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Spherically symmetric systems of fields and black holes.
I. Definition and properties of apparent horizon
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%c lIlvcstlgatc thI'cc model flcld theories: 8 minimally coUplcd chRI'gcd scalar field together with

gIavity and electromagnetism, 8 minimally coupled SOW,'3} Yang-Mills field and gravity, and the
Callan-Coleman-Jackiw scalar field. %'e restrict ourselves to spherically symmetric configurations;
the correspoIKHQg dimensional I'cductlon lc8ds to Rn action fuIlctlonal on 8 two-diQ1cnsional spacc-
tiIHc which contains 8 metric, 8 QcUtlal scalar, 8 chal"gcd scRlar, and Rn clcctI'oIIlagnctlc field. Thc
action ls written m the second-order, covarlant and gaugc-lnvarlant form. %'e generahze the defini-

tion of the future and past apparent horizon so that it will not be visible from the future and past
null infinity, respectively, and will form 8 nontimelike surface, both also in the case of the Callan-
Coleman-Jackiw model. &e prove an inequality relating the surface area and the charges of the ap-
parent horizon. %C stUdy the boundary condltlons for the flclds at thc horizon» Rt thc I'cgUlm'

center, and at infinity. Finally, we speculate on the existence of static spherically symmetric solu-

tions, whcrc 8 black hole ls surroUndcd by 8 matter shell; ln two-dimensional spacctimc, this looks
like 8 kink.

I. INTRODUCTION

AQ GUtstanding problem in quantUI gravity concerns
the properties and a possible role of black holes. Already
the theory of linear fields on the classical black-hole back-
grounds gives very interesting results: the Hawking ef-
fect, ' super-radiance, solitonic character of some holes,
and Inany Inore. It 1s, ho'%ever, Qcccssary to surpass thc
hnearized theory on a fixed background in order to really
understand these effects.

If we attempt to quantize gravity and, in particular, to
include strong fields and black holes, then it need not be
just the theory of gravity which will change: the quantum
theory as such could be modified as well. Quite concrete
hints in this direction have been discussed in the litera-
tUI'C.

There ls still Rllothcl spcculatioii wlilch Illotivates tllc
study of quantum properties of black holes. Consider two
arbitrary particles with center-of-mass energy of order E
scattering off each other. The chance that they come as
close to each other as to find themselves under their com-
mon gravitational radius R =GE is very small for
E ++6 . Indeed, thc partlclcs %ill bc locR11zablc
Nothin thc radius —E, which 1s much laI'gcI' than R.
However, if E &6 '~, then the particles are localizable
under R, and to get them there, one must just aim them
pmperly. Hence, the cmss section o, for the collapse will

Should onc bc inclined to accept sUch R crude argument,
then Gnc would agI'cc that thc black-hole production could
even dominate all very-high-energy processes, and maybe
pmvide, in such a way, an effective cutoff at the Planck
energy (e.g., Ref. 5).

Thcfc Rrc Hlorc attempts to quant1zc black holes: soIIlc
tl'y to consider tllclll Rs R sort of lilstalltoll, othcl's Rs R

sort of sol1ton. OUI' sollton1c RppI'oach has bccn based GIl

the perturbation expansion of the general quantum theory
of solitons (e.g., Ref. 7) and we were able to calculate the
first few terms in the series corresponding to the pow«s
(1/6, 1/v G, l) of the Planck length v G. Within this
accUI'Rcy, the theory 1s practically cqu1valcIlt to the 11ncaI'-

ized quantum field theory on the soliton background, so
we could use the wealth of results obtained recently in this
field. In particular, we have derived the Schrodinger
equation for the motion of free black holes.

If we attempt to proceed in the perturbation expansion,
then several ploblems appear. The first one we mention is
present even within the (v 6 ) order: it is the quantum
instability of the black-hole solutions. As yet, we have
avoided this difficulty by dealing with those field-
thcorctical Hlodcls %'hich possess quantUII1 stable black-
hole solutions.

