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We discuss how nonstandard fermion mass matrices {with hierarchical eigenvalues) lead to mixing
effects in nucleon decay which can enhance the branching ratios of naively unexpected decay modes,
and could suppress the rates for N ~e++ nonstrange hadron{s).

Much has been said over the past five years on the sub-
ject of the uncertainties surrounding calculations of the
proton lifetime in grand unified models (see, for example,
Ref. 1). The grand unification scale is fixed in a given
grand unified model by the particle content of the theory
and by low-energy inputs, including the QCD scale pa-
rameter. It is possible to considerably increase the naively
expected proton lifetime by the addition of suitable light
fermions or scalars, a possibility recently reemphasized in
the literature. Another important source of uncertainty
is found in the calculation of matrix elements for nucleon
decay, e.g., in the widely varying treatments of spin, phase
space, recoil effects, etc. This still leaves another major
source of uncertainty regarding our expectations for nu-
cleon decay, namely, the possibility of unusual (non-
Cabibbo-type) generation mixings in baryon-number-
violating vertices, which could lead to a priori peculiar fi-
nal states. All the mixing angles are, in principle, fixed,
given a set of fermion mass matrices: it is in fact known
[in an SU(S) grand unified model] that if fermion mass
matrices arise only from Yukawa couplings to one or
more S's of Higgs scalars, the mixing angles in the
baryon-number-violating gauge-boson vertices are just the
Cabibbo-Kobayashi-Maskawa angles of the low-energy
charged weak currents (with the possibility of additional
CP-violating phases). In this case, one would expect nu-
cleons to decay mainly, say, into e+ + nonstrange chan-
nels. However, it should perhaps be recalled here that this
kind of grand unified model fails miserably in accounting
for light-quark and lepton mass ratios.

Following the lead of Jarlskog, many people have ad-
dressed the question of whether the proton could be made
completely stable at tree level through inherent mixing ef-
fects. This does not seem possible in general for
reasons alluded to in what follows. Our concern in this
paper is to point out by means of examples that, as a
consequence of the latitude in the choice of fermion mass
matrices, nucleons could conceivably decay into naively
unexpected channels with a relatively large branching ra-
tio, and that this is a potentially important source of in-
formation on the problem of families and of fermion mass
generation.

Our considerations will be restricted to standard, non-
supersymmetric grand unified models. In supersymmetric
grand unified models the number of particle species more
than doubles„and nucleon decay can proceed through dif-

ferent mechanisms which can give rise to a hierarchy of
branching ratios quite dissimilar from the naively expect-
ed results of the corresponding standard grand unified
models (see, for example, Ref. 9 for a review). The
analysis of peculiar mixing effects given in what follows
can be extended to supersymmetric grand unified models,
taking into account the properties and spectra (especially
in the expanded scalar sector) of specific models.

There are very few constraints on the exact form of the
fermion mass matrices. One constraint is that the eigen-
values of these matrices give rise to the observed hierar-
chy of fermion masses. A second constraint is that the
mixing matrix appearing in the left-handed charged weak
current [the Kobayashi-Maskawa (KM) matrix] UxM has
the approximate form (with small 8)

r

cosO sinO 0
UK M —slnO cosO 0

0 0 1

which we refer to as "Cabibbo-type". ' There are a large
number of possibilities in the choice of fermion mass ma-
trices which satisfy these two requirements.

We write the fermion mass terms (in the group-
eigenstate basis) as

II.~l Ig +0 ( —1/3)I.~—1/39 ( —1 /3)g +9 (2/3)L, ~2/3q(2/3)g

+Hermitian conjugate,

where each of /L, lz, q( f/3)L, . . . is a vector in family
space and we are using two-component spinor notation.
The generic fermion mass term ft.~f~ can be reex-
pressed in the mass-eigenstate basis as fL~ fIt,(D)

where M= U~' 'Vf is diagonalized by the unitary ma-
trices U and V and the eigenvalues are placed along the
diagonal of M' ' in ascending magnitude. Thus,

ft. = UfL,

fI =Iftt .

