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I

A method of constructing an analytical expression for the renormalized vacuum expectation value
of the stress tensor ( T"„)and the mean-square field (P (x) ) for a conformally invariant scalar field

propagating on static space-times is presented. Particular emphasis is given to the case where the
background geometry corresponds to a general spherically symmetric black hole, and explicit results
are given for an extremal Reissner-Nordstrom black hole. In the special case of a Schwarzschild
black hole, Page's results are recovered. Possible extensions of the method to cover stationary black
holes are briefly discussed.

I. INTRODUCTION

Hawking's' discovery of black-hole radiance following
upon Parker's earlier investigation of particle production
by expanding universes have acted as a great stimulus for
a detailed and systems, tic investigation of the theory of
quantum fields propagating on curved space-times.

Perhaps it is fair to claim that the biggest obstacle to a
detailed understanding of quantum processes in the pres-
ence of gravity is the regularization and renormalization
of expressions bilinear in the field operators. For exam-
ple, the renormalized stress tensor (T", ) coupled to the
Einstein tensor provides a scheme which, according to
current belief, describes the effects of the quantum field
on the background geometry, a process of great signifi-
cance in cosmology and black-hole physics. Further,
(T"„)can serve as a means toward a detailed analysis of
the Hawking radiation, while the mean-square field

(P (x)) plays a role in the study of theories with spon-
taneous symmetry breaking.

However, despite enormous effects, exact results for
(T"„)or (P (x) ) in four dimensions are very sparse. An
exception is the class of (T"„) obtained by the method
developed by Brown and Cassidy which, however, is
applicable only to conformally flat space-times. The ab-
sence of exact results has oriented researchers towards nu-
merical estimations of (T"„)and (P (x)). The numerical
work of Candelas and Fawcett provide a significant
amount of information about (T") and (P (x)) for a
Schwarzschild black hole in thermal equilibrium with its
own radiation. In addition, Elster (using Page's' results)
has supplied approximate estimates for stresses, density,
and the outgoing flux of radiation of an evaporating
Schwarzschild black hole. Recently Page' has developed
a technique of constructing approximate analytical ex-
pressions for the renormalized stress tensor and mean-
square field for conformally invariant fields propagating
on arbitrary static background geometries. By applying
the results of Bekenstein and Parker" on the Gaussian ap-
proximation of the heat kernel, he has in the first place
constructed an expression for the propagator for an arbi-

trary ultrastatic metric. A conformal transformation then
gives the propagator in an arbitrary static metric. More-
over, as Page pointed out in the above procedure, the re-
sulting (T"„) is conserved and possesses the right trace,
provided the ultrastatic metric is conformally related to
an Einstein static metric. (For this class of ultrastatic ma-
trices the first and second Hamidew coefficients ai(x,x')
and a2(x, x) [see Eqs. (4a) and (4b) below] vanish identi-
cally. ) In particular, Page's approximations for (T"„)
and (P (x) ) are exact for the de Sitter and Nariai
metrics. ' For the Hartle-Hawking-Israel state' on a
Schwarzschild background the comparison of Page's
analytical expressions with the numerical estimates of
Candelas and Fawcett indicate that they are very good
approximations. More specifically, for points near and on
the event horizon the comparison shows a very good
agreement, ' while for points far away the only significant
difference occurs for (P (x)) and the tangential pressure
in the vicinity of r =-3M (Ref. 8).