However, onc docs not need R stable black-hole parti-
cle" in order that, for example, the black-hole production
at very high energies works (with unstable black holes,
tllclc will be less polllltloll). It is collccivRblc that tllosc
classically stable, static, localized solutions to the
Lorentzian field equations that are not quantum stable
could play a role of unstable particles in the quantum
theory and represent some intermediate form between sol-
itons and instantons (e.g., Ref. 9). Then, of course, the
technical point of the quantum soliton methods, the cal-
CUlat1on of sollton-sol1ton Rnd soliton-Hlcson scattering
amplitudes, would not make sense for such particles, be-

cause thc corrcspond1ng solUtlons woulcl not appear 1Q thc
asymptotic expansion of the fields. '

The second problem is the nonrenormalizability of the
V 6-power expansion of' quantum gravity: One cannot
calculate loop corrections in higher orders of the expan-
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sion. Here, one can try some more finite model, invoking,
e.g., supergravity. Or, as in this paper, one can go over to
two-dimensional models, and hope that one will succeed
in an exact construction of the quantum fields.

The third problem is a calculational one: the higher-
order expressions become very messy. %e attempt to
meet this difficulty by reducing the spacetime dimension
of the model.

The fourth problem is the singularity or, more general-
ly, the nontrivial causal structure of spacetimes with black
holes. The solution of this problem within the accuracy
(1/6, 1/~6, 1) was based on the simple fact that this
nontrivial structure was rigid, given by the background
spacetime. We have cut away the singular part of the
background in such a way that the rest (1) was globally
hyperbolic and (2} contained all information we needed
for the scattering theory —indeed, it was
J+(W ) f1J (W+). At the boundary (the surface of the
hole), some boundary conditions on all fields have been
imposed; these conditions are natural in the sense that
they do nothing but to guarantee that the hole is a black
hole of a certain type. In this way also the black-hole pa-
rameters appear in the calculations. %'e have studied the
admissibility of the boundary conditions in Ref. 11.

In higher orders of the expansion the problem, however,
reappears in a more severe form. We have obtained first
hints in this direction, when we constructed the whole
perturbation series for a two-dimensional model. 'z We
have managed to expand in powers of a small, dimension-
less parameter, to bring the interaction to a local, polyno-
mial form, and to give the full formula for the S matrix,
including the propagator and Feynman graphs. %e have
obtained a general formula for the superscattering opera-
tor and performed explicitly the sum over excited states of
the hole in it. However, it seemed that the superscattering
operator factorizes after the perturbation series is summed
up. This strange result can be due to a false interpreta-
tion. Indeed, the exact classical theory leads, e.g., to
black-hole and singularity formation resulting from regu-
lar data; the spacetime, which itself is a result of the
dynamics, need not, as a whole, be then globally hyperbol-
ic. A cut would again help, but this time its position had
to be determined by the dynamics. This can be done:
there are gauge conditions which lead automatically to a
foliation by Cauchy surfaces of a part of the spacetime.
The corresponding canonical quantization guarantees the
quantum coherence (pure states develop into pure states).
In Ref. 12, the cut has been performed in a way inde@en
dent of the actual dynamics, whereas the foliation has
been governed 6p the dynamics through a gauge condi-
tion.

To repair this defect, we could try to cut the spacetime
along the actual future and past event horizon (for the
definition, see Ref. 13). However, the position of, e.g., the
future event horizon at a time t is only determined, if the
whole development from t to + ao is known. ' Such a cut
would, therefore, lead to a badly nonlocal theory. Anoth-
er possibihty is to cut along the apparent horizon (defined
in Ref. 13); this can be determined locally, at any Cauchy
surface, from the Cauchy data. Recently, apparent hor-
izons turned out to be natural surfaces, at which simple

boundary conditions can be imposed so that a generaliza-
tion of Witten's proof of positivity of energy to a situa-
tion with black holes is possible. ' The main idea in the
present series of papers is to use the apparent horizon in
the role of the black-hole boundary and to cut the inside
of it away. We shall see, in the canonical formalism part
(next paper of the series}, how the gauge condition which
determines the foliation and the cut along the apparent
horizon are compatible.

