Sec. II, save for the glo-
bal degrees of freedom. The Hamiltonian and momentum
densities are

1 ~(x)e-~'"'~(x) —~e~'"' y[y]=0
2k

(3.9)
me ~n+ite ~(P' l2 P") Ae&— —1

2K

without ambiguous terms proportional to 5(0).
The integration over T enforces the constraint H =0:

+ (P +X' )+e~U(X),
2

vr'+PX', —

(4.1)

f dTe' =5(H)

so that the wave function g solves

(3.10) where X and P are the field and its conjugate momentum.
A convenient gauge is

P'=X'=0 . (4.2)

2ii. 54 M&
e +A,e /[4] =0

or, changing variables to V=e = f dx e~,

1 5
, +A, /[V]=0.

(3.11)

(3.12)

The solution g[ V] is

y[ V] & i~2&Xv+ be
—iV, 2@k.v (3.13)

Expectation values of quantum operators 6 are calcu-
lated using the integration measure d@=dV/V,

(w)= f (3.14)

It seems meaningful in our gauge to talk of the expansion
rate of the "world, " even though this is not a coordinate-
invariant object; the two branches a =0 and b =0 are
eigenstates of the operator

Proceeding as before, we arrive at a quantum-mechanics
problem for the wave function; the Hamiltonian is

H= Ilp —i(,V+ P + VU(X) .
2v 2V

(4.3)

In the special case where U =0 we find that the solu-
tion to HQ=O is a Bessel function

P( VP) =[(~/2)&2irAV]'~ J (&2iiA, V)

with a = (irP + —,
' )'~ . The asymptotic forms

( —,
' z)~

J~(z)—,z~0
I (a+1) '

1/2

cos z ——a ——,z~oo,
2 4

(4.4)

(4.5}

(4.6)

show that the solution behaves like the sum of the solu-
tions for an expanding and a contracting universe for
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CQ

CQ
D
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CL

(4.8)
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n or er to interpret the result (4.4 i
plore the classical h

. „it is helpful to ex-
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~ ~
2

V z V P
V 2 V 2V

(4.7)

and Hamiltonian constraint
'2

1 v V 2

2
—'a= ——

2V

together yield the solution

1201

V== ~ cosll
2A.

(4.9)
j

des cribin a
'

g universe which contracts from
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we have integratede away all references
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aV P
(4.11)

+ ,'e &(P +X,'—- (4.14)
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=det([~""(x),~""(y)J) Xconst

where

—1/2
f&g=8 RIJ ~

(5.4)

= ff ~"'(x)&(const, (4.17)

are the degrees of freedom orthogonal to the local volume
vg and its conjugate vr

'7 .We again choose the ordering
such that A o is Hermitian in the measure'

where the superscript grav indicates the purely gravita-
tional part of the full Hamiltonian density. Thus, the
path-integral measure depends on the energy in the
volume fluctuations. The Hamiltonian becomes

g ~g g
—(I+i)/i (5.5)

In the gauge (5.1), and using the formalism of Sec. II, we
see that the wave function of the world satisfies

H= ' Vll, '—~V+ J ' (~.'+X.')d. ,
2K 2V

subject to the quantum-mechanical constraints

(4.18)

(5.6)

O=A 0+% i
—— VIIi —A, V + , V(P, +—X„') . (4.19)

2K

But these constraints, apart from the single additional de-
gree of freedom, are just those of the covariantly quan-
tized string, ' they are notoriously difficult to satisfy
without destroying either unitarity or Lorentz invariance.
It would appear that fundamental progress in quantizing
strings is still lacking, and will require a better under-
standing of the quantized vacuum since the difficulties
with central charges, unitarity, etc., can be traced directly
to the divergent zero-point fluctuations of the fields.

V. (2+ 1)-DIMENSIONAL GRAVITY

In 2+ 1 dimensions, the Einstein action (2.7) exists, al-
though the classical equations of motion allow only flat
spacetime as a solution (there is no gravitational radia-
tion in 2 + 1 dimensions).

There are only a finite number of physical degrees of
freedom, even though the theory is perturbatively non-
renormalizable. Again, if we assume the existence of a
coordinate-invariant regulator, we may apply the canoni-
cal formalism. If we choose a gauge where the constraints
can be solved explicitly, we will not have to confront the
difficult question of regularization. In what follows, we
consider space to be closed with a toroidal topology. A
convenient gauge is specified by choosing the metric to be
spatially constant

(5.1)

(For other spatial topologies it is possible to choose a
metric with constant curvature described by a finite num-
ber of parameters known as moduli. ' ) The constraints
A &

——0 imply that m' is spatially constant

n'&=M'(t) . (5.2)

The Hamiltonian density (2.8) may be rewritten

with

~ ~

rr, =
5 V'

gg,.
(5.7)

Since the F'~ are the generators of symmetric, traceless
deformations of the metric, it is natural that those defor-
mations are elements of symmetric space SL(2,R)/SO(2)
and that

(5.8)

is the covariant Laplace operator on that space. The
eigenfunctions eb ~ [gj of b, are "plane waves" on
SL(2,R)/SO(2) satisfying

bb~ ——(P + , )ebp, — (5.9)

