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Spherically symmetric systems of fields and black holes.
III. Positivity of energy and of a new type Euclidean action
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Within the scope of the two-dimensional model of gravity which was defined and studied in the
two preceding papers, we investigate the three famous positivity problems of general relativity: (1)
energy, (2) Euclidean action, and (3) divergence identities. We show that the energy can be split in a
unique way into a black-hole mass and a field energy. If there are no fields in the model which

could discharge the hole, then the field energy itself is non-negative and has a zero minimum for the
vacuum value of the fields. In the opposite case, the greatest lower bound for the total energy is the
irreducible mass of the hole. We define a new type of Euclidean action for gravity theories, which is
different from the action used currently in Euclidean quantum gravity. The new Euclidean action is
obtained by a true analytical continuation of a reduced Lorentzian action so that the relation be-

tween the Euclidean and I.orentzian regimes is well defined. We prove that the, new Euchdean ac-
tion is positive definite without any additional "complexification. ' We show that the possibility of
gravitational collapse leads to an unusual, saturation-curve-like form, of the Hamiltonian and of the
new Euclidean action.

I. INTRODUCTION

In the Einstein theory of gravity, one encounters at
least three important positivity problems: (1) the.positivi-
ty of the total energy of an isolated, gravitating system,
(2) the positivity of the Euclidean action of an asymptoti-
cally Euclidean space, and (3) the positivity of the right-
hand side of the so-called divergence identities, which are
used to show the uniqueness (no hair) theorems for sta-
tionary black holes.

Recently, new results concerning the first problem have
been established (see, e.g;, Refs. 1—4). The expression for
the energy is a surface integral at infinity, which can be
arbitrary large negative for some values of the fields.
Only if the fields satisfy a part of the field equations,
namely, the so-called constraints, can the positivity be
shown (for details, see Refs. 1 and 2). This is a unique sit-
uation in the field theory. For example, the Yang-Mills
fields also are constrained, but the expression for their to-
tal energy is manifestly positive for all values of the fields,
irrespectively of whether they satisfy the constraints or
not. The positivity proofs could be extended also to situa-
tions with black holes. Here, the result is even stronger
than positivity: the square of the total energy must be
larger than the sum of the squared charges of the hole.
Penrose has formulated the following, still stronger, con-
jecture: the total energy is larger than the irreducible
mass of the hole.

The second problem is met, if one attempts to construct
a quantum theory of gravity. In the flat-spacetime quan-
tum field theory, the so-called Euclidean method is very
powerful. The quantum fields are obtained by first con-
structing the imaginary-time correlation functions (so-
called Schwinger functions) as functional integrals and
then applying certain general reconstruction theorerns to
recover the real-time theory {see, e.g., Rcfs. 6—8). For the

whole construction, two simple features are of crucial im-
portance: (a) the Euclidean action is positive definite {or,
at least bounded from below) and (b) an analytic continua-
tion provides a transition between the Euclidean and the
Lorentzian regimes. In the so-called Euclidean quantum
gravity, one must proceed in a different way. First, one
gets into the Euclidean regime by setting the spacetime
metric to bc positive dcflilltc; this has in gcllcral Ilotlllllg
to do with analytic continuation from the Lorentzian re-
gime (there need not be any real Lorentzian section of the
analytic continuation of the positive-definite metric).
Thus, the transition between the Euclidean and Lorentzi-
an regimes becomes problematical. Moreover, the
Einstein-Hilbert action for the Euclidean metric is not
bounded from below. ' To overcome this obstacle, one
splits the metric in the conformal structure and conformal
factor, and performs an ad Itoc analytical continuation of
the conformal factor. ' The Euclidean action prepared in
this way is positive definite.

The actual statement of the positive-action theorem
has features which are strongly analogous to the
"positive-energy theorem": again, there is an expression,
which can be arbitrary large negative for some values of
the fields, but, if the fields satisfy an additional condition,
it becomes positive definite. This additional condition is,
for the energy, the constraints and, for the Euclidean ac-
tion, the vanishing of the scalar curvature (this defines the
representants of the conformal classes). In both cases, the
additional condition is a part of the equations of motion.