The analysis of the problems listed above suggests that
we should try to work first with some simplified models
and then apply the results as working hypotheses for the
full complicated case. In 1976, Unruh proposed to use the
so-called Berger-Chitre-Moncrief-Nutku (BCMN) model'
for the study of quantum black holes. This is a field sys-
tem on a two-dimensional spacetime, whose field equa-
tions are identical with the four-dimensional Einstein-
Maxwell-Klein-Gordon equations for spherically sym-
metric configurations. (The trick is analogous to the re-
cent one used by Rubakov' to calculate the fermion num-
ber breaking in the field of magnetic monopole —the full
effect is present already in the s mode. ) Berger, Chitre,
Moncrief, and Nutku have observed that the model can be
totally reduced in a particular gauge. ' However, only
after a careful study of boundary conditions at infinity by
Unruh was the proper Hamiltonian of the model ob-
tained. ' %'e are going to extend thrs study to the other
boundary, namely, to the boundary of a black hole.

In this paper, we perform the dimensional reduction
from four dimensions to the BCMN model in a covariant
way and we obtain a covariant, second-order action. The
dimensional reduction studied here is rather similar to the
reduction techniques employed in the Kaluza-Klein
theories (e.g. , Refs. 19), the only difference is that we re-
tain only the s mode from the corresponding harmonics
expansion. This form of the model can be a starting point
of other quantization methods than canonical, and it is
also useful in deriving the properties of apparent horizons.
In Refs. 15 and 16 one dealt only with the Arnowitt-
Deser-Misner form.

We will reduce three quite different four-dimensional
field-theoretical models: (a) the system consisting of grav-
ity g&„, electromagnetic field A&, and minimally coupled
scalar field g (this is the original BCMN system); (b) grav-
ity g„and SO(3)-Yang-Mills field 3„'; (c) gravity g„,
and scalar g in the so-called Callan-Coleman-Jackiw
(CCJ) couphng. In case (b), the dimensional reduction
by %'itten's ansatz ' leads to a magnetically and electrical-
ly charged scalar field in two dimensions which is coupled
to gravity in a more mild way than in case (a) (fewer
derivatives in the coupling). Similarly, in case (c), the
hope is to obtain a less divergent quantum theory. Anoth-
er point which has lead us to use these three different
models was to show that the apparent horizon idea can
work quite generally. In this respect, the CCJ model is
particularly nontrivial.

Indeed, the improved energy-momentum tensor,
which (up to a factor) becomes the source of gravity here,
does not satisfy the weak energy condition the "usual"
tensor is "improved" by subtracting a total divergence so
that the total energy and momentum are still conserved
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and the total energy is still positive, but the energy density
can be negative at places. However, the weak energy con-
dition is indispensable to show that the apparent horizon
is not visible from W+, as well as that its trajectory is
nontimelike both are properties which we will need. We
solve this problem by modifying Hawking's definition of
the apparent horizon for the CCJ case. We prove that the
general properties of an apparent horizon are preserved by
our modification.

The plan of the paper is as follows. In Sec. II we calcu-
late the dimensional reduction of the Hilbert-Einstein ac-
tion. In Secs. III—V we reduce the matter Lagrangians
for cases (a), (b), and (c), respectively, and find a form of
the two-dimensional action that is valid for all three cases.
In Sec. VI we transform the field equations into the dou-
ble null coordinates, give the general definition of future
and past apparent horizon, show the invisibility of them
from W+ and Jr, respectively, prove an important in-
equality relating the surface area 2, the electric Q and the
magnetic charge I' of an apparent horizon, and, finally,
derive some boundary conditions for the fields at the ap-
parent horizon. In Sec. VII, we study the fields near i
and at the regular center, and review the boundary condi-
tions there. In Sec. VIII, we summarize the mell-known
classical static solutions to the field equations and specu-
late about the existence of some other solutions.

