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A method of finding axially symmetric stationary vacuum solutions of the equations of general

relativity is presented. The method is based on the calculation of the elements of a matrix, from an

arbitrary function of certain arguments or from an arbitrary solution of a second-order linear partial

differential equation. From this matrix, solutions of the Ernst equation, in the form of which the

equations of general relativity are written, are obtained explicitly.

The problem of finding solutions of the Ernst equation'
for axially symmetric stationary gravitational fields has
received much attention recently. Several methods of
doing that have been proposed based on group-theoretic
techniques, on integral equations, on Bicklund
transformations, ' ' etc. Also, it has been shown that in
the static axially symmetric case Yang's equations in the
R gauge for self-dual Yang-Mills fields' becoine identical
to the Ernst equation. ' Therefore, methods similar to
those applied for self-dual fields can be used to get solu-
tions of the Ernst equation. ' In this work the last ap-
proach is followed.

From the Cartesian coordinates x;, i =1,2, 3 we con-
struct the variables y=x~+ix2, y=x~ —ix2, z'=2x3
=2z, and we consider the system

f(fyy +f;. ) fyfy-f,f,—kg~
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which imply that all h, satisfy the three-dimensional La-
place equation. Then, by the method of Corrigan et al.,
we can show that for any integer n &2 a solution f'"',
e'"), g'"' of the system (1) is obtained from the tnatrix re-

lation

where f&
——Bf/By, etc. We can show that if f', e', g' is a

solution of the system (1) another solution f, e, g is ob-
tained from the expressions

[h(n)] —1 (4)
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that is from the corner elements of the matrix [h'"']
which is assumed to be invertible. For n =1 we have
f( 1 ) e ( 1 ) g ( 1 ) h 1

If hp ——5p(p, z'), where p=(xi +x2 )' =(yy)'~, from
Eqs. (3} we find that the functions h„and h „are of the
orm

h„=y—"5„(p,z'), h „=y"5 „(p,z') .

e
Bz' f eg—e&f' '

By f' eg—ft2
Furthermore, if 5p(p, z') is real all 5„(p,z') are real and we
can prove by induction that we can take

A system analogous to (1) and a Backlund transforma-
tion analogous to (2) was considered by Corrigan, Fairly,
Yates, and Goddard. ' Using their approach we can find
solutions of the system (1}. Let h„s =0, +1„+2,. . . be a
solution of the system

„=( —I)"h„=( —1)"y"5„(p,z') .

Using Eqs. (Sa) and (6) we find that the matrix h(") can be
written in the form
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1)n —lg ( 1)n —2g

3'
—(n —2) —(n —1)

5p n —1

g(n)

5o

50

p25

( 1)n —25 ( 1)n —3g 50

2(n —3)5
n

2(n —2)5
n

3' n —2p25

4

—3P 5n —2
2(n —2)

0
-2 P

2(n —1) y

(7)

where the above notation means that we must multiply all
elements of the first row of the matrix by y" ', which is
written on the right-hand side of the row, all elements of
the second row by y", . . . , and also all elements of the
first column by y, which is written above the column, all
elements of the second column by y

Let us call D'"' the matrix we obtain from the right-
hand side of Eq. (7) if we omit the factors y"y", . . . and the factors y, y ', . . . , which multiply
the rows and the columns, respectively. Also let us sym-
bolize by A,J the cofactor which corresponds to the ele-
ment of the i row and the j column of the matrix A.
Then, for every n from the definition of D'"' and Eqs. (4)
and (7), we get detb. '"'= detD'"' and

(n 1) —n —1D (n)
f(n) ( —1)n+1 detD "

(n)

etD'"' '" "de
(8)

n —1D (n)
(n)

detD'"'

From Eq. (Sa) we see immediately that f=f(p,z'). To
compare the expressions D '11' and D „'"„', we recall that the
determinant of a matrix does not change if we turn the
matrix around one of its diagonals. Then by a trick
analogous to that used in Eq. (7) we get

~ (n) i q yn —1 —2(n —1)~ (nn)

which implies that Eq. (Sb) becomes

D (n)

e (n)
( )n —1—

detD'"'
(9)

f(n)„+1 detD(„)nn
etD'"' detD'"'

(n)
( 1 )n —le(n)

(10)

The above expressions give a solution of the system (1),

The functions e and g of Eqs. (9) and (Sc) depend not
only on p and z', but also on y and y, respectively. To
find solutions f, e, g of the system (1), which depend on p
and z' only, we shall take into account that if f', e', g' is
a solution of (1), then another solution f, e, g of this sys-
tem is obtained from the expressions f=cp"f', e=cy "e',
and g=cy"g', where c and u are constants. This can be
proved by substitution. For c=(—1)"+', u= n+1, —
and f', e', g' the expressions (Sa), (9), and (Sc), respective-
ly, we get

and let us define the matrix I'"' by the relation

p(n)