The difficulties of the Euclidean quantum gravity, as
well as the above analogy, suggest that one should try to
define the Euclidean action in a different way. As in all
gauge theories, the variables in the action can be split up
into three groups: the true dynamical variables, the
dependent variables, and the gauge variables. One can, at
least in principle, exclude the gauge variables by choosing
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a gauge (including a time coordinate) and the dependent
variables by solving the constraints. One obtains, in such
a way, the reduced energy and the reduced action, which
are functionals of only the true dynamical variables.
From the "positive-energy theorem, " it follows that the
reduced energy is positive for all values of the true
dynamical variables. Could one construct a new type of
Euclidean action from the reduced Lorentzian action?
Can such a Euclidean action be positive definite?

The answer to the first question is simplified by the fact
that the process of reduction includes the choice of the
spacetime foliation. Together with the reduced action, we
are supplied by a particular time coordinate, so we can try
whether or not just the usual Wick rotation will yield any-
thing reasonable. If so, no transition problem between the
Euclidean and Lorentzian regimes will plague the theory.
There will be another difficulty, however: we are losing
the manifest gauge invariance. Even worse, the Euclidean
action corresponding to different foliations will not, in
general, lead to equivalent quantum theories. ' Still, it is
quite plausible that the standard choice of time in asymp-
totically flat regions, where this time becomes, globally, a
time coordinate of an inertial system, can lead to a unique
scattering theory. There are interesting papers in this
direction. '

As to the second question, the affirmative answer is
again plausible. Indeed, the "bad" direction, in which the
Euclidean action becomes negative, is a conformal defor-
mation. The conformal factor at the space part of the
metric is, however, a typical dependent variable, whose
value is determined by the Hamiltonian constraint (see,
e.g., Ref. 14). Hence, in the reduced theory, the freedom
to inake conformal deformations disappears.

We can, therefore, formulate the following new
positive-action conjecture.

"If the foliation of the spacetime is chosen properly,
and the system is totally reduced, then

(a) the corresponding Euclidean action is defmed by the
Wick rotation,

(b) it is positive definite,
(c) in asymptotically flat spacetimes, it defines a unique

scattering theory. "
The third positivity problem in general relativity, the

divergence identities, is a difficult one. The question,
what is the status of the uniqueness theorems from the
standpoint of the field theory, for example, whether there
is any relation to the lower bounds of energy in spacetimes
with holes, have never been even posed (as far as I know).
In fact, the origin of the divergence identities has been
mostly considered as mysterious (for a review, see Ref.
15), and even after the very beautiful paper by Mazur, ' it
seems, at least to me, to remain a mystery.

In this paper, we will study the positivity problems in a
simplified situation: we limit ourselves to spherically
symmetric configurations. This leads to the so-called
Berger-Chitre-Moncrief-Nutku (BCMN) model. ' ' The
BCMN model consists of a scalar field with a nonlocal
self-coupling on a two-dimensional spacetime. Our
analysis will be based on the preceding two papers
from which the notation and the starting formulas (1)—(9)
are taken; we denote Ref. 20 by I and 21 by II. To under-

stand this paper, reading of I and II is, however, not
necessary.

In Sec. II we study the Hamiltonian of the model. To
simplify the formulas, we choose a special case, namely,
the minimal coupling [case (a) of I], but the results are
valid for all other cases, too, and can be obtained for them
by calculations which are completely analogous to those
given here. We have to distinguish two subcases: (i) the
scalar field is neutral (e =0) and (ii) the scalar field is
charged (e&0). The black hole is always charged (Q&0).
In case (i), the splitting of the Hamiltonian into the
black-hole part and the field part in formula (1) is convex
in the sense that (1) both parts are non-negative and (2)
the second part vanishes only for the vacuum value of the
field. Thus, the splitting is unique and gives a definition
of energy of an apparent horizon (this is likely to be possi-
ble only for spherically symmetric configurations). In
case (ii), we work out another splitting, where the black-
hole part is the so-called irreducible mass; the field part is
again bounded from below by zero, but there is no field
configuration for which it would achieve this value. The
static black-hole solution with zero scalar field around it
is only a local minimum of the Hamiltonian. The greatest
lower bound of the total energy is, in case (ii), lower than
in case (i) because of the electromagnetic interaction of the
hole with the scalar.

These results confirm and sharpen Penrose's conjecture:
the greatest lower bound for the total energy in an asyrnp-
totically flat spacetime with a black hole is (i) the total
mass of the hole, if there are no fields in the model which
can discharge the hole, or (ii) the irreducible mass of the
hole otherwise.