II. THE GRAVITY PART OF THE ACTION

Consider a system of fields in a four-dimensional space-
time containing gravity. As we want to perform a dimen-
sional reduction to two dimensions and retain only the s
modes there must always be some matter fields, or else the
dynamics would be trivial. Let the action have the form

I=Ig+I
where

(2)

is the Hilbert action, g&„ the metric of the four-
dimensional spacetime of signature +2,

g =Det(g„„),

R is the curvature scalar of g&„(our conventions

R p g I p~

Rp ——R i'~p„),

and I is some not-yet-specified matter action
I =I~ (g„„,p"), where y" are the matter fields.

Varying I, we obtain the field equations

where

GPv R Pv 2 gPvR

is the Einstein tensor and

5I
1/2 (4)

We have

where

g Det(g b )

It is a well-known property of the dimensional reduction
(e.g., Ref. 22) that the lower-dimensional theory acquires a
cosmological term; here, this term is the only point at
which the Newton constant comes into the theory. It can-
not be canceled by any true cosmological A term in four
dimensions: this would rather lead to a mass &AG, for
the field y in two dimensions. It is also amusing to notice
that the action (8) can be directly obtained from (2) by the
ansatz (5).

As for the rnatter Lagrangian I, we consider the fol-
lowing three different choices.

(a) Scalar electrodynamics with minimal coupling to
gravity. This is the original BCMN model we add
some mass and self-interaction, because we are also in-
terested in the interaction of the black hole with solitonic
shells.

(b) Yang-Mills field minimally coupled to gravity. In
two dimensions, Yang-Mills, electromagnetic, and scalar
fields can appear whose Lagrangian has more symmetry
and whose field equations are simpler in comparison with
(a). We limit ourselves to the simplest possible case,
SO(3), and use Witten's ansatz. '

(c) A system of scalar fields with conformal coupling to
gravity. The rnatter Lagrangian also has more symme-

is the energy-momentum tensor of the matter. The most
general spherically symmetric ansatz for the metric is

ds =g,bdx'dx "+Gy (d8 +sin 8dp ),
where x, x ', 8, P are some coordinates adapted to the
spherical symmetry, a, b=O, l,g,b(x,x ) is a metric on
the surface 8=0, /=0, and qr(x, x') is the 1/v G times
radius of the rotation group orbit through the point
(x,x',0,0). The rescaling by 1/v G yields a dimension-
less field y in two dimensions, which is in agreement with
the status of bosons there. A simple calculation yields

G,b
—— 2% '—V, Vbk+2g~bf' 'V~V'%+g, b% ~%,t'

1—gab

Ggg ——GyT, V y ——,Gy R,
where V, is the covariant derivative corresponding to g,b

and R is the curvature scalar of g,b We. abbreviate the
simple derivative By/Bx' as y, . The tensors (6) and (7)
can be obtained as variations with respect to g,b and y of
the two-dimensional action Ig defined by

T

2& g
1/2 +gab + &R 2
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try, and the divergences of the quantum perturbation
theory can be milder in this case. (19)

III. THE MINIMAL COUPLING

The four-dimensional action will be of the form

+V(~it~ )]

4X g 1/2F P Po

16vre
po' (10)

Here, f is a complex scalar field,

D~Q =d~P+iA~Q

ls the covarlant deAvatlve, Ap 18 the electlomagnctlc po-
tential, F„„is the corresponding field strength, e is the
electric charge of g, and V(

~ f ~
) is a function, which is

assumed to be bounded from below by zero:

then we will not be able to satisfy Eqs. (12)—(16) because
of the terms with D3$:

D2$=0, Di P=iA3(8)g .

They will destroy the spherical symmetry, if e&0 and
P&0 simultaneously. In fact, there is no spherically sym-
metric ansatz for an electrically charged scalar in the
presence of a magnetic charge, for such a configuration
will always have an angular momentum (e.g., Ref. 24; if P
were a fermion, the situation would be different' ). We
can, however, decouple from the magnetic field by hand,
redefining the covariant derivatives as

D,y= (a,y+ieA, y) = D,q,
(20)

V(x)) 0 Vx .

