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We investigate three model field theories: a minimally coupled charged scalar field together with
gravity and electromagnetism, a minimally coupled SO(3) Yang-Mills field and gravity, and the
Callan-Coleman-Jackiw scalar field. We restrict ourselves to spherically symmetric configurations;
the corresponding dimensional reduction leads to an action functional on a two-dimensional space-
time which contains a metric, a neutral scalar, a charged scalar, and an electromagnetic field. The
action is written in the second-order, covariant and gauge-invariant form. We generalize the defini-
tion of the future and past apparent horizon so that it will not be visible from the future and past
null infinity, respectively, and will form a nontimelike surface, both also in the case of the Callan-
Coleman-Jackiw model. We prove an inequality relating the surface area and the charges of the ap-
parent horizon. We study the boundary conditions for the fields at the horizon, at the regular
center, and at infinity. Finally, we speculate on the existence of static spherically symmetric solu-
tions, where a black hole is surrounded by a matter shell; in two-dimensional spacetime, this looks
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like a kink.

I. INTRODUCTION

An outstanding problem in quantum gravity concerns
the properties and a possible role of black holes. Already
the theory of linear fields on the classical black-hole back-
grounds gives very interesting results: the Hawking ef-
fect,! super-radiance,? solitonic character of some holes,’
and many more. It is, however, necessary to surpass the
linearized theory on a fixed background in order to really
understand these effects.

If we attempt to quantize gravity and, in particular, to
include strong fields and black holes, then it need not be
just the theory of gravity which will change: the quantum
theory as such could be modified as well. Quite concrete
-hints4 in this direction have been discussed in the litera-
ture.

There is still another speculation which motivates the
study of quantum properties of black holes. Consider two
arbitrary particles with center-of-mass energy of order E
scattering off each other. The chance that they come as
close to each other as to find themselves under their com-
mon gravitational radius R=GE is very small for
E <<G~'2, Indeed, the particles will be localizable
within the radius ~E ~!, which is much larger than R.
However, if E >G~'/% then the particles are localizable
under R, and to get them there, one must just aim them
properly. Hence, the cross section o, for the collapse will
be

0. ~47R*~47G?E? .

Should one be inclined to accept such a crude argument,
then one would agree that the black-hole production could
even dominate all very-high-energy processes, and maybe
provide, in such a way, an effective cutoff at the Planck
energy (e.g., Ref. 5).

There are more attempts to quantize black holes: some
try to consider them as a sort of instanton,’® others as a
sort of soliton.> Our solitonic approach has been based on
the perturbation expansion of the general quantum theory
of solitons (e.g., Ref. 7) and we were able to calculate the
first few terms in the series corresponding to the powers
(1/G,1/V'G,1) of the Planck length V'G.® Within this
accuracy, the theory is practically equivalent to the linear-
ized quantum field theory on the soliton background, so
we could use the wealth of results obtained recently in this
field. In particular, we have derived the Schrodinger
equation for the motion of free black holes.

If we attempt to proceed in the perturbation expansion,
then several problems appear. The first one we mention is
present even within the (V'G )° order: it is the quantum
instability of the black-hole solutions.> As yet, we have
avoided this difficulty by dealing with those field-
theoretical models which possess quantum stable black-
hole solutions. _

However, one does not need a stable “black-hole parti-
cle” in order that, for example, the black-hole production
at very high energies works (with unstable black holes,
there will be less pollution). It is conceivable that those
classically stable, static, localized solutions to the
Lorentzian field equations that are not quantum stable
could play a role of unstable particles in the quantum
theory and represent some intermediate form between sol-
itons and instantons (e.g., Ref. 9). Then, of course, the
technical point of the quantum soliton methods, the cal-
culation of soliton-soliton and soliton-meson scattering
amplitudes,” would not make sense for such particles, be-
cause the corresponding solutions would not appear in the
asymptotic expansion of the fields.!®

The second problem is the nonrenormalizability of the
V/G -power expansion of quantum gravity: One cannot
calculate loop corrections in higher orders of the expan-
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sion. Here, one can try some more finite model, invoking,
e.g., supergravity. Or, as in this paper, one can go over to
two-dimensional models, and hope that one will succeed
in an exact construction of the quantum fields.

The third problem is a calculational one: the higher-
order expressions become very messy. We attempt to
meet this difficulty by reducing the spacetime dimension
of the model.