The convex splitting of the energy in case (i) could lead
to a proof of a "uniqueness theorem, " if it were supplied
by the following statement: "The total mass of the static
spacetime with a black hole is equal to the total mass of
the hole itself. " This statement would play the role of the
so-called Smarr formula in the usual proofs of uniqueness.
Hence, the staticity is needed only in the "Smarr formula"
for this case. In case (ii), it is plausible that the static
black-hole solution becoines even a global minimum of to-
tal energy, if we restrict the competing configurations to
the static ones. This would again lead to a sort of posi-
tivity we need. These remarks could shed some light on
the relation between the uniqueness theorems and the po-
sitivity of energy, but, of course, they could also turn up
to be misleading.

In Sec. II we turn our attention to a sort of upper
bounds of the energy. Indeed, the Hamiltonian ap-
proaches a finite limit, if the field grows to infinity some-
where. We show that this "saturation phenomenon" is a
necessary consequence of gravitational collapse. We find
that a new apparent horizon is forming in this case. We
discuss all possible mechanisms of forming a new horizon.
Our choice of gauge guarantees that our boundary condi-
tions chosen in I and II will be automatically satisfied at
the new as well as at the old horizon. This makes it possi-
ble either to keep the boundary conditions at the inner-
most apparent horizon fixed during all processes, or to
jump always to the current outermost horizon. We per-
form the transformation between the Hamiltonians corre-
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The first two terms have a wrong sign, and the curvature
scalar can be positive as well as negative.

For the proof of the new positive-action conjecture in
the BCMN model, the explicit complete reduced form of
the action as given in II is very helpful. This action is,
however, in the Hamiltonian form. We can analytically
continue in the velocity plane only after the generalized
momenta are expressed by means of generalized velocities.
The continuation must be done carefully, because the ac-
tion as a function of complex velocities has branching
points on the real axis. We find that these singularities
are necessarily connected with the saturation
phenomenon, i.e., with the gravitational collapse. We
study a very simple system, the so-called exponentiated
oscillator, to show that the branching points need not lead
to any pathology in the classical or quantum dynamics.
Then, finally, we prove the positivity.

We also observe that the action indeed is positive, but it
does not grow sufficiently quickly for the path integral to
converge. There is a similar saturation phenomenon as in
the Hamiltonian function. This could, we hope, be
corrected by an appropriate measure. We do not tackle
this problem here.

II. THE HAMILTONIAN

The BCMN model has been generalized in Refs. 20 and
21 to include the electromagnetic field, a charged scalar
field with some self-interaction and mass, and electrically
and magnetically charged black holes. The constraints
and gauge equations have been solved explicitly in a par-
ticular gauge and the system has been reduced to contain
only the true dynamical variables. The form of the sur-
face terms at all boundaries has been derived and the
Hamiltonians have been calculated.

Let us consider the case with an electrically charged
hole of arbitrary mass and a minimally coupled, electrical-
ly charged scalar field f with a self-interaction potential
V(

~ g ~

). The corresponding Hamiltonian reads '

DO

H =Mp+ f dy [Ep(y) E(y)e '«'], —
26 "o

where

1 GQo'
Mp —— xp+26 xp

is the total mass of the hole with radius xp and charge

(2)

p&

sponding to these two versions.
In Sec. III we study the new positive-action conjecture

within the spherically symmetric, uncharged scalar model.
First, let us notice that the situation in this model is per-
fectly analogous to that in the full quantum gravity. The
second-order action, which has been given in I, will not
become bounded from below, if we substitute a positive-
definite tensor for the metric in it and change its overall

sign; the gravity part will then look as

m
2

F(x)=1—Gx V —G
x

GQo'
Fp(x) =1-

x

T(x)=G f dy[4y
~
m(y)

~
+y

~

g'(y)
~ ] .

(4)

A. The positivity

Two relations are important for the positivity of the
Hamiltonian (1):

xp)~G
~ Qp ~,

V(
i @i'))0.

(10)

The first one holds for spherically symmetric apparent
horizons, the second one guarantees that the local energy
density of the scalar field is non-negative.

We have to consider two cases, e =0 and e&0.
Case e =0.