Varying I~, we obtain

—I/2$ ( [ [

1/2P glv) 4 JP
e

Tq„I(D„P)——D„P+(D„P)Dqit/

—g,.lf "(D,P) D.0+ V]I,

(12)

(14)

Setting the spherically symmetric ansatz (5), (17), (19),
and (20) into (12), (13), (14), (15), and (16), we obtain a
self-consistent system of equations for g,b, y, A„and P
in two dimensions, which contains e =0 and/or P=0 as
special cases (and it is these two special cases that have a
reasonable four-dimensional interpretation). A lengthy
but straightforward calculation shows that the same sys-
tem of equations can be obtained by varying the following
action in two dimensions:

PM (P P P —g P PM)
4m.e

f4 Dl 4 4(Di.f) ]— I dzx
~ g ~

1/2~2+ Pob

1s

The most general spherically symmetric ansatz for A„ —Jd'x
I g I

'"lh(D. P) (D 4)+ V——'(q').f']

A „' dx"= A, dx'+P(+1 —cos8)dg,
G

(17) (21)

where I' is the magnetic charge, which takes on only in-
teger values in order that 3 & and A & can be smoothly
joined by a gauge transformation on the equators of the
/=const spheres. We rescale the potential so that it be-
comes dimensionless and so that the coupling constant ap-
pears in front of all terms of higher order; we introduce
tllc cliargc e (111 two dimensions, clla1gc has dlillciisioil 1)

where f, h, and V are the following functions:

f( I 4 I
')=I

(22)

The gauge has been fixed so that only the freedom

A~ ~A~+ 1

e

remains, where A=A(x, x').
If we now try the ansatz

I'= P
e~G

'

VA'th the abbreviation

'"(~oA i
—~iAo»

which enables us to write
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1 ed & 2
+acerb 4 gab+ed+ 2 g~bE

the equations of motion can be brought to the form

—2V '~.~bc +2g.bV '~.~'V+g.bV 'e.+'

(26)

IV. THE YANC-MILLS COUPLING

The four-dimensional action is of the form

I =
2 Jd xIgI'~Tr{F„„F ),lee

where e 1s the YaI1g-Mills coupling constant,

g,b = T,k, (27)
1 2 8~6—

F„„=a„J„a~—„[~„—,~„]

V, (p E)=j, ,

Ig I

i/2 D, (h Ig I

'i D'@) —V2—zP=p,

(28)

(29)

(30)

are the field strengths, and

Ap ——A pT„

are the Yang-Mills potentials. The SO (3) generators T„
satisfy

I. Tn i Tm l ~rnak Tk

Tr(T T„)=—25 „.
The Witten ansatz will, in our case, be of the form

+(&,&b g,sy 'V', y—'V')f

+»~ '[(D.P)'(Dbg)+(D, y)'(D. q}
Ae= efiTi —eg2T2 „—

A& = —eg2sin8 Ti —efisin8 Tq cos8 T3—,

g,b(D, Q)—(D'p) j ),

Tes +[E2 q——'Vi y—' ji'(D, g—) (D'p)
8m

+(9 'q'&. q'~. q
'~'—)fI

(31}

(32)

where A, ( x, x), g ( ix, x), and t'ai(x, x'} are the effec-
tive fields in two dimensions; the gauge is fixed so that
only a local U{1) survives, generated by T3. Thus, 3,
transforms as a Maxwell field and P=fi+ig2 as a com-
plex scalar.

The field equations that are obtained from (35) and
from the spherically symmetric ansatz are again identical
with (27)—(34), if the functions f, h, and V are chosen as

j.=ie~
I g I

'"~.bg [4'(D,P) P(D.4)'], — (33)

are the components of the four-dimensional energy-
momentum tensor and

v(
I @ I

)
- I 0 I + 0

2+

po=—
~Ge

'

The matter action, I~, in this case, is the so-called %'itten
action;

2~ g 1/2 & 2y Fgb+ D fD

v~(m. III')=
Bp

&=a»x=
I @ l

'

~=+»= ill'