The fourth problem is the singularity or, more general-

ly, the nontrivial causal structure of spacetimes with black -

holes. The solution of this problem within the accuracy
(1/G,1/V'G,1) was based on the simple fact that this
nontrivial structure was rigid, given by the background
spacetime. We have cut away the singular part of the
background in such a way that the rest (1) was globally
hyperbolic and (2) contained all information we needed
for the  scattering  theory—indeed, it  was
JHFT)NT(FT). At the boundary (the surface of the
hole), some boundary conditions on all fields have been
imposed; these conditions are natural in the sense that
they do nothing but to guarantee that the hole is a black
hole of a certain type. In this way also the black-hole pa-
rameters appear in the calculations. We have studied the
admissibility of the boundary conditions in Ref. 11.

In higher orders of the expansion the problem, however,
reappears in a more severe form. We have obtained first
hints in this direction, when we constructed the whole
perturbation series for a two-dimensional model.'> We
have managed to expand in powers of a small, dimension-
less parameter, to bring the interaction to a local, polyno-
mial form, and to give the full formula for the S matrix,
including the propagator and Feynman graphs. We have
obtained a general formula for the superscattering opera-
tor and performed explicitly the sum over excited states of
the hole in it. However, it seemed that the superscattering
operator factorizes after the perturbation series is summed
up. This strange result can be due to a false interpreta-
tion. Indeed, the exact classical theory leads, e.g., to
black-hole and singularity formation resulting from regu-
lar data; the spacetime, which itself is a result of the
dynamics, need not, as a whole, be then globally hyperbol-
ic. A cut would again help, but this time its position had
to be determined by the dynamics. This can be done:
there are gauge conditions which lead automatically to a
foliation by Cauchy surfaces of a part of the spacetime.
The corresponding canonical quantization guarantees the
quantum coherence (pure states develop into pure states).
In Ref. 12, the cut has been performed in a way indepen-
dent of the actual dynamics, whereas the foliation has
been governed by the dynamics through a gauge condi-
tion. :

To repair this defect, we could try to cut the spacetime
along the actual future and past event horizon (for the
definition, see Ref. 13). However, the position of, e.g., the
future event horizon at a time ¢ is only determined, if the
whole development from ¢ to + o is known.!> Such a cut
would, therefore, lead to a badly nonlocal theory. Anoth-
er possibility is to cut along the apparent horizon (defined
in Ref. 13); this can be determined locally, at any Cauchy
surface, from the Cauchy data. Recently, apparent hor-
izons turned out to be natural surfaces, at which simple

boundary conditions can be imposed so that a generaliza-
tion of Witten’s proof of positivity of energy!* to a situa-
tion with black holes is possible.!” The main idea in the
present series of papers is to use the apparent horizon in
the role of the black-hole boundary and to cut the inside
of it away. We shall see, in the canonical formalism part
(next paper of the series), how the gauge condition which
determines the foliation and the cut along the apparent
horizon are compatible.

The analysis of the problems listed above suggests that
we should try to work first with some simplified models
and then apply the results as working hypotheses for the
full complicated case. In 1976, Unruh proposed to use the
so-called Berger-Chitre-Moncrief-Nutku (BCMN) model!”
for the study of quantum black holes. This is a field sys-
tem on a two-dimensional spacetime, whose field equa-
tions are identical with the four-dimensional Einstein-
Maxwell-Klein-Gordon equations for spherically sym-
metric configurations. (The trick is analogous to the re-
cent one used by Rubakov!® to calculate the fermion num-
ber breaking in the field of magnetic monopole—the full
effect is present already in the s mode.) Berger, Chitre,
Moncrief, and Nutku have observed that the model can be
totally reduced in a particular gauge.!” However, only
after a careful study of boundary conditions at infinity by
Unruh was the proper Hamiltonian of the model ob-
tained.'® We are going to extend this study to the other
boundary, namely, to the boundary of a black hole.

In this paper, we perform the dimensional reduction
from four dimensions to the BCMN model in a covariant
way and we obtain a covariant, second-order action. The
dimensional reduction studied here is rather similar to the
reduction techniques employed in the Kaluza-Klein
theories (e.g., Refs. 19), the only difference is that we re-
tain only the s mode from the corresponding harmonics
expansion. This form of the model can be a starting point
of other quantization methods than canonical, and it is
also useful in deriving the properties of apparent horizons.
In Refs. 15 and 16 one dealt only with the Arnowitt-
Deser-Misner form.