If M is Hermitian, then U = V, and if M is symmetric,
then V~= U . Generally, however, U is the matrix which
diagonalizes ~~ and V that which diagonalizes ~ ~,

U~mm~U =m(D)2,

V~mfm V =m(D)2 .
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In this notation the left-handed charged current is

~ (L)Jp. q (2/3)L +pN( —1/3)L

9(2/3)L U2/3U —1/3~@9(—1/3)L ~

and thus, UKM ——U2/3U
An example of mass matrices (for three families) that

yield a fermion mass hierarchy and give rise to a
Cabibbo-type KM matrix is

0 2'0
M' '= 3 8 0 (1)

0 0 C

OD'0
M 1/3 = D E 0 (2)

0 0 I'"

0 6' 0

M2/3 = 6 0 H' (3)

0 H J
where ( A, A' «8 « C), (D, D' «E «E), and ( 6,
G' «H, H' «J). Matrices of this type (or similar types)
have been of interest to model bui1ders because they have
few parameters and consequently they can give rise to re-
lationships between fermion masses and mixing angles
such as the well known phenomenological relation
tan8c-(mdlrn, )' . The problem of achieving the ma-
trices (1)—(3), or ones similar to them, in a technically
natural way has been a long-standing industry (see, e.g. ,
the review of Weyers"). For these matrices, UKM is of
Cabibbo type as a consequence of both U, /3 and U2/3
being of Cabibbo type. However, in the general case, all
that is required is that U2/3 is close to U
U3/3 —U ]/3 +b„where 6= ( U2/3 U ]/3 ) has small
entries. It is worth noting that this does not require U2/3
and U ~/3 to be of Cabibbo type; however, it requires
that if either one is not of Cabibbo type then the same is
true of the other. Some examples of this last possibility
will be given in what follows.

We will now illustrate some alternative possibilities for
the fermion mass matrices by considering a two-family
case (for simplicity we will work with real matrices)

a b

c

One way to get a hierarchy in the eigenvalues of ~ is to
have a hierarchy in the magnitudes of the entries of ~M
(and consequently M ~) as was the case for the 3X3
matrices (1)—(3).

Case 1. A conventional choice might be a « b
= c «d. Then U = V is of Cabbibo type.

Case 2. An example of an unconventional choice along
these lines might be b «a =d «e. Note that the matrix
ME where

01'
K

1 0

is of the conventional form (case 1) that we just discussed.
Thus, here, U is of Cabbibo type and V =EU.

Case 3. The choice c «a =d «b is similar to the
preceding case where now, V is of Cabibbo type and
U=KV. If both M 1/3 and M2/3 are of this form then
(since K = 1) UKM is still of Cabibbo type.

We can also get a fermion mass hierarchy and a
Cabibbo-type KM matrix without a hierarchy of magni-
tudes in the entries of M. Thus we have the following.

Case 4. Allow a=b=c=d. In fact, consider

1+6 1
~=@ (4)

with small e. The eigenvalues of M are =up/2 and
=2p+op/2, and

1 —e/4 —(1+e/4)
1+e/4 1 —e/4

If both M &/3 and M2/3 are of this form (with small pa-
rameters e f/3 and e2/3) we do indeed get a Cabibbo-type
KM matrix to lowest order in e 1/3 and e2/3
(&—= (&—i/3 —&2/3)/4)

r

These alternative forms for the fermion mass matrices
are by no means an exhaustive catalog. They simply illus-
trate the latitude of choice one has, although in a particu-
lar grand unified model the possibilities may be limited by
the group and Higgs choice. ' It is easy to generalize the
above examples to three or more families and to matrices
with complex entries.

Unconventional fermion mass matrices can give rise to
mixing matrices in the baryon-number-violating vector-
boson vertices that are not of Cabibbo type. Under some
circumstances this can Cabibbo-suppress nucleon decay al-
together. ' However, in a greater variety of cir-
cumstances it will allow nucleon decay to proceed, but
will give rise to an unusual final-state spectrum. We will
now review baryon-number-violating boson vertices and
then give some examples of this latter possibility.

Baryon-number-violating interactions involving the
light fermions can be induced by the following
SU(3) X SU(2) X U(1) multiplets of vectors

X —(3, 2, —,'),
X'

-(3, 2, ——,),
and the following multiplets of scalars

S-(3, 1, —,'), (3, 3, —,'), (3, 1, -', ),
where the electric charge operator is Q = T3L —I'. In all
but some very particular cases the final-state spectrum of
a nucleon decay via the scalars S depends upon arbitrary
Yukawa couplings which are unrelated to the fermion
mass matrix. We will therefore not analyze scalar-
mediated decays in the following, although given a partic-
ular model the analysis can be easily carried out using the
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which is characteristic of models in which no more than
one family is contained in any one irreducible representa-
tion of the group which contains the baryon-number-
violating vector bosons. ' In this case the mixing matrices
that appear in the couplings (6)—( 10), when we go over to
the fermion mass-eigenstate basis, are, respectively,

«-I/I UI & I/I»- (1 1)

T T
( V2/3 U2/3 UKM, V2/3 U2/3 )

( U2/3 Vi, UKMU2/3 VI" )

( V2/3 UI V2/3 ),
T T

( V—I/3U2/3 UKM, V—I/3U2/3 ) .