1 « III'+&0)'
tp

We observe that Iw is conformally invariant: if we re-
place

fl( IyI2) f(3}
x=l@l'

a~(x) where cr(x,x') is an arbitrary function, then the action
will not be changed. The scalars y and f have different
conformal transformation laws than the usual scalars, be-
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cause they have a different meaning in four dimensions.
The main difference to the previous case (a) is the miss-

ing of a derivative coupling between y and tP and the non-
trivial interaction of g with the magnetic field of the hole.
For the interpretation, it is important to know that the ra-
dial magnetic field in four dimensions is given by

e
I @ I

'+&o
(37)

which corresponds to the following magnetic charge
current j' of 1t:

'"&'(0'(»4)+4(»4)") .

so that the matter action can be written as

4 = 1/2 & g+ —4y'

Thus, if

V(g) =A,Q

then I is conformally iilvariailt.
The equation of motion for the spherically symmetric

fields can be obtaiiied fl'om tile matter actloii.

x g ——+g

+ 2&iI'V +VV1 —2z 22V( )

The matter action as proposed by Callan, Coleman, and
Jackiw reads in four dimensions

g
1/2 gp'v + p' + g

The field equations are

g b /gal, ——V(x)=GV, Q=v G f.
G

In this form, invariance with respect to transformations

Sm.G-
ap.v= —— Tp,v ~

f(C)
'"~„(

I g I

'
g ""dA) ,' v'(@)——

(38)

(39)

is manifest.
If we write out g,b and FY, we obtain, as the total two-

dimensional action, again (21), this time with

f( I@I')=1—-'l@l'

(40)
h(y) =y

T p= If 4p zg p(4''—+V)
4n.

6[7 vp(P —) —gpvpv'i'(Q —))I

r

V(
G

where, for V(x), we again assume (11),and

is the so-called improved energy-momentum tensor. T""
is not identical to (2/

I g I

'~ )5I /5g&„, because the part
l l- it'i+ - 42v'2 &2

5( I g I
'"g p) —;,, 2

48m
~hp~h

tv
of 5I /5g&„ is transferred to the left-hand side of (38).
The full source of gravity is f 'T&„, so the improved
tensor can be considered as a source only in the first ap-
proximation; the theory seems to make sense only if

holds everywhere. We notice that the metric g„„defined
by

fz ——0, A, =O.

The action (21) defines what we shall call "generalized
BCMN model. "

In this section, we define and study the classical
dynamics of the spherically symmetric apparent horizon.
For this purpose, it is convenient to introduce the double
null coord1natcs Q and U. Thc 11nc clement 1Q two dimen-
sions then reads

satisfies the relation

I g I
& =6

1 g I
'"(g""@,@.+ '~4')

—~ Pl I'" ""(it') )

where o is a function of u and U; the sign of the RHS
above is uniquely determined by the requirement that both
u and U increase in the future direction. In fact, the dou-
ble nuB coordinates are, themselves, uniquely determined
by the boundary conditions
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u
(

= —00, U )~+=+re,

lim o'(u, u)= lim cr(u, u)=0,

bQt %VC %'ill XlOt reqmX'C tb1S, Vfe )Ust COXlsidCX' Q RS tie I'C-

tarded RIld V-RS the RdVRXloed time.
Equations (27)—(34) as written in the double null coor-

d1XlatCS bCCQIC

(43)

(44)

{45)

B,(p E)=j„a=u, u (46)

Dg(AD„Q)+D, (AD„Q)= ei (—Vig+hp), {47)

T =-- [ei B,(e 2 f, )+4hqr iD, QI ], a=u, v
8m 6

T„„= [e' (E'+2y '&)—(~,~, +2@' '@N~. +2m me~a)f]
SING

Tee [y'E——y& +ph—'e ' [{D„f)(D„g)+(D„P) (D,g)]+e ' {2y'& d +q&g d, +pg "d )fI
8w

j„= ieh [gt(D„Q—) @(D„Q)],—

j„=ieh [ft(D„Q) p(D„g) ],—

We observe that Eqs. (43) and (46) are the so-called null
COIlstX'81Xlts: tllCQ COBtRIIl QI1IQ Q, rCSPCCtiVClg, U dCAVR-

tives, eveii if E=e (BgA„—BqAM), because the
"wrong" derivative can always be removed by a gauge
transformation.