Here mz ——Qp and

2

F(x)=1—Gx V —G
Qo

x
Then, (1) can be written as

II =Mo+ f dy[Fo(y)(1 —e ' ')+Gy Ve '«'] .1

Xo

(12)

Equation (12) implies: For all configurations P(x, t),
~(x, t), we have II)Mp equality being reached only for
such fields g, m. which satisfy

g'(x)=0, m(x)=0, V(
i
g(x)

i
)=0, Vx

(a true vacuum of P). This follows immediately from (4),

mz(x, t) is the total charge under the radius x and m.(x, t) is
the canonical momentum of g(x, t) W. e often suppress
the variable t in the expressions, but we cannot suppress x
because of the multiple space integrals.

The relevant solutions to the constraints are

~ (x)=Qp ie f—dy [g(y)n(y) g—"(y)m(y.)], (6)

—T(y)+ T(x)

y(x) x "o

and those to the corresponding gauge equations are

a(x) = e
1

(8)
V'y(x )

A, (x)= f ~~(y)e
00

x y2

Here, y(x, t)=g&~(x, t), a (x, t)= —gpp(x, t) are the only
nonzero components of the two-dimensional metric of the
model in our gauge and A, is that of the electromagnetic
potential; e is the electric charge of the field g. For the
derivation of these results as well as more detailed inter-
pretation of the equations, see Ref. 21. We are now going
to study some properties of the Hamiltonian (1).
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(5), (10), and (11): T(x) & 0 and Fp(x) & 0 for all
x H(xp, oo ).
Case e&0.

Here, we have to write (2) in the form

GQp'
Mp ——M;+ y2G z

where M; =(26) 'xp is the irreducible mass of a spheri-
cally symmetric black hole with radius xp (Ref. 22, p.
889). Setting (13) into (1) and using (4) we obtain

Now, the positivity is again manifest; we have even the re-
lation H &M; . The equality H =M; cannot be
achieved, because one has to satisfy the following incom-
patible relations:

T(x)=0, m~ (x)=0, Vx .
We can, however, show the following.

Theorem. For any e&0, there is such a configuration
g'(x },m.(x)C Cp" (xp, oo ), V(

i @(xp )
i

)= V(
i it ( oo )

i
)=0

that

+ y1 —Fye H [g,m ]—M;~ & e .

=M~ + f dyI (1—e '«')
11T 2G

+G[y'V+y '~~'(y}]e ""'I .

Thus, M; is a true greatest lower bound of all possible H
values.

Proof. Let x»xp, x2&x, be some radii and f(x) be a
function defined as

x &xi.. f(x)=0,
Z 1

x, &x (x,: f(x)= dy exp
ZI (x2 —x)(x —xi }

Zp 1f dy exp
zl (x2 —x)(x —xi )

x2&x: f(x)=1.

f(x) is C and we have f'(x) &O,f'(x) E Cp (xp oo ). Choose g(x) and ~(x) to be

4(x)=A+(4 iti)f (x)+Ppf—'(x) ~(x) =i~f'(x»

where m, fi, g2, @p are real constants such that V(gi )=V($2 )=0. We have, then, V(
~
g(x)

~
)& V~, where VM &0 is

independent of xi,xz (but dependent on gi, gq, and Pp). T(x) satisfies

xp (x (xi. T(x) =const & 0,
xi &x &x2. T(x) &0, T'(x) &0,

xg &x: T(x}=0 .

For m z (x), we obtain

xp (x (xi.'1Tg(x).=Qp,

xi &x &x2.'77g(x)=Qp+2evrgjf(x)+en(gz g, )f (x)+2em—gp f dy f' (y)
Z)

xz &x: nz(x)=Qp+en(fz+gi)+2emgp f dy f' (y)=const.
1

We can always choose m and gp such that mq (x2) =0 and mz (x) & Qp for all x &xp. Then, we have for H —M~

1 ] 3 3 ~ 2 1 1
H —M~ & (x2 —xp)+ 6 VM(x2 —xi )+ 2 Qp2G XP X2

(x2 —xp)+ 6 VM(xp —xp }+2 Qp
1 3 3 I 2 1

Xp

From this, it is clear that there is a 5 such that for xp &x2 &xp+O, H —M;„&e, Q.E.D.
The Reissner-Nordstrom solution is given by P(x) =pi, w(x) =0, V(

~ Pi ~
)=0. Its energy is the total mass of the hole

and it is not an absolute minimum of H. It must be an extremum, because the Reissner-Nordstrom solution is static.
Varying H twice at this point, we obtain

O'H = f dy[O~T(y)+G(y O'V+2y '5~~(y)5~~(y))] .