( 1 3)

interactions written down in Ref. 1 5 . We note in passing
that, due to this arbitrariness in the seal ar couplings, the
final states expected in scalar-mediated nucleon decay can
be quite different from what would be expected in, say,
the minimal SU(5) model.

The interactions of the vector multiplets with the fer-
mions are as follows' ( a, b, . . . , are family indices;
a,P, y, . . . , are color indices; X and yi indicate the possi-
ble repetition of the various baryon-number-violating mul-
tiplets):

gX, ab[(vL. ) ~„~2(qRb
'"' )'&X

+ (ILa ) op~2(qRba ) I xa ]+H c (6)

(2/3)T ( —1 /3) ph X,ah [ eapyqRa a Iy2IypqLbp XXy

(2/3)T {2/3)~p
+&apyqRaa Iy2IypqLbp YXy ]+H. C.

jX,.b[(qL'."'
) ~„~2(4b )*&X

+ (qL~aa
'

) harp a2( lRb )' I'x ]+H. c. , (g)

I (2/3) e i pg„,.b [(vL. ) Iy„ry2(qRb

+ (lLa ) o&o 2(qRb& )*Fza ]+H. c. ,

( —1/3)T {—1/3) I ph q, ab [ ~apyqRaa O2~pqLbp +qy

+e p,qRi..'/IiTo2o„qL", /p3i. I „'",]+H c . . ( 10)

We specialize to the case
I 7

gX,ab IIX,ab JX,ab g q, ab n g, ab fiab

In this notation, for example, ( 1 1 ) is taken to mean that
(6) becomes

~—1/3)gp
gX [vL Iy„Iy2 V- I/3 (qR ) XXa

+ IL ~„~2UI V*
i/-I (qRa )*I xa ]

in the fermion mass-eigenstate basis. '

To illustrate the effects of some unusual choices for fer-
mion mass matrices on nucleon decay, we will first focus
on decays mediated by the (X, I') multiplet of vectors [as,
for example, in a grand unified model based on SU(5)].
We concentrate on giving examples where there are no
substantial suppression factors that impede the decay of
the nucleon; however, some situations in which the latter
does occur will be mentioned.

We start by discussing possibilities for two fermion
families. As a basis for comparison in the following as-
sllIIle MI M i /3 and M2/3 to have the generic forms
discussed in case 1 above. Then, since al 1 of the unitary
matrices U2/3, V2 /3, UI, . . . , are of Cabibbo type, nu-
cleon decay amplitudes wil 1 have the standard final-state
preferences, e.g., p ~e + +nonstrange, p ~@++strange,
p —+v +nonstrange, p —+v +strange, but very little of ei-
ther p ~e + +strange or p ~p + +nonstrange, and simi-
larly for the neutron. As a contrast to this, assume now
that MI I 1 /3 and M2/3 al1 have the forms discussed in
case 2 (case 3 is similar). Then UI, U I /3 and U2/3 are
of Cabibbo-type and Eqs. ( 1 1 )—( 13)) become, respectively
(using the fact that UI, U I/3 and U2/3 are real for real
mass matrices),

(KU I/3 UI KU I/3 )

T T
( U2/3KU2/3 UKM~ U2/3KU2/3 ) ~

( U2/3KUI UKM U2/3KUI )
T T T

In this circumstance nucleon decay through s-channel ex-
change is Cabibbo-suppressed. However, not a11 (-
channel-exchange decays are suppressed. One easily veri-
fies that the following hierarchies obtain for proton and
bound-neutron decay branching ratios on the basis of
flavor-mixing effects in matrix elements at the quark level
[in decreasing order of suppression by powers of small pa-
rameters, 0( 1 ) »O(e) »O (e )]:

8 (p ~@++strange) -8 (p ~%+strange)

»8 (p ~v+ nonstrange) -8 (p —+@++nonstrange)

-8 (p —+e + +strange)

»8 (p ~e + +nonstrange),

8 ( n —+v+ strange) »8 ( n ~v+ nonstrange) -8 ( n ~@++nonstrange)

» 8( ~ne + +nosntr naeg) .