We will reduce three quite different four-dimensional
field-theoretical models: (a) the system consisting of grav-
ity g,,, electromagnetic field 4,, and minimally coupled
scalar field v (this is the original BCMN system); (b) grav-
ity g,, and SO(3)-Yang-Mills field A,; (c) gravity g,,
and scalar ¢ in the so-called Callan-Coleman-Jackiw
(CCY) coupling.?® In case (b), the dimensional reduction
by Witten’s ansatz?! leads to a magnetically and electrical-
ly charged scalar field in two dimensions which is coupled
to gravity in a more mild way than in case (a) (fewer
derivatives in the coupling). Similarly, in case (c), the
hope is to obtain a less divergent quantum theory. Anoth-
er point which has lead us to use these three different
models was to show that the apparent horizon idea can
work quite generally. In this respect, the CCJ model is
particularly nontrivial.

Indeed, the improved energy-momentum tensor,
which (up to a factor) becomes the source of gravity here,
does not satisfy the weak energy condition:!* the “usual”
tensor is “improved” by subtracting a total divergence so
that the total energy and momentum are still conserved
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and the total energy is still positive, but the energy density
can be negative at places. However, the weak energy con-
dition is indispensable to show that the apparent horizon
is not visible from .# ¥+, as well as that its trajectory is
nontimelike:!3 both are properties which we will need. We
solve this problem by modifying Hawking’s definition of
the apparent horizon for the CCJ case. We prove that the
general properties of an apparent horizon are preserved by
our modification.

The plan of the paper is as follows. In Sec. II we calcu-
late the dimensional reduction of the Hilbert-Einstein ac-
tion. In Secs. III-V we reduce the matter Lagrangians
for cases (a), (b), and (c), respectively, and find a form of
the two-dimensional action that is valid for all three cases.
In Sec. VI we transform the field equations into the dou-
ble null coordinates, give the general definition of future
and past apparent horizon, show the invisibility of them
from # 1 and .#~, respectively, prove an important in-
equality relating the surface area A, the electric Q and the
magnetic charge P of an apparent horizon, and, finally,
derive some boundary conditions for the fields at the ap-
parent horizon. In Sec. VII, we study the fields near i°
and at the regular center, and review the boundary condi-
tions there. In Sec. VIII, we summarize the well-known
classical static solutions to the field equations and specu-
late about the existence of some other solutions.

II. THE GRAVITY PART OF THE ACTION

Consider a system of fields in a four-dimensional space-
time containing gravity. As we want to perform a dimen-
sional reduction to two dimensions and retain only the s
modes there must always be some matter fields, or else the
dynamics would be trivial. Let the action have the form

T=T,+1,, M)
where
- 1 b~ 125
— R 2

is the Hilbert action, g,, the metric of the four-
dimensional spacetime of signature +2,

g=Det(g,,) ,
R is the curvature scalar of 8,y (our conventions

Rpuva=FZo,v_ T
R,,

=RPu)

and 7,,, is some not-yet-specified matter action

I, =T,,(g,,,®"), where p* are the matter fields.
Varying I, we obtain the field equations

=87GT,,, ——=0, 3)
@

is the Einstein tensor and

T,uv:_z___afl
1811 88,y

is the energy-momentum tensor of the matter. The most

general spherically symmetric ansatz for the metric is

ds?=g,,dx°%dx®+ GpXd&*+sin’0d¢?) , (5
0

)

where x°, x!, 6, ¢ are some coordinates adapted to the
spherical symmetry, a,b=0,1,g,,(x%x!) is a metric on
the surface =0, ¢=0, and @(x%x!) is the 1/V'G times
radius of the rotation group orbit through the point
(x%x1,0,0). The rescaling by 1/V'G yields a dimension-
less field ¢ in two dimensions, which is in agreement with
the status of bosons there. A simple calculation yields

Gop=—20"'Y,Vy0+280¢~ 'V, V0489 200"

—&ab (6)

ch2 ’
Goo=GoV.V'p— 7GR , (7)

where V, is the covariant derivative corresponding to g,
and R is the curvature scalar of g,,. We abbreviate the
simple derivative dp/3x? as ¢,. The tensors (6) and (7)
can be obtained as variations with respect to g,, and ¢ of
the two-dimensional action I, defined by