It is again instructive to contrast this result with the set
of classical solutions. The most general classical solution
in the gauge (5.1) is

ggJ AJ e '+Bj ——e '+(AB+BA)J, (5.11)

where A and B are symmetric matrices satisfying the con-
straint

tr[A 'B
J =0, for A nondegenerate,

tr[B 'A j =0, for B nondegenerate .
(5.12)

where p is a "wave number" and b is its "direction vec-
tor" (see the Appendix). Inserting (5.9) into (5.6), this
equation takes just the form of (4.3), and so the solution
to the Schrodinger problem for the volume may be read
off from (4.4). We find the wave function of 2 + 1 gravi-
ty in the gauge (5.1) to be

' 1/2—v'2aA, V J+,~~(v'2@A, V)ebp(g) . (5.10)

1 1 ;k j( & 1
0— ~ ggggk)7T 7T

K Vg Vg

+~~gR +Xv g, (5 3)

The formula (5.11) is easily verified in the vierbein for-
malism. The constraint implies that the volume of space
shrinks to zero at a finite time. Physically, this is clear
because the Hamiltonian is just like the, (1+ 1)-gravity
theory with a scalar field except that the conformal de-
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C l ass ical

Quantum

FIG. 2. Volume probabihty for 2+ 1 gravity.

grees of freedom g;j contribute with the opposite sign
compared to the scalar field. Thus, the volume feels an
attractive 1/ V potential rather than repulsive —the world
is drawn towards zero volume, which is reached at finite
time. The wave function (5.10) reflects this feature in that
the probability amplitude g 'f does not approach zero as
V approaches zero [cf. the asymptotic form Eq. (4.6)j.
The classical and quantum probabilities are shown in Fig.
2. Note that the quantum amplitude follows the classical-
ly expected value even more closely than in 1 + 1 dimen-
sions, and a1so has no zeros as may be seen from the
asymptotic form (4.5).

Finally let us examine qualitatively how these results
are modified when we consider different spatial topolo-
gies. When space is topologically a sphere, we can fix a
gauge where the metric has constant positive curvature
and the volume is the only dynamical variable —the con-
formal metric g;j has no dynamics. The ~gR term in the
Hamiltonian contributes a repulsive 1/V potential, and
the universe will have a smooth classical bounce solution
that does not reach zero volume —much like the 1+ 1

ease with scalar field. When space is a closed surface
with n &2 handles, we may choose a metric which has
constant negative curvature. In addition to the volume,
there will be 6n —6 real parameters (known to mathema-
ticians as the moduli of the space) describing the global
geometry. In fact, the two degrees of freedom in g;~ in
our torus example are an example of these moduli. The
parameters will all enter into the Hamiltonian (5.3) with a
kinetic energy opposite in the sign to the volume kinetic
energy; these energies and the v gR potential energy will
push the volume towards zero. Thus the more involved
the topology is, the more singular the dynamics becomes
at small volumes.
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APPENDIX: SI.(2,R)/SO(2)

We describe here some of the elegant mathematics asso-
ciated with space M =SL(2,R)/SO(2) of the 2 j. The ex-
position is a direct transcription of the beautiful exposi-
tion of Ref. 15 to 2+ 1 dimensions. Any element g CM
may be wfltten

where the matrices A and Ã are of the form

8+r j/~8 0 vZ
X= (A2)

the natural metric on M is

G(dg, dg)=trIg 'dgg 'dg I

=dr'+e ~"dn'. (A3)

straints allow an explicit solution. Such instances typical-
ly reduce the problem to a finite number of degrees of
freedom, quite similar to the minisuperspace model of
DeWitt and others, but less suspect in that no approxi-
mations are involved beyond the (admittedly delicate) as-
sumption of a regulator which preserves the algebra of
A o m.d A;. There are no great surprises —the wave
functions correspond quite closely to what one would ex-
pect from an analysis of the classical equations of motion,
together with the smearing of probabilities mandated by
the uncertainty principle. There is no need for a modifi-
cation of the framework of quantum theory in order to fit
geometrodynamics into it, at least at this level. In addi-
tion, we now have a stepping stone from which we may
proceed to consider, e.g., a nontrivial matter field (i.e.,
massive or self-interacting) in 1+ 1 dimensions, or ex-
plore the possibility of topological metamorphosis. A
parallel analysis should be possible for low-dimensional
supergravity.

Of course, it may be that qualitatively different effects
occur when there is an infinity of physical modes in the
system. Then an explicit regularization is necessary, a
question we have carefully avoided here. It seems that
herein lies the major difficulty of quantum gravity.

VI. DISCUSSIGN

%'e have considered quantized gravity in 1+ 1 and
2+ 1 dimensions, as well as matter fields coupled to grav-
ity in 1+ 1 dimensions. The Hamiltonian version of the
path integral has proved useful in isolating the physical
degrees of freedom in those cases where the gauge con-

with

~GG'&I
~)gij dgkl

(A4)
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In terms of the line element (A3) this operator becomes

a' I a ~ a'
(Aar' v2 ar

'
an'

'

To find the eigenfunctions of b„ let us first solve for
those that are independent of n:

waves on M through the action of SO(2) on the n

independent solution e&(r)

ep, b(g) =ep(B gB), (A7)

where BE SO(2) and r is determined from B'gB through
the decomposition

e (r)=e' +' ' be = —(p +—')e
P (A6) 8'gB =XAA'N' . (A8)

Then, just as we can generate all two-dimensional plane
waves by rotating a plane wave traveling along the x axis
(the y-independent solution), we can generate all the plane dg =e dr dn (A9)

The integration measure for inner products is deduced
from (A3),
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