Note that as always, decays of bound neutrons into a charged antilepton and a strange partic1 e are forbidden by charge
conservation.

Another circumstance occurs if we assume, for example, that MI is of the standard form as in case 1 and M I/3 and
M2/3 have the form given in case 2. Equations ( 1 1)—( 13) then take the form, respectively,
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(EU ]/3 UI XU I/3 )

{U2/3+U2/3 UKM~ U2/3+U2/3 ) i

( U2/3 UI ~ UKM U2/3 UI )

As in the preceding example, only t-channel exchanges are important. The resulting hierarchies of decay modes are then

8 (p ~e + +strange) -8 (p ~v+ strange)

»8 (p ~v+ nonstrange) -8 (p ~e++nonstrange)

B-(p ~@++strange)

-8 (p ~p+ +nonstrange),

and

8 (n —+V+ strange) »8 (n ~V+ nonstrange) -8 (n ~e ++nonstrange)

8(-n~ iu++ nosntr agne) .

If all of MI, M i/3, and M2/3 have the form given in
case 4 then all of the relevant matrices in (11)—(15) are of
Cabibbo type. The final states in nucleon decay are then
the conventional ones. However, if say, M, /3 and M2/3
have the form given in case 4 and MI is of conventional
form, then (11)—(13) become

( U i/3 UI'U i/3»--
{UKM

( U2/3 UI UKM U2/3 UI )
T T T

The matrices in (16) and (18) all have entries of order uni-

ty. The consequence of this is that the decays

p —+8++nonstrange, p ~e++ strange, p —+p++ non-
strange, p ~p++ strange, p ~V+ strange, and p —+V

+nonstrange all have amplitudes of comparable order.
I

For the neutron, n ~e++nonstrange, n ~p++non-
strange, n ~V+ strange, and n ~V+ nonstrange have
comparable amplitude.

An interesting case occurs for decays mediated by the
(X', Y') multiplet of vectors when M i/3 and M2/3 are of
the standard form (case 1) and MI has the form given in
case 3 ( V =ECRU is of Cabibbo type). Equations (14) and
(1S) are then

( U2/3 VI EU /32)

X' {1") mediated decays always involve final-state an-
tineutrinos (charged antileptons). In this final example,
the decay branching ratios follow the ordering, for pro-
tons,

8 (p~p, ++nonstrange)-8 (p~v+nonstrange)

»8(p~e++nonstrange)-8(JI ~@++strange)

»8 {p—+e++ strange),

and for bound neutrons,

8 (n ~V+nonstrange) -8 (n —+p++nonstrange)

»8 (n ~e++nonstrange) .

The preceding examples show (in the 2)&2 case) how
unusual final states in nucleon decay might be traced to
the structure of the fermion mass matrices. When the
number of families is increased the possible forms for the
fermion mass matrices become legion. It is worth noting
that (for three or more families) the straightforward gen-
eralizations of the preceding examples, for decays mediat-
ed by the (X, 1') bosons (except for those based on case 4)
give rise to Cabibbo-suppressed nucleon decay (this corre-
sponds to an explicit realization of the comment made in
Ref. 14): Such a generalization of our first nonstandard
example (to three families) might be MI ——MI 'K',
M J/3 —M ]/3L, and M2/3 —M2/3E, where M~

(E) (F) (+)

I

M ]/3 and M p/3 are the matrices exhibited in Eqs.
(1)—(3), and K'=antidiagonal (1,1,1). An example that
was not considered above, that in which M~ is antidiago-
nal (case 2 or case 3) and M2/3 and M i/3 are of the
standard form, gives conventional nucleon decay final
states. We also note that for all of these examples (save
those based on case 4) nucleon decay mediated by an
(X', 1")multiplet is Cabibbo-suppressed.

How then can we get unsuppressed unusual final states
in nucleon decay given three or more families of fer-
mions? One way is to have some of the mass matrices
with elements all of the same order (as in the 2 X 2 exam-

ple above based on case 4). Another way is to have the
2&& 2 submatrix (for the first two generations) have uncon-
ventional entries such as those discussed in the examples
above, and to have conventional values for the remaining
elements of the mass matrices [the remaining entries
might be, for example, ones of magnitude comparable to
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the corresponding ones in Eqs. (1)—(3)]. These are just
two relatively simple possibilities. Clearly, there may be
many more complicated (and even uglier) examples.