1

L=+ [dx|g|'” G T8 PR ®
We have
31, 1 172 2~ 81, |8 1/_2 ~

=—1 Gy —2=— Geo » 9
524 7181"9°Gap 59 Go C% 9)
where

g=Det(g,) -

It is a well-known property of the dimensional reduction
(e.g., Ref. 22) that the lower-dimensional theory acquires a
cosmological term; here, this term is the only point at
which the Newton constant comes into the theory. It can-
not be canceled by any true cosmological A term in four
dimensions: this would rather lead to a mass V' AG, for
the field ¢ in two dimensions. It is also amusing to notice
that the action (8) can be directly obtained from (2) by the
ansatz (5).

As for the matter Lagrangian I,,, we consider the fol-
lowing three different choices.

(a) Scalar electrodynamics with minimal coupling to
gravity. This is the original BCMN model;!” we add
some mass and self-interaction, because we are also in-
terested in the interaction of the black hole with solitonic
shells.

(b) Yang-Mills field minimally coupled to gravity. In
two dimensions, Yang-Mills, electromagnetic, and scalar
fields can appear?® whose Lagrangian has more symmetry
and whose field equations are simpler in comparison with
(a). We limit ourselves to the simplest possible case,
SO(3), and use Witten’s ansatz.?!

(c) A system of scalar fields with conformal coupling to
gravity.”’ The matter Lagrangian also has more symme-



try, and the divergences of the quantum perturbation
theory can be milder in this case.

III. THE MINIMAL COUPLING

The four-dimensional action will be of the form

Ta=—o [ d% 121" (8" 5, 95,3
+V(|¥]H]
1 4. |51 12F Fpo
- d F  Fro . (10)
1672 J < 181"7F,

Heré, ;/; is a complex scalar field,

D, Yp=3,¢+id, ¢
is the covariant derivative, 4 u is the electromagnetic po-
tential, F,, is the corresponding field strength, € is the

electric charge of ¥, and V(| |?) is a function, which is
assumed to be bounded from below by zero:

V(x)>0 Vx . (11)
Varying Tm, we obtain

Lg%, 15| 2P = 4T, (12)
e
|g| =D, (|g|"*%g*D )~V "$=0, (13)
~ 1 o~~~ o~ o~ i~
Th=3-1(Du)'D,3+D)'D,Y

— 887D, )" D9+ V1), (14)

1 =~ o= =

Tfy‘_ 47752 (Fpvap'—Tlt'g,qupono) ’ (15)
Tu= W'D P—9D". (16)

The most general spherically symmetric ansatz for 4 P
is
e
VG

where P is the magnetic charge, which takes on only in-
teger values in order that Aff and Aﬁ can be smoothly

ANSaxr= Aydx®+P(+1—cosf)d¢ , 17

joined by a gauge transformation on the equators of the .

¢=const spheres. We rescale the potential so that it be-
comes dimensionless and so that the coupling constant ap-
pears in front of all terms of higher order; we introduce
the charge e (in two dimensions, charge has dimension 1)
by

e
e= i
The gauge has been fixed so that only the freedom

(18)

Ay A, + %A,a

remains, where A=A(x%x1).
If we now try the ansatz
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B(xOx ‘,0,¢)=——‘/l—6-1/1(x°,x‘) : (19)

then we will not be able to satisfy Eqgs. (12)—(16) because
of the terms with D33:

Dz'lp:O, D3¢=1A3(9)¢ .
They will destroy the spherical symmetry, if €50 and
P40 simultaneously. In fact, there is no spherically sym-
metric ansatz for an electrically charged scalar in the
presence of a magnetic charge, for such a configuration
will always have an angular momentum (e.g., Ref. 24; if ¢
were a fermion, the situation would be different'?). We

can, however, decouple from the magnetic field by hand,
redefining the covariant derivatives as

D= @u+iedsh)==Dut
(20)
D=0, D3p=0.