We have also
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y2+yyyx4y —3~fy~y+y fyy
and

~'I'= I'"(4i}(4i&f+444 }' .

Thus, the Hessian is positive definite and the total mass of the wormhole is a local minimum.
As seen from the proof of the theorem, the initial data Q(x),~(x) whose energy lies sufficiently near to M; must form

a shell of matter around the hole, which (1) is very near to the hole and (2) neutralizes it. Such initial data, of course, can
never lead to a static solution. It is even conceivable that the restriction of the competing configurations to static fields
could promote the total mass of the hole to an absolute minimum.

B. The formation of apparent horizons

The form of the Hamiltonian (1) is rather remarkable, it reminds us of the saturation curve 1 —e . One can call this
property of the Hamiltonian "saturation. " Indeed, if m(x) and/or f'(x) will grow over all bounds at any given point x,
H will not diverge, but approach some finite limit.

Let us study this property in more detail. We observe first that T(x) is a positive, monotonic function, T (x) &0 and
T( ao )=0. Thus, if there is a point, xi, say, such that xo &xi & oo and T(x, ) = ao, then T(x)= ao for all x which lie
between xo and x i. Let xi be the maximuin of all points x where T(x)= 00. Then,

xo &x &x, : T(x)= oo,

xi &x: T(x) & a

At the point x i, f'(x), and/or m.(x) must diverge, but they can be regular at x &x i. We can, therefore, write

yF y yF y e —T(y)
~

Using (2), (3), and (4), this can be transformed as

H= xo+ + y Foy —F~y + yF~y+ y F~ y —Fye1 GQo' 1 OO —T(y)

26 xo 26 "0 2G Zo 2G

where

GQ 2

Fi(x}=1-
x2

and

Qi =~~(xi } .

However, we have
r

1 Ggo 1 Z) 1 Gg 2

2G 2G " 2G "o 26 =M) .

M, is the mass of a spherically symmetric black hole of
radius xi and charge Qi. Thus,

H=M, + y F, y —F ye

Of course, we could expect that a new (apparent) horizon
has formed at xi. This is confirmed by Eq. (7): setting
T(x i }= ao in it, we obtain

1 =0.
y(xi)

This means that x =x
&

is a minimal surface.
The formation of a horizon should be an irreversible

process. How can our Hamiltonian "organize" this? It
could seem, e.g., that the fields f'(x) and m.(x) could be-

come finite again at some later time. Would then the hor-
izon disappear? The answer is no and the reason is rather
surprising: there will be no later time. For consider Eq.
(g): a(x) becomes zero for all x in the interval [xo,xi],
and precisely at the moment, when T(x, ) becomes singu-
lar.

Hence, the saturation has to do with the gravitational
collapse of a field configuration outside of the hole. The
total energy does not diverge, because the gravitational en-
ergy is negative and balances, or even overweights, the lo-
cal g energy, even if this becomes infinite.

A more quiet possibility of how a new apparent horizon
can form is that F(x) becomes negative somewhere so
that, for some x i, we obtain

Z)J' dy F(y)e-'"'=0 .
Zp
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If ti is the first time moment at which this happens, we
have, at t~, y '(x) &0 for all x&xi in a neighborhood of
x~. a(xi) becomes zero at ti and it stays zero for all
t & ti. Thus, the developments of the two Cauchy sur-
faces xo &x &xi, t =ti and xi &x & oo, t =ti, become
causally disconnected. As in the previous case, one can
transform the Hamiltonian for the region t & t~,x &xi to
the shape

H =Mi+ f dy[F)(y) —F(y)e '«'],

where M~ is the mass of the new hole.

~ 1
pe ~, p= —mco qe

Pl
(19)

Clearly, T is a constant of motion and the general solu-
tion for q, therefore, is

q =A cos(cozt+a) .