( —1)" 'y, 1 ( —1)" 'y„
( —1)" y„2 ( —1)" y„

71 70

'Vo

'Vo

VO Pn —3 Xn —2

Xn —2 Vn —1

(12)

Using (11) we easily find that the matrix D'"' is obtained
froin the matrix I'"' if we multiply the first row of I'"'
by p, the second row by ', . . . , and also the first
column of I'"' by p "+, the second column by
p "+,. . . . Then using this fact we can show that
detD'"'= detI'"' and D„'"„'=p "+'I „'"„'. Therefore, Eqs.
(10) become

(n 1) P ( )

f (n) n+1 det~— (n) n+1 —nn

detI'") detI'"'
(13)

g(n) ( 1 )n
—1 (n)

Thus, if we know the matrix I '"' we get from the above
expressions a solution of the system (1), which depends
only on p and z'.

If n =21, Eq. (13c) gives g' "=—e' ". Then if we
write 8' '=f' '+ie' ' we find that the system (1)
reduces to the relation

f(21)q2@&(21) g(21)g(21) g(21) g(21) 0p p z z (14)

where

p2 Q 2+ Q +Q 2
~P p P

Equation (14) is the Ernst equation for the axially sym-
metric gravitational field. Therefore, the expressions f'
and e' ' of Eqs. (13a) and (13b) give a solution of the
Ernst equation.

To find the form of the matrix elements of I'"' let us
define the function 6 by the relation

which depends only on p and z'.
To put the solution (10) in another, more convenient

form, let us write
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b, = g be

Then, if g=e'~, we get from the above relation

. II) bP 'dg,

(15) ay a~.+I
p =(s+1)y, +l+pBz Qp

from which we get

(18)

where the contour integral is taken along the circumfer-
ence of the unit circle with center at the origin. Substitut-
ing these expressions for 6, into Eqs. (3) we find that
the function b, must satisfy the relations Bb,/Bz'
—gBb, /By =0 and Bb/By+ gBb/Bz'=0. The general
solution of these equations is b, = b, (gy —g y —z', g),
where b. is an arbitrary function of its arguments which
can be expanded as in Eq. (15). Then if we write y =pe'~
and P+ /=5 we get

—tsar f b, [2ip sin@ —z', e "@ &']e" "@d(e'a)
2&l

2

P p
(19)

Starting from a solution of Eq. (19), we can proceed to
calculate the matrix elements y, we need, with the help of
Eqs. (18).

As an example let us take

b, = [p(w —w ') —2z]
a

(w —A, +) (w —A, )
W

Since we want the function b,o ——5o to be a real function of
p and z', b, must be a function of gy —g 'y —z' only.
Then, since according to (5a) and (11) we have
b, =y'p 'y„ if we put e' =w and z'=2z, from the
above expression for b,, we get

y, (p,z) = ItI b[p(w —w ') —2z]w' 'dw .
27Tl

(16)

2m

y, (p,z) = b(ip sin& z)e" d—5 .
2m

(17)

The matrix elements y, (p,z) can also be calculated by
solving differential equations. Indeed, from Eqs. (3), (5a),
and (11) we find that the functions y, satisfy the relations

Equation (16) in which 5 is an arbitrary function of
p(w —w ') —2z, b(v) is real for real v [since we want

y, (p,z) to be real], and the contour integral is taken on
the circumference of the unit circle with center at the ori-
gin is the general expression for the y, (p,z). The above
relation can be written in the form

where a is a constant, and if r=(p'+z')'~' it is
2+ (z+r )/——p. For this choice of 6 we get from Eq. (16)

y, =A; ~p~ F( —a+s, —a s+1;—A, ),« I ( —a+s)
s!I ( —a) (20)

where X=A+ for z(0, A, =A, for z)0, and F=zF~ is a
hypergeometric function. Then using Eqs. (12), (13a) and
(13b) for n =2l, and (20), we get explicitly a large class of
solutions of the Ernst equation. We have not found an
asymptotically flat solution, in the class we get in this
way. Generally, to get asymptotically flat solutions we
must make a proper choice of the function
b.[p(w —w ') —2z], or in the case when we use Eqs. (18)
and (19), of the solution of Eq. (19) that we start from. It
is not clear how this can be done.

In conclusion it is shown that the expressions f' ' and
e' ' of Eqs. (13a) and (13b), where the matrix I' ' is
given by Eq. (12) and its matrix elements are obtained
from Eq. (16), or from Eqs. (18) and (19), give a solution
of the Ernst equation.
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