However, for an arbitrary ultrastatic metric the method
breaks down. The resulting stress tensor suffers from the
fact that it does not possess the required trace, and there-
fore the Gaussian approximation of the heat kernel
(which is identical to the first term in the DeWitt-
Schwinger expression' ) has to be appropriately modified.
It is the main purpose of this paper to put forward an an-
satz that accomplishes just this, although we are as yet
unable to give a completely rigorous justification for it
and in particular we are unable to give an estimate of the
error. We propose an extension of Page's method which
allows one to construct an expression for (P (x)) and a
conserved stress tensor possessing the right trace for an
arbitrary static metric. The effect of this ansatz is to add
to Page's expression for ( T"„) in the ultrastatic metric the
term (4') a2(x,x)PP, where P=S& is the timelike Kil-
ling vector field of the background geometry. The in-
clusion of this term does not destroy the conservation
properties of (T"„) and naturally restores the required
trace. Upon a conformal transformation of the metric an
expression for (P (x) ) and (T"„)can be obtained for an
arbitrary static geometry.
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As a first application of the above method an analytical
expression for (P (x)) and (T"„)for a general spherically
symmetric black hole in thermal equilibrium with its own
radiation can be constructed. As is known, that picture
would arise whenever a black hole is enclosed in a large
box with perfectly reflecting walls. The theoretical
description of the system is obtained by assuming the field
(t»(x) to be regular on the past and future horizon of the
full time-symmetric analytical extension of the black-hole
manifold. This condition defines the so-called Hartle-
Hawking-Israel vacuum state. '

The plan of this paper is as follows. In Sec. II, we give
the necessary steps leading to the modifications of Page's
technique. In Sec. III we apply the method to the case of
an extremal Reissner-Nordstrom black hole. We have
found that (T~) and (P (x)) are finite over the event
horizon and (T ) shows no thermal radiation at infinity.
We also briefly discuss how the method can be extended
in order to cover the stationary class of black holes. In
Sec. IV we address ourselves to the delicate question of
the accuracy of the results presented in Sec. III.

Encouraged with the successes of Page's approximation
and taking into account that the results of this paper
reduce to the one obtained in Ref. 10 whenever Page's re-
strictions are met, we hope that, despite the fact that
(T"„) and (P (x)) are (perhaps crude) first approxima-
tions, they turn out to be close to the exact expressions.
We also present some indications that the accuracy of the
approximation might be better for points located on the
event horizon. This appears plausible because the first
and second Hamidew coefficients aI(x,x'), az(x, x) for
any ultrastatic metric conformal to a general spherically

I

G (x,x') = —,
' (P(x)P(x')+P(x')P(x) )

symmetric black-hole metric vanish on the outer event
horizon. Thus, if the vanishing of a&(x,x ) and a2(x,x) is
the criterion where the Gaussian approximation gives reli-
able results, then at least our results should be good on the
event horizon.

II. RENORMALIZED STRESS TENSOR
FOR ULTRASTATIC METRIC

Let g&„represent an ultrastatic positive-definite metric

ds =dH+ds(3)

where ds(3) —g Qdx'dx . (Greek indices run from 0 to 3,
latin indices run from 1 to 3. We perform all calculations
in Euclidean signature and we use the sign convention of
C. W. Misner, K. S. Thorne, and J. A. Wheeler [Grauita
tion (Freeman, San Francisco, 1973)]. For the metric (17)
we choose x =r, x =r, x =8, x =4&.) The "time"
coordinate x =r is periodic with period T '=2vrllc
where lc is a real non-negative number. Let P(x) be a Her-
mitian scalar field satisfying the conformally invariant
Klein-Gordon equation, i.e.,

( —V"Vq+ 6 R)4=0 .

The renormalized stress tensor will be constructed using
Wald's renormalization prescription. ' Recall that this re-
normalization method begins with the assertion' that the
singular part of the symmetrized product of the field
operator in the vacuum state is the same one as that of a
Hadamard elementary solution, i.e.,

(x,x')
(4m )

+(a i(x,x')+a, (x,x)o(x,x'))lno(x, x')
cr x,x

+ Wp(x, x') ——,
' [5 ' V"V (b. ' 8'p)+ —,'R]cr(x,x') —,'a~(x, x)cr(x,x')—+O(o )

where o(x,x') and 6(x,x') stand for the familiar squared
geodesic interval and van Vleck-Morette determinant,
respectively, while the Hamidew coefficients a i(x,x') and
az(x, x) are given as' '
a i(x,x') = ,' [V„V~i(x—,x')]cd'cr"+0(&cr"cr")

=,go ( 2Rq„i R„"++2RiRq„„4R~R„„—

K K
II p(x, x') + (2(r—r') —(r(x,x'))+ 8'(X,X') .