All three constants, A, a, and coT are, now, dependent on
the initial data go,po. In particular,

IN 2

coT =co exp — po —p go2m 2

III. THE EUCLIDEAN ACTION

8[x;f]=Gf dyy (15)

where f(x) is an arbitrary Co function. Then, T(x) can
be written as

T(x) =A [x;m(x)]+8[x;f(x)] .

The action corresponding to the Hamiltonian (1) in the
present case reads

Ii

f dx P~ H[P,~]— (16)

The Euclidean action I@, can be obtained from it in the
following two steps.

(1) Solving the velocity-momentum relation 5I/
&.(x) =0, for m(x) and setting the solution into (16).

(2) Analytic continuation of P(x) to the imaginary axis
defining

P(x) = if'(x—)

[QE(x) is real]. The resulting functional of PE(x) and
f(x) is iIE.

The first step will lead to a double-valued functional
(infinite-dimensional two-sheet Riemann surface). This is
not an everyday situation, so we slightly digress at this
point and study a related but much simpler problem first.

A. Exponentiated oscillator

Consider a one-dimensional system with coordinate
q (t) and momentum p (t), whose Hamiltonian has the
form

H= —(1—e r ),1

y
where

1T= (p +m coq ),
2m

(17)

(18)

m, co, and y are constants of the dimension + 1, + 1,
and —1, respectively.

The classical equations of motion are

In this section, we limit ourselves to the simple case
e =0 and V(

~ f ~
)=0. Let us introduce the functionals

A and B by the relations

A[x;f]=4G f„dy y 'f'(y), (14)
'2

Thus, the model does not seem to be pathological, either
in its classical or in its quantum aspects.

It has, however, an interesting feature, which leads to
complications, if one, e.g. , is going to construct the Eu-
clidean action: the relation between the velocity and
momentum is not uniquely solvable. This relation is
given by the first equation of (19) and can be written as

b (p) =a (q, q),
where

(20)

b (x)=x exp — x
2m

2

a (x,y) =mx exp
/Pl N

2

The shape of the functions b(p) and H(p) is shown in
Fig. 1. We see that the branching points of the function
inverse to b coincide with the points of inflection of the
Hamiltonian. Notice that such inflection points must al-
ways be present, if the Hamiltonian is approximately
quadratic for small values, and has the saturation proper-
ty for large values of the dynamical variables. Thus, the
branching of the velocity-momentum relation seems to
follow necessarily from the saturation. From Fig. 1, one
also sees that the velocity j is bounded to the interval

exp( ——,
'

( I+ym co q ) )
ffPl

exp( ——,
' (I+ymca q )) .

Qm

Thus, each classical trajectory of our system is just that of
a harmonic oscillator. The quantum theory correspond-
ing to the formal Hamiltonian (17) and (18) is readily con-
structed. With the substitution p = i BlB—q, T becomes
an essentially self-adjoint operator on Co (see, e.g., Ref.
23, p. 175). There is a unique self-adjoint extension, T, of
it to L ( —oo, oo). We can define

H= —(1—e r )
1 T-

y

Such H is self-adjoint, bounded operator on L ( —oo, oo ).
It has the same eigenfunctions tP„(q) as T and its spec-
trum is given by

1—[1—exp( yen(n—+ —, ) )], n = 1, . . . , oo .1
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iH 005~= f dxFo(x)e ' '5 T{x),

and from (14)

5 T(x)=86 f dyy '~(y)5n(y) .

Hence,

5~=4 f dx Fo(x)e T'"' f dy y m.(y) 5~(y)

=4 f dy &r(y) f dx Fo(x)e

and

=jb( ) — f d F()e
5m(x) x3 "0

The resulting velocity-momentum relation reads

p(x)=, f dy Fo(y)e (21)

An analogous calculation yields the second variation of
the Hamiltonian:

FIG. 1. H and b as functions of p.

)
5$(x)
5m (y)

= [5(x —y) —26x n.(x)m (y) ]

In the gravitational case this has to do with the behavior
of the time coordinate: higher proper-time velocity leads
to speeding up of the coordinate time.