Setting the spherically symmetric ansatz (5), (17), (19),
and (20) into (12), (13), (14), (15), and (16), we obtain a
self-consistent system of equations for g, @, 45, and ¥
in two dimensions, which contains ¢ =0 and/or P=0 as
special cases (and it is these two special cases that have a
reasonable four-dimensional interpretation). A lengthy
but straightforward calculation shows that the same sys-
tem of equations can be obtained by varying the following
action in two dimensions:

1
I=7 [ d|g|'"f | = +8%0aps + 1R

—+ [ d’|g| ' 2 Ft

— [ &% g [ [nD ) (DY) +V —FpPaf?] ,

21
where f, h, and V are the following functions:
fUY1H=1, hig)=¢",
(22)
Vig, | ¥|%)=¢GV i%’—z ]+—7p; :
and
P=— jﬁ : 23)
With the abbreviation
E=|g| %304, —3,40) , (24)
which enables us to write
Fap=€u |8 |'E (25)
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and
FacFIf— —}'gachdFCd: - %gabE‘2 ’ (26)
the equations of motion can be brought to the form

—207 'V, V0 +28590 " 'V VO + 8@ 20 9°

1 _ 87G ~
—-G% zgab=—;-—Tab , @7
87 ~
VoVp—3Re="Teo , 28)
T Rp of 00
Vo(¢’E)=J, , (29)
v 172 1.,
hlg|'”? Dy(h|g|""D%)~ h Vay=p, (30)
where
~ 1 _
Tab= 87TG {‘gabEz_zgab¢ 2V

+(VaVy —8ap@ 2V @*VO)f
+2hp~ (D, (D) + (D, ) (D, )
—8aDP)(DYY}, 31
T@:—é‘%wz—(p—lv, — o (D, (DY) (32)

+(@™ 19V, — ™V, VO)f]

are the components of the four-dimensional energy-
momentum tensor and

Ja=ieh | g | g (Y (DY) — 9D YT, (33)
p=—vh7lo} Y R+%¢‘2—2¢‘2¢a¢“
—.4¢p-1VaVa<p , (34)
aVix,y)
Vilg, || =——"" )
WX |mpy=u?
Vg, | 9] =205 :
YV x=ey=19?
, 3f (p)
Uy H="2 ,
G2 MR
v Oh(x)
h((p)————-—ax .

IV. THE YANG-MILLS COUPLING

The four-dimensional action is of the form
~ 1
I =
™ 16me?

where €'is the Yang-Mills coupling constant,

ﬁuv‘_—apgv—avzu _[Zp,’gv]

[ d*x |g |’ Tu(F, F"), (35)

are the field strengths, and -

n
4,=4,T,

are the Yang-Mills potentials. The SO (3) generators T,
satisfy

[ Tme]: —€mnk Tk ’
T(T,, T,)=—28,,, -
The Witten ansatz will, in our case, be of the form
~ e
A, =——
VG
Adog=—ey, T, —ey,T, ,

.;f,,, = —e1,sin@ T —ey;sind Tp —cosb T ,

Aa T3 ’

where A,(x%x1), ¥;(x%x"), and #,(x%x!) are the effec-
tive fields in two dimensions; the gauge is fixed so that
only a local U(l) survives, generated by 7'3. Thus, 4,
transforms as a Maxwell field and ¥=1,;+iv, as a com-
plex scalar.

The field equations that are obtained from (35) and
from the spherically symmetric ansatz are again identical
with (27)—(34), if the functions f, A, and V are chosen as

f=1, h=1,
| X , (36)
(e ‘l//' +P0)
V ’ 2=_—~.—_—_’
(@, 197 207
and
Py=— 1
T vGe

The matter action, Iy, in this case, is the so-called Witten
action:

Iy=— f d%x Ig | 172 [%CPZF,,I,Fab*F(Dai/))T(Dai/J)
' 1 (e|¢]*4+Py)?
+ 2 <P2

We observe that Iy is conformally invariant: if we re-
place

gab_’ezagab »
p—e’p,
A, —A,, d’_*'/’ ’

where o(x%x!) is an arbitrary function, then the action
will not be changed. The scalars ¢ and ¥ have different
conformal transformation laws than the usual scalars, be-
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cause they have a different meaning in four dimensions.
The main difference to the previous case (a) is the miss-

ing of a derivative coupling between @ and 4 and the non-

trivial interaction of ¢ with the magnetic field of the hole.

For the interpretation, it is important to know that the ra-

dial magnetic field in four dimensions is given by

e|y|®+P

__““_2_*__0_ , (37)

14
which corresponds to the following magnetic charge
current jp, of ¥:

jn=—e|g| 2 YN (Dy) + 9Dy '] .