3 90

(5)

However, since by definition G(x,x')=G(x', x), W(x, x')
is restricted to satisfying the following constraint equa-
tions '"

+3CIR&„V&V+)o"cr"+0—(o"o"cr"),
[V&W(x,x')] = —,V„[Wp(x, x')] (6a)

(4a) V"[V„V„R'p(x,x') ]——,V„Wp(x,x) ——,V„[ Wp(x, x') ]
~z(x,x)=[ci,(x,x')]= „', (R" ~"R„i„„R"'R„„+(:)R). — ——,

' R&„V'Wp(x, x)= —,V~a2 . (6b)

(4b)

[In (3), (4a), (4b), and in what follows, outer square brack-
ets denote coincidence limits. ] In the Appendix we show
that for the natural vacuum state associated with the
timelike Killing vector field g =Pq, Wp(x, x ) is

G (x,x')=G(x, x') —G (x,x')

with '

(7)

Using (5) in (3) and forming the divergence-free
boundary-condition part



30 RENORMALIZATION THERMAL STRESS TENSOR FOR ARBITRARY. . . 1163

I(,)
5'~ (x,x'}

(4m )
+(—ai(x,x')+a2(x, x)o(x,x'))incr(x, x') —, a—2(x,x)cr(x,x')+O(o )

O' X,X
(8)

we obtain

2 4

( T"„)= (8„"—45"5„)+—,
' V"V W(, ) ——,', CIW(, )5,"—[V"V,W(, ')]+ —,5"„[CIW(, ')]+—, (, )5"„(9}

90

[Note the last term in (9) has been put in by hand in order
to restore conservation. ' ] Any particular W(x,x') satis-
fying (6a) and (6b) makes (9) conserved, with the proper
trace. In Page's w'ork the background geometry (1) satis-
1es

[ai»] =a2(x, x)=0, (10)

+ —,
' [aW (X,X')]5„. (12)

and in his approach W(x,x')—:0 [which by virtue of (10)
satisfies (6a) and (6b)]. However, it is clear in our case
that W(x,x') cannot be taken as equal to zero. On the
contrary, a natural generalization of Page's work is suc-
ceeded by the following choice:

W(x,x') =——,
' a2(x,x)PPo„o„+2(x,x') . (l l)

[Although the term ——,'az(x, x)PPo„o„satisfies the in-
homogeneous constraint equation, for the moment it is
not clear whether or not it is the unique solution of (6b)
(and if so why). Currently that point is under investiga-
tion and we hope to come back to it in a future publica-
tion. ] Using (11) in (9) we obtain

+T4 0 a2(x,x)
(5"„—4505„)+ 505„

(4m )

+ —,
' V&VQ (x,x)——,', CIA(x, x)5„"—[V"VQ (x,x')]

It is obvious that (12) has the right trace, and is conserved
since now A (x,x') satisfies the homogeneous version of
(6b). From (3), (5), and by definition, we also have

K
(P (x))=G (x,x)= +A(x,x) .

3
(13)

Equations (12) and (13) are the main results of this sec-
tion. Unfortunately, we are unable to specify further
A(x,x'), and from here on it will be taken as equal to
zero (which is now allowed by the constraint equation).