The expression T„„(T ) represents the current of ener-

gy through the surfaces u=const (u=const) in four di-
mensions: they should not be negative, at least within the
classical theory. This is indeed the case iff=1. Howev-
er, for the improved tensor, we obtain

T„= [—', [ D,g f

i—', {D,i@)pt + 3 ~, (D—,+)@t

which is negative for some i'.
One usually defines the apparent horizon to be such a

point (t,x), at which one has (Ref. 13)

The above definition is sensible for theories, in which the
energy currents are nonspacelike and future directed. In
sQcIl IQdcIs, tbc Iigbt I'Rgs that lost tllcix' divcx'gcIlcc Rt
SOIC t1IDC CRIl IlCVCX' bCCOIC d1VCX'g1Xlg RgalIl» SO the IlCV-

CI X'CRCh W; this gQRX'RIltCCS tIlat tI1CX'C 1S 8 MRCk bOIC

(e.g., Ref. 13). For case (c), however, the energy density
CRIl bC Ilegat1VC, SO QOIld1VCX'g1Xlg rags CRIl bCCQIBC d1VCX'g-

iIlg IatCI. SUCKS RXl RppRX'CIlt hOAZQXl VIII XlQt, 1Il gCIleral,
SlgXlRI tbat 8 MRCk IlOIC 1S PXCSCXlt.

Still, it is possible to modify the defimtion of apparent
hOr1ZOIl SO tlMt the pXOpCrt1CS Of tbC RppRX'CDt hOAZOXls

from the theories with non-negative energy currents will
be preserved. Tliis is appaieiitly dlle to tlM fact that the
total energy current in case (c) is non-negative. We define,
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for all cases (a), (b), and (c): the future (past) apparent
horizon is such a point (t,x), at which we have

At the apparent horizon:

g'"(fq'). (fq')b =o . (55)

and

B,(fop )=0 (B„(fp )=0)

a„a,(fq') &O.

(53)

(54)

g'(fq ),(fy )b&0.

If f=const, then the new definition is equivalent to the
old one; in particular, (53) guarantees that the outgoing
(ingoing) rays will be parallel at the horizon, and the in-

equality (54) guarantees that the spherically symmetric
null hypersurfaces of constant retarded time u (advanced
time U) diverge (converge) just outside of the apparent
horizon. If the outermost apparent horizon forms a boun-
dary of the spacetime, then we have even

~.(fy') &0, ~, (fq') &0

everywhere inside. We can express a part of these condi-
tions in a coordinate independent manner as follows: In-
side the spacetime

The behavior of the function fq along the retarded
(advanced) time surface u=const (U=const) which, at
U =Up (u =up), intersects a future (past) apparent horizon
is given by the null constraints (43). They have the fol-
lowing form (a =u, or a =U), if we use (48):

e 20'Q (e
—2(T

)

[e B,(e f, )+4hy
~
D, P ~

2],

or, multiplying by 2fp, we obtain

2fye r), (e q1, )+q1 e B,(e f )=—4h ~D g~

which is equivalent to

fq'e' d.(f 'q 'e ' d.(fq'»
= —4h

I
D.0 I

' f q'f.—' 2fq. ' .—
Notice that f,y, e are all positive functions, and, at op,
B,(fqP)=0. Hence,

g (fq2)
)

= f(o)~2(o)e2 1'1 f deaf
—'(g)q) '(g')e '~1[4h(g')

) Dynam(g) ) +f '(g)P (g)fg'(g)+2f(g)yg (g)) . (56)

Within the classical (nonquantum) theory, the left-hand
side of (56) is always non-negative for a & ap, and nonpos-
itive for o & ap. Thus, e.g. , (56) implies together with (54)
that the outermost future {past) apparent horizon moves
outward (inward) with respect to the surfaces of constant
retarded (advanced) time, i.e., its retarded (advanced) time
never increases (cf. Ref. 13).

