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Spherically symmetric systems of fields and black holes.
II. Apparent horizon in canonical fol-IIIalism
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%'e study the action of a two-dimensional model of gravity found in the preceding paper. We
transform the action to the first-order Arnowitt-Deser-Misner form, and work out the generalized
momenta and super-Hamiltonians. We propose to foliate the spacetime in such a way that the in-

side of the apparent horizon will be cut away. In the classical theory, no loss of information for the
development of states from W to W+ can result, but in the corresponding quantum theory, some
such losses could occur if a black hole evaporates. We study the boundary conditions for the fields
at the apparent horizon which are implied by such a foliation, and calculate the corresponding sur-
face correction to the Hamiltonian by the method of Regge and Teitelboim. We generalize the so-
called Berger-Chitre-Moncrief-Nutku gauge in such a way that the fields cannot violate the boun-

dary conditions. In this gauge, we perform an explicit total reduction of the canonical formalism so
that only the true dynamical variables appear in the Hamiltonian. The reduced Hamiltonian splits
into a black hole and a field part.

I. INTRODUCTION

In this paper, we are going to construct a canonical for-
Illalls111 w111c11 would bc sllltabic fol' a dcscrlptloll of black
holes, their formation and their metamorphoses. We will
limit ourselves to spherically symmetric systems of fields.
The simplifying requirement of spherical symmetry leads
to a field nlodcl o11 a two-d1111cllslonal curved spacctli11c,
the so-called Berger-Chitre-Moncrief-Nutku (BCMN)
model. ' A. black hole in a Cauchy surface will be defined
as an intersection of the outermost apparent horizon with
the surface (for the definition of an apparent horizon see
Ref. 2); this is a (slight) modification of the usual defini-
tion. The construction of the BCMN-model action from
different four-dimensional systems has been performed in
Ref. 3. A more general definition of the apparent horizon
than that of Ref. 2 has been given there and its basic
properties have been derived. Hereafter, we will denote
Ref. 3 as paper I. Our notation and conventions will be
taken over from I.

We are constructing a canonical formalism for black
holes with the final aim in mind to use it as a basis for a
quantum theory of black holes (see I). Indeed, even the
path-integral method of field quantization is (normally)
based on a canonical formalism (see, e.g., Ref. 4).

The extension of the canonical formalism to systems
with black holes meets, of course, difficulties at the level
of first principles. The first step toward a canonical for-
malism is a foliation of the spacetime under consideration
by a family of Cauchy surfaces (see, e.g., Ref. 5). The
spacetime must, therefore, be totally hyperbolic and non-
singular. Howcvcr thc spacctln1cs with black holes most-
ly do not satisfy these requirements. In I, we proposed to
foliate only a part of the spacetime; the boundary of the
part coincided with an outermost apparent horizon.
Technically, any foliation is determined by some analytic
gauge condition which becomes a part of the effective

dynamics. We must, therefore, choose the gauge condi-
tion in such a way as to achieve the proper cut of any
Cauchy surface of the foliation corresponding to the
gauge and t4ls at aIly dynamical situation. Surprisingly
enough, it is not difficult: most of the quite natural coor-
dinate systems automatically break down at the apparent
horizon taking the laps and shift functions a and P to
zero there, and this is nothing but the desired cut.

There is another problem, which is more subtle. If we
quantize canonically a time development along a family
of Cauchy surfaces, then from any pure state at any time,
again only a pure state at any other time can result; there
is no point where information can be lost. The semiclassi-
cal analysis of the black-hole evaporation suggests, how-
ever, that the process leads to a mixed state, even if the
hole came into being during the time development of a
pure state. Does, therefore, the possibility to foliate the
spacetimes with black holes in the above way mean that a
"no-mixing theorem" has been proved~

This is not the case for the following reason. If the
black hole evaporates, then there are effective negative-
cIlcI'gy currents I1car t4c appax'cnt horizon. Hcncc, thc
mean motion of the apparent horizon need not be non-
timelikc (sce I). There is, therefore, a possibility that the
foliated part of the spacetime does not cover the whole of
W+, and that part of Jr+ which will be covered, will not
be sharply determined (it will be quantum fuzzy). Then,
even if one will be able to calculate the pure state at
t =+ ao, one will not have complete information of the
state of the field at the whole of Jr+. This state could,
therefore, be mixed. This is, of course, only a very rough,
quali. tative argument.