III. STRESS TENSOR
FOR SPHERICALLY SYMMETRIC BLACK HOLE

The importance of the results obtained in Sec. II stems
from the fact that if g&„——Q (x)g& is a conformal
transformation of (1), with Q (x) a time-independent but
otherwise arbitrary conformal factor, then a Hadamard
elementary solution G(x,x') in gz„ is given by

G(x,x') =Q '(x)G (x,x')Q '(x') . (14)

The corresponding functional relation between (T"„) in
(1) and (T„) in g„„resulting from (14) is described by
the scale functional differential equation of Brown and
Cassidy and analytically has the form'0

( T")= Q (T") 8aQ [V~V~(—C "~pnQ)+ 2R~C ~ pnQ]+p[(4R ~C I'&„2II~) Q (4—R&C &&„—2HI„')]

,' y [I"„Q4I"„]——— (15)

with

a=(4n) (120) ', P= —(4m) (360)

y=(4m) (180)

and

where

a 1

2ir Q(x)

R

48m
(16)

I~„— 2g»CIR+2V~VQ——2RR~„+—,'R g»—,

II~„RpR~„+ 3 RR»+ ( 2
——R p—R ~ 4 R )g»

1 ~ P 1

while barred quantities are formed out of the metric g„„.
Further use of (14) reveals the following representation of
the renormalized (P (x)) in g».. dT P'

ds =dr + z + (d8 +sin ed/ ) .f~(r) f (r)

Choosing Q =f(r) then,

(17)

T,,(x)= [Q (x)g ~V' QVpQ]'~i1

2m

are the local and Unruh acceleration temperatures, respec-
tively. ' As a first application of the above-outlined
procedure, let us assume the following particular form for
(1):
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ds =f(r)dH+ +r (d8 +sin Hdg )f (I')
(18)

is recognized as the Euclideanized version of a spherically
symmetric black-hole metric, provided a. is identified with
the surface gravity of the (outer) event horizon. The
case of a Schwarzschild black hole corresponds to the

I

choice f(r)=1 —2mlr and (T"„)and (P (x)) are given
by (12), (15), and (16) and they are identical to expressions
obtained in Ref. 10. The choice f ( r) = (1—(m Ir ) )
characterizes a critically charged Reissner-Nordstrom
black hole. ( T"„) is obtained by combining (12) and (15),
and after an extreinely lengthy calculation its components
reduce to

m m
2880m. ( T"„)= (199x —344x + 144)5~p — ( —87x + 144x —S6)&i5„v 6 0

2 m(49x —52x +4)(&25„+&35„)— (34x —72x +36)&;
r 2 v 3 Y

(1—x)ln(1 —x)(( —26x +26x 6)&f5—'+(7X 7x+—3)(&25 +535„)—3x(1—x)5"„),r' (19)

where x =m/r. It can be easily checked that (19) is con-
served, symmetric, and has the correct trace. Further, it
is finite on the event horizon and shows (as expected for a
zero-temperature extremal black hole) no Hawking
thermal radiation at infinity. The value of the mean-
square field (P (x) ), computed from (16), is given by

It is clear that (T"„) and (P (x) ) for a Reissner-
Nordstrom black hole are obtained from (12), (15), and
(16) by choosing

f(r)=1—

Their explicit form and properties will be discussed in a
future publication. Perhaps it is worth mentioning that
the causal structure of the Reissner-Nordstrom black hole
makes (P (x) ) divergent on the inner event horizon (with
similar behavior expected for (T"„)). The divergences of
the quantum vacuum effects in combination with the
divergences of the classical time-dependent perturbations
on the inner horizon lead to the conclusion that the inte-
rior geometry will be highly modified by back-reaction ef-
fects leading probably to the disappearance of the inner
event horizon. Similar conclusions have also been drawn
by Birrell and Davies and by Hiscock by exploiting the
conservation properties of (T"„)and the known form of
(T„").

Although the above formalism accommodates the
spherically symmetric class of black holes, it can also give
an approximate (T", ) for the stationary antisymmetric
class of black holes. If

ds 2 = dt 2+— (d p capt)2+—g~23dx "dx
0 (22)

Combining (23) and the results obtained in Sec. II, an ap-
proximate (T", ) and (P (x)) can be obtained. Further
results on this approach will be given elsewhere.