B =

V. THE CONFORMAL COUPLING

The matter action as proposed by Callan, Coleman, and
Jackiw reads in four dimensions

o= [ 4121 HMg" P+ V) ++RF .

The field equations are

~ 877G =

G v= =~ duyv (38)
7 03 5

|g| 1,18 |88, 9)— 5V ' (#)—+RP=0, (39)

where

(40)

~ 1 .~ ~ o~~~
Ta =E[¢a¢ﬁ_1‘v‘gaﬁ(¢p¢”+y)
—+[VaV ) —8apV, Y PP )]} (41)

is the so-called improved energy-momentum tensor. ™
is not identical to (2/| g | '/2)81,,/88,,,, because the part

5| 125aBy
_ 1 a(|g| " )Rapwz
487 5g',w

of 81,,/8g,, is transferred to the left-hand side of (38).
The full source of gravity is f _‘Tm,, so the improved
tensor can be considered as a source only in the first ap-
proximation; the theory seems to make sense only if

~ V3
Osl¢l<’ﬁ

holds everywhere. We notice that the metric ?’,w defined
by

Epv = & 2§pv
satisfies the relation
|Z|R=6|g|"X@" P by+RP*)

—3,[3181' 8@,
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so that the matter action can be written as
7 1 4 BV LE LT AT
Ly=—v- [d*% |2 I3R+3 V@]
Thus, if
V( J) = AJ 4 ’
then I, is conformally invariant.

The equation of motion for the spherically symmetric
fields can be obtained from the matter action.

Ln=—4 [d% 215 | & +E W)U
1= V(y)
+Ry’e? +r/z2¢>2—j4Ll,
where
Zab =1"8ab> Vix)=GV —\};6 ’ ¢=‘/—G—17;

In this form, invariance with respect to transformations

p—e’p, ey, gu—e g

is manifest. _
If we write out g, and R, we obtain, as the total two-
dimensional action, again (21), this time with

FUe)H=1-2 9|2,

hi@)=¢*, 42)
- 2

Vg, | 9| )=1p?GP Mg—]

b

where, for V(x), we again assume (11), and

1 i
¢=72¢1+72¢2’ e=0,
¥,=0, A,=0.

The action (21) defines what we shall call “generalized
BCMN model.”

V1. THE APPARENT HORIZON

In this section, we define and' study the classical
dynamics of the spherically symmetric apparent horizon.
For this purpose, it is convenient to introduce the double
null coordinates u and v. The line element in two dimen-
sions then reads

ds?=—2e%dy dv ,

where o is a function of u and v; the sign of the RHS
above is uniquely determined by the requirement that both
u and v increase in the future direction. In fact, the dou-
ble null coordinates are, themselves, uniquely determined
by the boundary conditions
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U—>—o0 v—>+c0
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but we will not require this, we just consider u as the re-
tarded and v-as the advanced time.

Equations (27)—(34) as written in the double null coor-
dinates become

eZaaa(e _20¢a)=—i7}_GTaa¢’ a=u,v (43)
20 P+ 2020 py = — 2P 87C T 44
G f
20 __
2¢—l(puv +20uu = 877; TGG ’ (45)
of

3,(@’E)=j,, a=u,v (46)
D,(hD,)+D,(hD, )= —e**(V,+hp) , 47

~ 1 —20 _
Tw=g5 [e%d,(e~%f,)+4h@~2 | D, |%], a=u,v (48)
Tu= o 1B+ 207 20) (3,3, +20™ 0,3, + 207 9,3, /1 9)
o= (PP E— gV +0h'e 2D ) (D) +(Dy9) (D) +e (27,3, + 90,3, +90:3,)S ) » (50
ju = —ieh[$1(De)— DT , 51
Jo=ieh[$1 (D)~ (D, )], (52)

gy — 1
p=—h"'f"pe=2 ¢>20u,,+‘2?e2"+tp.,%+2¢¢’uu

We observe that Egs. (43) and (46) are the so-called null .

constraints: they contain only u, respectively, v deriva-
tives, even if E=e~%°(3,4,—3,4,), because the
“wrong” derivative can always be removed by a gauge
transformation.