The plan of the paper is as follows. In Sec. II we use
the second-order action of the generalized BCMN model
and transform it to the usual, Arnowitt-Deser-Misner
(ADM), first-order form. The super-Haniiltonians and
the canonical momenta are obtained in this way. In Sec.
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III, the method of Regge and Teitelboims is employed to
calculate the surface corrections to the Hamiltonian.
Here, we must use the boundary conditions as given in I,
as well as the "cut conditions" a=P=O at the apparent
horizon. In Sec. IV we generalize the BCMN gauge so
that it becomes compatible with all of the boundary con-
ditions and so that an explicit reduction of the system
remains possible. We are able to deal with the apparent
liorlzoll and wltll tllc 1'cgulal ccn'tcl' ln a lilllflcd way. Tlic
reduced Hamiltonian splits into two terms; one is the en-
ergy of the apparent horizon and depends only on its sur-
face area A and its charges, electrical one Q, and magnet-
ic one I'. The second part is an integral from the horizon
to the infinity, which vanishes, if the true dynamical vari-
ables take on the "vacuum" value.

Many of the derived properties are, of course, valid
only in the spherically symmetric case; vnth certainty, it is
the exphcit reduction, and, may be, also the splitting of
the Hamiltonian. Nevertheless, using these two proper-
ties, we can derive theorems, which AH be plausible start-
ing points and working hypotheses for the full-fledged
four-dimensional case.

and the normal unit vector n' to the Cauchy surfaces
t =const reads

The second fundamental form, K», of the Cauchy sur-
faces is determined by its trace part K,

YvI1ere

K= B,(aVyn') .
a

Denoting 8 jest by an overdot and 8/Bx by a prime, we
llavc

13' + Py'
2y' ay 2y'

A straightforward calculation yields the following expres-
sion of R by means of the Lagrange multipliers a, P and
the two fundamental forms, y, K, of the Cauchy surfaces:

The two-dimensional analog of the (3+1)-splitting of
the metric in ADM method is given by

1

Q
2

Thus'

Consider the action given by Eq. (21) of I. The term

I g I

'~ fgPR in it becomes
I—aV y Kn'B, (fp )+ (fq& )'+derivatives .
y

fyI= f, dt f „,dx —aVy f f(n'y—, ) +—~(q') —Kn'B, (fqP)+ (foal)'6 y
1

+ v y I
I

'D.fl' ID lt I' ——I'———( '~.V')( 'f. )+ (g')'f' + Vym'E'—

Here, we write out explicitly the bounds of integration; b (i) denotes either the x coordinates of an apparent horizon at
the time r, if there is one, or the x coordinate of the regular center at the time t. The foliation by 1-constant surfaces is,
so far, arbitrary. The velocities are contained in the expressions K,n B,q for any quantity q and in E [see I, Eq. (24)].
The canonical momenta as obtained from (2) by variation with respect to the velocities are given by

——,V y y Kf——lgt+V y Il(n'D, g)t yV y f,ftn'p, ,—
8'~ = —V y fll p~ —V y Kfg —V y +n fg (4)

n'(fy ), , (5)

To calculate the Hamiltonian, we go over to the real representation of g:/=pi+i/2, so that we have five real fields in
(2).

The Lagrange function in (2) has the form

L =Lan(i ' eo)(i ' eo) II—'(e)— —
where the independent entries of the symmetric 5 X 5 matrix I.ki are
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~~f ef
2a 4av y 2+v y'

34 „j & 55

3 4 5

~g) y~2+~~y y &~Yf elf'' 12(fg )

ZG ZVy
r2ee'f'

Vy

&o=e/lo&2+ (314—» co= e/lo—f1+ (»—4)2, co= q' —eo=2P' y'—, —qo=~o,
y

' '
y

'
y

'
y

(D y), =a, y, ea, y,—(a,y) =a,y +ex, q, .
The Hamiltonian JI, as defined by

H= x +kg

is given by the formula

8= x 4 I pkpI+go pk+

where I. ' is the inverse to Lql. The matrix L"' is readily obtained, if we first calculate the inverse to a similar matrix,
(S 'LS)kq, where the nonzero entries of the orthogonal matrix S are given by

2
~11=~22= ~12 = —~21 = 5'22 =~~ =~55 =1

(y 2+y 2)1/2 '
(y 2+y 2)1/2

The result is

where the super-Hamiltonians A o, A 1, P'2 are given by

(if/np+Q erg) —— — (gap —P mp) — rr~(it/np+P mp)2
t t2

4h yap/2 yah,

2i yfi t t m'fl'III' 2 4vy 2 2 2 4y'"
(@re+~ ir@)+ ~y (~f+q' fl I pl )~p~r+ 2 (Iif+2p fl (4~ )err'F Y ~2fg

+ ~2g'+ yl~ — —~+ ~ —~ + ~ ~&lg(',
v y 2 1 yf fm' (fm')' mm'f'

y

m+ 1f+ —mg(D1 it/) + —y'mq 2m—q n—rqy', — —I 1 y g 1, , 1

y y y ' ' y"
A 2

—— ie(girg —gap) —ng—. (10)

~=»f+3~'fl'l 0 I'
The secondary constraints read A o——A 1

——4 2——0, and there will be no more constraints.