We hope we have demonstrated that given our relative
ignorance of the fermion mass matrices, nucleon decay
could conceivably proceed unsuppressed into unusual final
states even in the context of conventional grand unified
models. It is interesting that in many of the examples we
have considered, this occurs as a consequence of a qualita-
tive difference in the form of the lepton versus the quark

mass matrices. The implementation of any of the exam-
ples discussed above in the framework of a specific grand
unified model requires an extension of the Higgs sector
beyond the usual minimal choices. This, in any case, may
be required to cope with the well known difficulties in
reproducing the light-fermion mass ratios.

This work was supported in part by the U.S. Depart-
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283ER4005.

'J. Ellis, M. K. Gaillard, D. V. Nanopoulos, and S. Rudaz,
Nucl. Phys. $176, 61 (1980).

2P. H. Frampton and S. L. Glashow, Phys. Lett. 131B, 340
(1983); K. Hagiwara, F. Halzen, and K. Hikasa, University of
Wisconsin Report No. MAD/PH/142, 1983 (unpublished) ~

J. Ellis, M. K. Gaillard, and D. V. Nanopoulos, Phys. Lett.
888, 320 (1979);J. Ellis et a/. , Ref. 1.

C. Jarlskog, Phys. Lett. 82$, 401 (1979).
5G. M. Asatryan and S. G. Matinyan, Yad. Fiz. 31, 1381 (1980)

[Sov. J. Nucl. Phys. 31, 711 (1980)].
V. S. Berezinsky and A. Yu. Smirnov, Phys. Lett. 97B, 371

(1980).
7S. Nandi, A. Stern, and E. C. G. Sudarshan, Phys. Lett. 1138,

165 (1982).
8D. Altschuler, P. Eckert, and T. Schucker, Phys. Lett. 119B,

351 (1982).
9S. Rudaz, in Proceedings of the Third Workshop on Grand Uni-

fication, Chapel Hill, %orth Carolina, I982, edited by P. H.
Frampton, S. L, Glashow, and H. van Dam (Birkhauser, Bos-
ton, 1982), p. 191.

'oWe refer to the upper left-hand 2)&2 as Cabibbo-type as well.
More generally we also refer to the 2 & 2 matrix by this name
if the diagonal entries are close to 1 in magnitude (and thus,
the off-diagonal entries are small).

'tJ. Weyers, in Proceedings of the 1979 Carg'ese Summer Insti
tute, edited by M. Levy, J. L. Basdevant, J. Weyers, R. Gast-
mans, and M. Jacob (Plenum, New York, 1980), p. 515.
Note that we have tanO~-md/m, in this case. This is a
consequence of having only one free parameter in (4). By let-
ting the off-diagonal elements in (4) vary away from 1, the re-
lation tan8c-(m~/m, )' can be reproduced.

Arbitrary mass matrices MI, M J/3 and M2/3 can be
achieved in an SU(5) model with at least one 5H and one 45H
of Higgs. In SO(10) models with Higgs only in the symmetric
part of (L6)&16)&——10+126, none of the above cases except
for case 4 can occur. Qf course one can include Higgs in the
antisymmetric representation (16&(16)z——120. All of these
comments are well known.

4A number of the papers in Refs. 5—8 discuss attempts at mak-
ing the nucleon decay rate Uariish (at tree level) by means of
such mixings. While generally this cannot be achieved (the
relevant exact algebraic equalities among mixing angles can-
not be satisfied subject to the constraints of the KM matrix),
it may still be possible to have nucleon decay be Cabibbo-
suppressed.

~D. V. Nanopoulos and S. Weinberg, Phys. Rev. D 20, 2484
(1979}.

Grand unified models in which more than one family is con-
tained in an irreducible representation [such as SO(4n +2)
models for n &2 and some E6, E7, and Eg models] may con-
tain baryon-number-violating vector bosons that also induce
transitions between families even in the absence of mixings
arising from the fermion mass matrices. If such vectors are
the lowest-mass baryon-number-violating ones, they may give
rise to unusual final states in nucleon decay.
The mixing matrices appearing in the vertices involving neu-
trinos are irrelevant if the final-state neutrino is not observed.
For the same reason we have ignored the possibility of mix-
ings originating in the neutral mass matrix. All of these mix-
ings will be irrelevant unless there are neutrinos with masses
&1 GeV.