The expression T,, (T,,) represents the current of ener-
gy through the surfaces v=const (u=const) in four di-
mensions: they should not be negative, at least within the
classical theory. This is indeed the case if f=1. Howev-
er, for the improved tensor, we obtain

~ 1
Toa= g 14 1Dat P = 30200 +FouDap)yf
+H.c.],

which is negative for some .
One usually defines the apparent horizon to be such a

I
point (t,x), at which one has (Ref. 13)

¢v=0’ Puv <0.

The above definition is sensible for theories, in which the
energy currents are nonspacelike and future directed. In
such models, the light rays that lost their divergence at
some time can never become diverging again, so they nev-
er reach #T; this guarantees that there is a black hole
(e.g., Ref. 13). For case (c), however, the energy density
can be negative, so nondiverging rays can become diverg-
ing later. Such an “apparent horizon” will not, in general,
signal that a black hole is present.

Still, it is possible to modify the definition of apparent
horizon so that the properties of the apparent horizons
from the theories with non-negative energy currents will
be preserved. This is apparently due to the fact that the
total energy current in case (c) is non-negative. We define,
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for all cases (a), (b), and (c): the future (past) apparent
horizon is such a point (¢,x), at which we have

3,(f@?)=0 (3,(f¢*)=0) (53)
and
8,9,(f¢?) <0. (54)

If f=const, then the new definition is equivalent to the
old one; in particular, (53) guarantees that the outgoing
(ingoing) rays will be parallel at the horizon, and the in-
equality (54) guarantees that the spherically symmetric
null hypersurfaces of constant retarded time u (advanced
time v) diverge (converge) just outside of the apparent
horizon. If the outermost apparent horizon forms a boun-
dary of the spacetime, then we have even

3,(f@?) >0, 3,(f¢?)<0

everywhere inside. We can express a part of these condi-
tions in a-coordinate independent manner as follows: In-
side the spacetime

g f PN (fP?)y >0 .
]

At the apparent horizon:

g @))a(f@?)s =0 (55)

The behavior of the function f@? along the retarded
(advanced) time surface u=const (v=const) which, at
v=v, (u=1u,), intersects a future (past) apparent horizon
is given by the null constraints (43). They have the fol-
lowing form (a =u, or a =v), if we use (48):

e?d,(e"%g,)
- %[ez"a,,(e _Z”fa )+4h¢_2 [ D l 2] ’

or, multiplying by 2fp, we obtain
2 pe?3,(e "Xy ) +¢’e*7d, (e T f ) =—4h | Dy | 2,
which is equivalent to
f9%3,(f 72293, (fp?))
=—4h | Dy | —f 9> —2f g .

Notice that f,p,e? are all positive functions, and, at ay,
3,(f¢?)=0. Hence,

3. (f@?) | o = —fla)pHa)e @ fa‘;dg FUEQ™HE)e 2 O[4h(E) | D(E) | 2+ f ~HEPHE HE) +2f () (E)] . (56)

Within the classical (nonquantum) theory, the left-hand
side of (56) is always non-negative for @ <a,, and nonpos-
itive for a >a,. Thus, e.g., (56) implies together with (54)
that the outermost future (past) apparent horizon moves
outward (inward) with respect to the surfaces of constant
retarded (advanced) time, i.e., its retarded (advanced) time
never increases (cf. Ref. 13).

Another important classical inequality concerning ap-
parent horizons can be obtained as follows. Multiplying
Eq. (44) by f¢?, using (49) and rearranging terms, we have

8.0,/ =e¥¢? |~ Lo+ E242672Y |
Thus, the inequality (54) implies
- %¢“2+E2+2¢‘2V30

at the apparent horizon. The state of an apparent horizon
can be described by three parameters: its total electric
charge Q, its magnetic charge P, and its surface area A.
For spherically symmetric horizons (and our choice of di-
mensions) these parameters are defined by

Q=Eypy’, P=B,p;°, A=41Gg,?, (57)

where E, is the radial electric, B, is the radial magnetic
field, and @, is the value of ¢ at the horizon.
Consider cases (a) and (c). We have from formulas (22)
and (42)
fo

_ 2
— 20 B2 4267, + L <0,
Pb

where, in case (c), P=0. This leads to the inequalities

T

~ Jo
o<V, <—22 |
=V S 56302+ PY)
87G2( Q2+ P?)
fo+1fs2—8G3(Q*+PH)V, ]2
2 2 2
<A< 8rG(Q“+P°) (58)

Fo—Lfs*—8GHQ*+PHV, ]2
In case (b),

P=e|y|’+P,
S0 we obtain, in a straightforward way,

fpA >47GHQ*+P?) . (59)

The last inequality follows from (58), as ¥, >0, so it is
the common property in all three cases. It plays an im-
portant role in the physics of apparent horizons: for ex-
ample, it is used in Ref. 25 to prove the positivity of ener-
gy. It is a generalization of the well-known condition for
Killing horizons to be event horizons?6 to a dynamical sit-
uation for the case of spherical symmetry.