1II. THE SURPACB TERMS

The set of equations that are obtained by variation of the first-order action

I— I dx 'PTER+ '$TQ+ g'7T++ g% ~+3 I '77 g —H

contaills, as lt ls llsllal 111 gRllgc tllcorlcs, Ilot oilly thc flicld cqllRtlons, l.c., llclc tllc Einstein-Maxwell-scalar cqllatlofis, but
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also some boundary equations at x =b (center or horizon) and x = 00 (i ). The latter are due to the total x-derivative
terms which appear during the variation of I. In order to remove these disturbing equations we use the method invented
by Regge and Teitelboim. First, we have to vary H and to find the form of the surface term (5H)„second, H must be
corrected by a surface term H„whose variation cancels (5H), : 5(H, )= —(5H), . A straightforward calculation yields

+ mP—Q+ —
mp 5' + m~5—y 2P5—mr m—r5—y 205—mg

P P t t L3 P
y y y ' y '

The boundary conditions at b (t) and at ao determine, which of the terms in (11) are zero, and influence the form of
the rest. Consider the different pieces of the boundary.

Let x =b(t) be a regular center. Then it follows from the equation (p(b(t), t)=0, from the regularity of the metric
g,b, of the potential /I„and of the scalar field it/, and from relations (3)—(6) [1'i =(p in cases (a) and (c), Eq. (70) of I
holds in case (b)]:

at x =5 (r). The boundary terms for x =b (t) in (11) must, therefore, vanish: either is some finite expression multiplied
by a power of q) or of a momentum, or we have a variation of y or of a momentum, which also is zero at the center.
ThQS, Bo correction a,t the center is needed.

Let x =b (r) be an apparent horizon. Then, the form of (11) suggests that we choose the boundary gauge at x =b (t)

(z
I ((~)=o & I ~(i) =o

(see Ref. 10). This means that the time is standing still at the apparent horizons, so the final (initial) Cauchy surface,
r =tf(t =t; ), intersects all future (past) apparent horizons [see the relation (56) and the discussion that follows it in I].
However, the variations of the fields are all zero on these surfaces, in particular

5(V') I((~)=o 5~~ Ii(i)=0
and the whole b (r) part of (11)again vanishes.

The boundary gauge (13) leads to a particular foliation of the spacetime. Only a totally hyperbolic part of it is covered
and those apparent horizons which move in a timehke way remain outside of it. This leads to a loss of information as
described in the Introdoction.

Finally, at i, the boundary conditions given by Eqs. (61)—(64) of I lead to

(5H), = lim 5 — =5 lim x ——1mf 1 f
x~ao 6 g x~ao 26

Hence, the corrected Hamiltonian H is given by

H=H-lim "x —' —I .
x ~26 y

(14)

The Hamiltonian (14) is obtained from boundary conditions (13) as well as from Eqs. (61)—(64) of I. Any choice of
gauge which one will subsequently do must, therefore, be in agreement with these boundary conditions.

In Ref. 1, the Hamiltonian constraint could be explicitly solved for y after the gauge (p=x/v 6 and err ——0 had been
chosen. The following is a very slight (but efficient) modification of it; we shall still call this the "BCMF gauge":

' 1/2

The geometrical meaning of the second equation is immediate from (5): the (mr ——0) foliation is orthogonal to the (fy )
equipotentials. Our modification makes x constant along these equipotentials, so P=O everywhere, and we cannot
violate (13).

If we exclude ap, p', mr, and A i with the help of (15), constraints (8)—(10) become

—3/2 i fao Ti f 1 —1/2 f~ gy i/2
2G y y 26 +f x y 26'y
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x f'

A 1
—— ie—( gmg

.f—n.p) n—„,.
where we have introduced the abbreviations

T(x)= J —

1 f(pmp+g mg)—
26 "dy 1

3f„
SG

26 1 V 6
f„26 f 2f„

yf)I I I'~,
4lt

I
II'1 (@my @. tm—g)2+. h

I
@'

I

(20)

1 (x /2)f'If— (22)

The equation A o
——0 is an ordinary differential equation

for y of Bernoulli's type; we can write it in the formX, X

f)' fr
and its general solution is given by (we suppress the
dependence on t)

f{x)f d p( )eT(x) T(y) — (23)
y(x) x

We have to determine the constant x). However, in the
BCMN gauge, we have

Observe that T(x) is a non-negative, nonincreasing func-
tion with T(a&)=0. The equation A 2

——0 has the solu-
tion

~(x)=Q le J d—y(Pm. ~ Ptm.~) .— {21)

The choice of the integration constant corresponds to the
definition of g [Eq. (57) of I] and to that of mz (6). The
CquaflOQ A I =0 $1eldS