In a neighborhood of the branching points, we have
' 1/2

&& 4y f dz Fo(z)e
Xp

(22)

e ' 1 — 5p +O(5p )

where 5p =p+(m/y)' . Thus, the Riemann surface is
two-sheeted, with singularities at a =+(m/ye)'~ on the
real axis. We can define the two sheets by cuts along the
intervals ( —oo, —(m/ye)'~ ),((m/ye)'~, oo ) of the real
axis. The first sheet defines p uniquely as a function of a,
in particular at the imaginary a axis; this function is con-
tinuous along the whole of the axis. If we set
a = iaz,p =—ip~, the—n this function, if limited to the
imaginary axis, satisfies identically the relation

aE ——pz(a~)exp pE (a, )
y 2

2'
The other possible function pz(az) on the imaginary axis,
as defined by the second sheet, must be singular at the ori-
gin (see Fig. 1). It seems, therefore, that there is only one
reasonable extension of p(a) to the imaginary axis. This
means that we can construct a unique Euclidean action
for the model.

B. The infinite-dimensional case

Let us calculate the velocity-momentum relation by
varying H [P,m]. We obtain from (16)

This can be considered as an operator: let us introduce
the abbreviation

g(x) = f dy Fo(y)e
Xp

then, for any Co function 5m{x) on the interval (xo, Oo ),
we obtain the following function of x as the action of the
operator:

(5 H (~)5~)(x)=4x 5m{x)f(x)
—8Gx n (x) f dy m(y)y 35m.(y)g(y) .

If we extend Co (xo, oo ) to a Hilbert space II by means of
the auxiliary scalar product

(5~, ,5~, ) = f "
dy y '5~, (y)5~, (-y),

then we can apply the operator 5 H(m) to all elements of
it, obtaining again such elements, if only m(x) H II.

g(x) defines a linear, invertible transformation g on II
by 5m.(x)~g(x)5m. (x), because g'(x)&0 for all x H (xo, oo ).
Let II~~ C: II be the one-dimensional subspace of II spanned
by m.(x) and let Ili C: II be the orthogonal complement of
H~~ in H. The operator

D =4y 5(x —y) —86x m(x)y 'm(y)

maps each vector 5m &II~~ into 4x 5n(x)(1 —26(m, m)),
whereas each vector &.&II& goes to 4x 5n.(x). Hence,
the product of D with g is a top linear isomorphism (see
Ref. 24), if 1 —26(~,~)&0, and has a one-dimensional
kernel g 'II~~, if (m, m. )=(26) '. The map (21) is, there-
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fore, locally invertible, unless m lies on the sphere SG of
radius (2G) '~ around the origin (see, e.g., Ref. 24, p.
13). The direction in which 5 H(m. ) changes signature is
given by g 'm; it is not tangential to the sphere SG.

The situation is, therefore, completely analogous to that
for the exponentiated oscillator. We have again a two-
sheeted (but, this time, infinitely dimensional) Riemanni-
an surface over the "plane" II&&II. The singularities lie
along the surface given by the equations

+Mo+Hzlgz&~E[PE& PE]l (24)

where

After these preliminaries, we can, finally, turn to the
proof of the main statement of this section. With the help
of the functional m E, the Euclidean action can be written
as

gl
IE = f d'r f„dx QE'rrz[fz&QE]

(~i, ir2) =0,
it crosses the real "axis" (iri, 0),~, E II, at SG and remains
at a secure distance from the imaginary "axis"
(O, m.2), ir2&II. There is a unique analytical continuation
of (21) to the imaginary "axis" determined by the
first sheet; if we define gz(x) and mz(x) by

g(x) = i fz(x—), ir(x) = i vrz(x)—,

QE(x) =g(x),
then we have

nz(x) x
WE(»=, f dy 4Fo(y)exp(A [y 'n El B[y 'fz]—)

(23)

along the imaginary "axis," and this relation has a unique
global solution ~z(x), for any given gz(x)EII: so (23)
defines a real functional irz [gz, fz ].

HE[f i f2]
][ 00f dx Fp(x)[1—exp(A [x;f2]—B[x;f, ])] .

2G "o

(25)

For the first term in the space integral in (24), we obtain

~E (x)2

E~E

)& f dy4Fp(y)exp(A[y;~z] —B[y;gz]) .
0

However, from (14), we have

mz (x)
A [x;mz] .