IV. DISCUSSION

Perhaps the most obvious question concerning the re-
sults derived in Secs. II and III is their reliability. At the
moment, as we have emphasized before, we cannot argue
in one way or another. However, the properties shared by
(19) are rather encouraging. It shares all the expected
properties associated with the Hartle-Hawking-Israel vac-
uum state and it further satisfies Tp(x =1)=T„"(x=1),
which is the necessary condition for the regularity of T"
on the event horizon. Further, a careful examination of
the coefficients ai(x, x') and a2(x,x) show the following.

For the background metric (17) the only nonzero com-
ponents of R ~&s are

12 13R )2
——R

2

R 23
——p23

with

A,B = 1,2 and co = —g3plg33 is the Bardeen angular velo-
city. The slow variation of co(r, 6) permits us (at least
around the event horizon) to approximate (22) by

dS = —dt +gyydf +ggiidx dX

(23)

dS =gppdt +2gp3dhdf+ggbdx dX (21)

represents a stationary axisymmetric black hole, then (21)
can be rewritten as

&2

f fll f
2

with

s =/ ds p2f t2

1 —f+~f'—
2

2
F30 g 33goo

g33

and

&f(r)
7Br

5 f(r)
Br



30 RENORMALIZATION THERMAL STRESS TENSOR FOR ARBITRARY. . . 1165

If r =rp represents the location of the (outer) event hor-
izon, then it is a straightforward task to show that

[V"V„a}(x,x')]= », (2R" PrR„~pr+2R~~R &p„

3R—(R, +3 R& V~—V~) ~„„,
=0,

[a2 (x,x ') ]= »p ( R Pr R prs

RPR—~p+ClR)
~
„„=0.

It is perhaps worth pointing out that the vanishing of
[V"V„a}(x,x')] and a2(x, x) at r =rp seems to be a gen-
eral property for arbitrary black-ho1e metrics. Detailed
calculations show that this is true for the case when (1)
is conformally related to a metric representing a tidally
distorted black hole of the type studied by Israel and
more recently by Geroch and Hartle. For the stationary
axisymmetric class of black holes this is also true provid-
ed (1) is replaced by (23). The vanishing of these two
coefficients implies our results are identical to those ob-
tained by the Gaussian approximation of the heat kernel.
The remarkable success of this approximation makes us
believe that (T"„)and ((() (x) ) are reliable at least at the
event horizon.

Rote added in proof. After this paper was accepted for
publication I became aware of recent numerical work of
P. Candelas and K. W. Howard. They are reporting good
qualitative agreement with Page's expression for all values
of the radial coordinate. The disagreement reported in
Ref. 8 is due to an error made by its author. The refer-
ence is K. W. Howard and P. Candelas, Center for
Theoretical Physics, University of Texas at Austin, report,
1984 (unpublished).
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APPENDIX

In this section we would like to given an expression de-
scribing the short-distance behavior of the distribution

6 (x,x') = —,
' (P(x')P(x) +P(x')P(x) ) .

( —V&V„+ —,'R)6 (x,x')=5 (x,x') . (Al)

Using the Gaussian approximation 6}(x,x') obtained in
Ref. 10 we factorize 6 (x,x') as follows:

6 (X,X')=6($}(x,x')F(x,x')
with

(A2)

K 6' (x,x') sinhKr

8~2 r cosh~ r —cos~~

r =2(r(x, x ') is the geodesic distance formed out of the
metric g p. Substituting (A2) in (Al) we obtain the fol-
lowing differential equation satisfied by F(x,x ):

V"V'pF+A, 7 F+p~V' F+vF=0
with

2K slIK7

cosh~r —cos~~ '

5'~ (x,x')
p, = 2V, ln

(A5)

1 —cosh~r cos~~+2- a ~r sinhKr(coshKr —cosK7 )

] /2ppq g 1 /2 (A7)

Constructing the global solution of (A4) subjected to the
boundary condition F(x,x)= 1, and limF-(x, x')~const
for