' 1/2

The constant x( must be specified so that we obtain the
value fo/f for x =0. If this should work at all, then
x» =0=6 agMQ. Lct Us calculate 4I1c corI'espoI144Qg 11Imt.
Consider the function T(x) near x =0. From

n (Vf qr) =0,
VPC ObtMI1

The relations (3)—(6) and Eq. (70) of I then yield

'IT/~X p Kg ~X
p &@~X (27)

The boundary condition which is given by Eq. (67) of I
jmPlicS

Then, formula (19) shows that T(x) is regular at x =0,
RQd

P

1 26 . f(x) "d 1 V 6
hm = hm
x~OQ{x) f~ x~O X O 26 f 2f
as 0 ~ y ~x, we have T(x) T(y)~0. W—e can see from
formulas (22) and {42)of I and the above relation (27) that

g'(~f w). (~f m)b=
Gy

(24)

Thus, at an apparent hartzan, Iiy=0 [e.g., (55) in I]
which leads to x) l), and we ob——tain

(25)

=fog 0'a%( ~

This, together with Eq. (65) of I, implies

f{X) d y ( )eT(x) T(y-
y(x) x

At a regular center, we have from (24)

y( ) f„
as it should be. Hence, (25) again is valid.

The I.agrange multipliers a, p, Ao are determined from
the condition that the BCMN gauge holds for all times:

Using (13), (14), (15), (3), and (4), we obtain again

n'(fy )~=0,
which is equivalent to [see (1)]

(26)
Tllc second equation ylclds, togctllcl wlt11 (7), (16), a11d

(27)

fO= 11111f ~

tp-+0



30 SPHERICALLY SYMMETRIC SYSTEMS OF FIELDS. . . . II. 1183

whereas the equation for y is equivalent to

—T ——+——f' 1 fFr =0.
y f x x

Subtracting the two equations we obtain, as a general
solution'

mine the constant C, we have now to investigate the
behavior of a at x = co. From the above formulas we ob-
tain for a(co)

C

f [r(~)]'"
a(x) = C —T(,x)

fb'(x) l'"
where C is some constant. For any choice of C, we have
at an apparent horizon

+=0,
because T(x) is regular and I/y=0. Thus again, our
gauge is compatible with (13). However, in order to deter-

It follows that C =f„,because we should have

)(")=I, a(

[see relation (62) of I]. Hence,

(„) f-, -T(-)
f[) (x)]'"

To verify that y( co ) = 1, we write

(29)

1 . (x)= lim f dy F(y)e
y(co) x ~ x b

f(x) f"d 1 + iim f(x) f"d 1
(1 z(«)) 2G V G w z.(«)

The integral in the second term converges, so indeed,
y(co)=1.

Finally, 5H/5rrz ——0 leads to the following equation for
Ao..

G a~Yfre
A()+

Equations (21), (29), and the boundary condition (64) of I
then imply

A()(x)= f e ' '[Q ie f dz(g—m~ gV~)—] .

G2(Q2+p2)
(31)

Here, Q and P is the electric and magnetic charge, respec-
tively, of an apparent horizon or a regular center [in the
latter case, Q =P =0, see the boundary condition (68) of
I]. We have

X G2(Q2+P2)f dy Fo(y)=x —26M+ f x

where M is given by formula (60) in I. Indeed,

(30)

Equations (21), (22), (25), (15), (28), (29), and (30) express
the quantities ~~, m+, y, q&, wr, A (, a, P, and Ao as func-
tionals of g and n.~. These are the only true dynamical
variables in the system.

To finish the reduction, we have to replace all depen-
dent and gauge variables in the Hamiltonian (14) by the
corresponding expressions in P and ~~. To this aim, let us
introduce the function Fo(x) by

2G f b

and Eqs. (15), together with the definition of A given by
the relation (57) of I, implies

' 1/2 ' 1/2

b=
4m.

Using this and (25), we can write

x——x=f(x)f dyF(y)e '"' ' ' x-
y b

=f(x)e '"'f dy F(y)e '«' — Fo(y) +" e '"'f dyF0(y)
X

b

f(x)e T(x) —1 + —2GM — dy [F()(y) f„F(y)e '«'] . —
x f„ f„

The formula (19) together with the asymptotic properties
of f and sr~ shows that

lim x T'= lim x f'=0 .

I

Then, the first term vanishes in the limit x~oo. The
second term vanishes obviously. Hence, using the above
relation in (14), we obtain, finally
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II =f M+ f dy[Fo(y) f—„F(y)e '«'] . (32)
26 b

variables, the dependent variables, and the Lagrange mul-
tipliers by means of g and sr& in Eqs. (27)—(30) of I.

One can check that the canonical equations of the Hamil-
tonian (32) coincide with the equations of motion for P
and m.

@ which we would obtain, if we expressed the gauge
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