Another important classical inequality concerning ap-
parent horizons can be obtained as follows. Multiplying
Eq. (44) by fq&, using (49) and rearranging terms, we have

B„B,(f 2) =e2 2 —f 2+E2+2 2V

Thus, the inequality (54) implies

fb
0&V&&

SG3(Q2 P2)

SmG (Q +P )

f +[f 2 SG3(Q2+P2) V ]1/2

8~62(Q2+P2)

fb [fb 8G (Q +—P )Vb]—'

In case (b),

P=e
~ P ~

'+Pp,
so we obtain, in a straightforward way,

fbi)4nG (Q +P ) .

(58)

(59)

Q =Ebyb, P =Bbyb, A =4~Gyb (57)

where EI, is the radial electric, 8~ is the radial magnetic
field, and pb is the value of q at the horizon.

Consider cases (a) and (c). We have from formulas (22)
and (42)

+E +2y V&06
at the apparent horizon. The state of an apparent horizon
can be described by three parameters: its total electric
charge Q, its magnetic charge P, and its surface area A.
For spherically symmetric horizons (and our choice of di-
mensions) these parameters are defined by

The last inequality follows from (58), as Vb &0, so it is
the common property in all three cases. It plays an im-
portant role in the physics of apparent horizons: for ex-
ample, it is used in Ref. 25 to prove the positivity of ener-

gy. It is a generalization of the well-known condition for
Killing horizons to be event horizons to a dynamical sit-
uation for the case of spherical symmetry.

As we shall see in the next paper of this series, one
can define the mass M of an apparent horizon by

1 1

2G f„

+Eg, +2GVg, + &0,b

gb

where, in case (c), P =0. This leads to the inequalities where

+G'(Q'+P') fb
4~

—1/2-

(60)
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If Q and P are fixed, then M has a minimum as a func-
tion of A at

the coordinates there can arrays be chosen such that the
following holds:

(65)

(66)

Hence the minimal surface area corresponds
minimal energy compatible with given charges if fi, ——l.

We attempt, in agreement with our general strategy (cf.
Ref. 8), to cut away the interior of the apparent horizon.
The spacetime which results in this way will have an
internal boundary in addition to the usual "external" one
(W and i ). For the classical dynamics, no loss of infor-
mation results, because the spacetime remains globally hy-
perbolic [see Eq. (56)]. In the quantum theory, a loss of
information seems to be very plausible (cf. Ref. 4}.

In any case, we have to be careful with boundary condi-
tions for our model, because we have unusual boundaries.
At i, or at a regular center, the conditions vviO be speci-
fie shortly. At the apparent horizon, Eq. (55) will suffice
at thc IDomcnt; more bounda~ conditions at thc horizon
will be chosen and discussed in the next paper of this
scrics.

This, however, is not sufficient for the four-dimensional
fleld strengths I"s, and I'~, to vanish, we must have, in
addition

sit

or "Higgs vacuum" at the center. Then, because of (67),

(70)

In the case of the regular center, we always have the
flat spacetime solution:

A. Th.e spacehke mfinltp '

I et the coordinates bc chosen so that t =const, x —+ Dc

approaches i . Then,

If there is an apparent horizon with the parameters A,

Q, P, then we have always the Reissner-Nordstrom solu-

tion:

(62)

A, =O(y ') . (64)

Finally, we will assume that the derivatives of all fields
fall off always by one degree stronger than the fields
themselves.

B. The regular center

Tile cellter' ls cliai'acterlzed by

For l(, the asymptotic behavior depends on the function V
and the vacuum chosen. If V contains a mass term, and P
approaches some $0 that minimizes V, then

l t( —go l
will

fall off exponentially, otherwise as y
where $0 minimizes V, and M is given by formula (60).

The existence of other static solutions is quite plausible:
a charged hole can be surrounded by a positively charged
P shell which interpolates between two different minima
of V. In two dimensions, such a solution looks like a
kink. The shell vali not, in general, fall into the hole, be-
cause the latter can be too small for the kink (which needs
some typical space to "feel comfortable" ). Numerical cal-
culations confirm this hypothesis; more work, however,
v@11bc Bcccssa~ to prove thc cx1stcncc.
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