X 4G dx

Integration by parts then yields

00 ~ 00f dx @E~z——— dx Fp(x)A [x;nz]exp(A [x;mz] B[x;@E]),—

because A [oo, mz] =O, A [xp'ATE] & oo. Using this in (24), we obtain

] 00

IE ——f dr Mo+ f dxFo(x)I2A[x;mz]exp(A[x;mz] B[x;pz])+1——exp(A[x;irz] —B[x;@E])j
2G xo

] 00= f dr Mo+ f dx Fp(x)(I1 exp( B—[x;gz])j—
2G "o

+exp( —B[x;fz])I 1+2A [x;nz]exp(A [x;irz])—exp(A [x;mz]) j )

For any x, A [x;mz] is a non-negative number; such numbers satisfy the inequalities

1 —e +2Ae & 2Ae", (26)

We~ &1—e~+2ae~, (27)

where equality is only possible, if A =0. The first inequality is obvious. The second is obtained as follows. Define the
function h (A) by

h (A)=1 —e "+Ae" .

We have h(0)=O, h'(A)=Ae" &0, if A &0. Thus, h(A) &0, if A &0, and this is equivalent to (27).
We obtain, in this way, the following estimate for IE.
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T" 00

IE& z Mo+ xF0 x 1 —exp —8 x; E +A x;mE exp A x;mg —B x;

1
Iz& z Mo+ xF0 x 1 —exp —B x; E +23 x;mE exp 3 x;m~ —B x; z

In particular, we have shown the following.
Theorem. The Euclidean action Iz of the reduced theory is positive, reaching its minimal value Mo(r" r') —for

4z =4m =o.

ACKNO%LEDGMENT

The author is indebted to J. Gasser and J. B. Hartle for useful comments. This work was supported in part by

Schweizerischer Nationalfonds.

~R. M. Schoen and S. T. Yau, Commun. Math. Phys. 65, 45
(1979);79, 231 (1981).

~E. %itten, Commun. Math. Phys. 80, 381 (1981).
sL. F. Abbott and S. Deser, Nucl. Phys. B195, 76 (1982).
~G. %.Gibbons et al. , Commun. Math. Phys. 88, 295 (1983).
5R. Penrose, Ann. N. Y. Acad. Sci. 224, 125 (1973).
sB. Simon, The P(y)2 Euclidean (Quantum) Field Theory (Prin-

ceton University Press, Princeton, New Jersey, 1974).
J. Frohlich, in Inuariant 8'aue Equations, edited by G. Velo

and A. %ightman (Springer, Berlin, 1978).
J. Cihmm and A. Jaffe, in Statistica/ Mechanics and Quantum

Field Theory, edited by C. De%'itt and R. Stora (Gordon and
Breach, New York, 1971).

S. %'. Hawking, in Recent Developments in Grauitation, edited

by M. Levy and S. Deser (Plenum, New York, 1979).
~DG. %. Gibbons, S. %'. Hawking, and M. J. Perry, Nucl. Phys.

8138, 141 (1978).
IR. M. Schoen and S. T. Yau, Phys. Rev. Lett. 42, 547 (1979).

~2R. M. %'aid, Commun. Math. Phys. 70, 221 (1979).
'3J. Dimock, J. Math. Phys. 20, 2549 (1979).

~~L. Smarr and J. %.York, Jr., Phys. Rev. D 17, 1945 (1978).
~58. Carter, in General Relatiuity. An Einstein Centenary Sur-

uey, edited by S. %. Hawking and %. Israel (Cambridge
University Press, Cambridge, 1979).

I6P. O. Mazur, J. Phys. A 15, 3173 (1982).
~7B. K. Berger, D. M. Chitre, V. E. Moncrief, and Y. Nutku,

Phys. Rev. D 5, 2467 (1972).
~SF. Lund, Phys. Rev. D 8, 3247 (1973).
~9%. G. Unruh, Phys. Rev. D 14, 870 (1976).
20P. Thomi, B. Isaak, and P. Hajicek, this issue Phys. Rev. D

30, 1168 (1984).
P. Hajicek, preceding paper, Phys. Rev. D 30, 1178 (1984).

2~C. %. Misner, K. S. Thorne, and J. A. %heeler, Grauitation
(Freeman, San Francisco, 1973).

23M. Reed and B. Simon, Methods in Modern Mathematical
Physics. II. Fourier Analysis, Self Adj'ointness (Academic,
New York, 1975).

24S. Lang, Differential Manifolds (Addison-Wesley, Reading,
Mass. , 1972).