~

x —x '
~

~oo is a very difficult (if not impossible)
task. However, we can look for the general solution of
(A4) subjected to F(x,x)=1. In order to construct the
general local solution of (A4) we follow a method similar
to the one used by De%itt and Brehme or Adler et al. '

in their construction of the Hadamard elementary solu-
tion for the wave operator. The most general form of the
solution compatible with F(x,x)= 1, in the limit of
x'~x, appears as follows:

A convenient way of doing this is to look for a corre-
sponding expression for the Euclidean Feynman propaga-
tor

6 (x,x') = ( 'rP(x)P(x') )

(for the Euclidean signature the two functions have the
same functional form for x'&x). By definition 6 (x,x')
is the unique Euclidean Green s function for the Klein-
Gordon operator which approaches zero at large spatial
distances and satisfies

F(x,x') = ( V}(x,x')o(x,x')+ V2(x, x')o(x,x') )1no(x,x')+ Wp(x, x')

(A8)

where the expansion coefficients V}, V2 Wp W}, and
Wz are smooth biscalars free of singularities. Substitut-
ing (AS) into (A4) and taking into account the following
relations satisfied by A, and p, :

+ W}(x,x')o(x,x')+ W2(x, x')o(x,x') +O(o(x,x') ),
where f is any sufficiently differentiable function, we ar-
rive at the following recursion relation satisfied by V},
V2, 8 P, 8'), 8 2 ..

cr&+AVo+P, o'.= , K 0+O(cr ), —

V hV' o V}'
i .V'f+~VPf =

g

2

+ o„v"f+0 (K,o.), .

(A9)

(A 10)

(Al 1)

2WV„V, +4V, = ~ '"V~V„(S'"V,)-
+ —,R V}— ( —,o"V„V}+ V}),

(A13)

o V'p8'p ——0,
2(r}'VqV}+2V}—— b, '~ V"V~(h' Wp)+ , RWp, ——

(A12)
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2ot'V„W +4W —= 6—'~ V"V„(b,'~ W )

2K+ —,'RW) — ( —,
' ot'VuW)+ W) )

Vz(x, x) = —,
' az(x, x) . (A16)

Further, by taking the coincident limits of (A4) we obtain
the following relation between 8'2 and 8'~.

——,tc V) —(2tr"V~Vp+6Vq) . (A14)

Equation (Al) implies Wo ——1, while the recursion rela-
tions (A2) and (A3) give

4[ W ]= —[4 ' V"Vq(b, ' Wg)+ 6RWg]

2K——', a2(x, x) — [W, ] . (A17)

V~(x,x') = ——,a ~(x,x'), (A15)
I

Using (A15), (A16), and (A17), (A8) yields

F(x,x') = 1+ ~ [—a ~(x,x')o(x, x')+ ,' a2—(x,x)o(x,x') ]incr(x, x')

K+ W)(,xx') rc(,x x) ,' —[6 '~ V"V„—(b,'~ W)) —,'RW)]—o(x,x') —', —a2(x, x)o(x,x') — [W)]o(x,x')

+O(o(x,x') ) . (A18)

The above expression represents the general local solution of (A4) satisfying F(x,x) =1. W&(x,x ) is so far quite arbi-
trary, it is uniquely determined provided the boundary condition F(x,x') —const for

~

x —x
~

~co is taken into ac-
count. But since the expression (AS) is only valid for small cr(x,x ), we have no direct means of implementing this
boundary condition. As a consequence of this fact the unspecified W~(x, x ) will appear explicitly in G(x,x ). Using
(A18), expanding (A3) in the limit of x —&x, and substituting in (A2) we have the following expression for the propaga-
tor or G(x,x'):

G ( p)
5(xpx )

(4~)
+ ( —a ~ (x,x ') + —,a 2(x,x )o (x,x') )incr(x, x ')

CJ X,X

2 4

+ + (2(v' —v'') —o(x,x')) —
4 az(x, x)o'(x, x')+2W&(x, x')

—
~ [5 ' V"V~(b, '~ W() ——,'RW)]cr(x, x')+O(op'cr'o~) (A19)

which are the results we want.
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