As we shall see in the next paper of this series,® one
can define the mass M of an apparent horizon by

172
o L[] [
T 2G | f. 47
—1/2
A
+G*Q*+P?) %] ] (60)
where
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fo=lim f, fy=1limf.
X—> 00 X —>

If Q and P are fixed, then M has a minimum as a func-

tion of A at

foA=47GHQ*+P?),
equal to

{2
M= [-—] (Q*+PH)'/2,
S

Hence the minimal surface area corresponds to the
minimal energy compatible with given charges if f, =1.

We attempt, in agreement with our general strategy (cf.
Ref. 8), to cut away the interior of the apparent horizon.
The spacetime which results in this way will have an
internal boundary in addition to the usual “external” one
(# and i%. For the classical dynamics, no loss of infor-
mation results, because the spacetime remains globally hy-
perbolic [see Eq. (56)]. In the quantum theory, a loss of
information seems to be very plausible (cf. Ref. 4).

In any case, we have to be careful with boundary condi-
tions for our model, because we have unusual boundaries.
At i or at a regular center, the conditions will be speci-
fied shortly. At the apparent horizon, Eq. (55) will suffice
at the moment; more boundary conditions at the horizon
will be chosen and discussed in the next paper of this
series.

VII. BOUNDARY CONDITIONS

A. The spacelike infinity -

Let the coordinates be chosen so that ¢=const, X — o0
approaches i°. Then,

¢—%Ggo<<p“) ‘ (61)
as x — . The asymptotic behavior of g, is as usual

go=—1+0(@™"), gu~0(p~?),
(62)
g11=1+0(¢-1) .

For v, the asymptotic behavior depends on the function ¥
and the vacuum chosen. If ¥ contains a mass term, and ¢
approaches some 9, that minimizes V, then |¢—1,| will
fall off exponentially, otherwise as ¢~ ',

[Yv—yo| <O(p™h). (63)

We assume further that the electromagnetic gauge can be
chosen such that

A4,=0(p7 ). (64)

Finally, we will assume that the derivatives of all fields
fall off always by one degree stronger than the fields
themselves.

B. The regular center
The center is characterized by

¢=0;
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the coordinates there can always be chosen such that the
following holds:

1

8" PaPr="5 » (65)
g<0, (66)
YEC™, g%%,p,=0, 67
P=0, E=0. (68)

For case (b), we have from (68)
1
2__ -
K2 o)
This, however, is not sufficient for the four-dimensional

field strengths Fg, and Fy, to vanish, we must have, in
addition

D,y=0, (69)
or “Higgs vacuum” at the center. Then, because of (67),
n°D,~0(g?) (70)

for all n° that satisfy n°p,=0.
VIII. THE STATIC SOLUTIONS

In the case of the regular center, we always have the
flat spacetime solution:

X
=—, go=—1, g =0, gu=1,
P G 800 8ot g11

A, =0, =1, V(¢p)=0, P=0.

If there is an apparent horizon with the parameters A4,
Q, P, then we have always the Reissner-Nordstrom solu-
tion:

_ X __ x’—2GMx+G*Q*+P?)
(‘4 ‘/—6 > 800= x2 ’
1
=0, =——,
8o1 11 200
Ao-’—“—““" Al’:O ’
¢=¢0 ’

where ¥y minimizes ¥V, and M is given by formula (60).

The existence of other static solutions is quite plausible:
a charged hole can be surrounded by a positively charged
¥ shell which interpolates between two different minima
of V. In two dimensions, such a solution looks like a
kink. The shell will not, in general, fall into the hole, be-
cause the latter can be too small for the kink (which needs
some typical space to “feel comfortable). Numerical cal-
culations confirm this hypothesis; more work, however,
will be necessary to prove the existence.
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