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The Euclidean (imaginary time) Schwarzschild solution of general relativity is known to possess a
spin-2 metric perturbation which decreases its Euclidean action. This "negative mode" contributes
an imaginary part to the effective action, and renders hot flat space unstable against the nucleation
of black holes. In this paper, we enclose the black hole in a spherical "box" by imposing boundary
conditions on the perturbations. Two conditions, which correspond to a fixed temperature (iso-
thermal wall) and fixed energy (reflecting wali) are examined. The isothermal boundary condition
eliminates the negative mode if the box is small enough, and stabilizes hot flat space.

I. INTRODUCTION

The precise analogy between black-hole mechanics and
thermodynamics' led to the discovery of black-hole radia-
tion and has become a fruitful area for research. Black-
hole radiation can be demonstrated by calculating the
propagator for a quantum field propagating on the curved
black-hole background spacetime. This propagator is
periodic in imaginary tiine, with period P=8mM, where
M is the black-hole mass. This is because the Euclidean
Schwarzschild manifold has a Killing field (i)/Br)' with
closed (i.e., periodic) integral curves. Consequently, the
fields have a temperature 1/P.

Because a black hole radiates energy, it will evaporate
and gradually lose all of its mass. One way to prevent
this evaporation is to place the black hole inside a special
box. The idea is that the box imposes a reflecting boun-
dary condition on the fields, which keeps the total internal
energy constant. The resulting system is stable. Depend-
ing upon the volume of the box and its total energy con-
tent, the maximum entropy (i.e., stable) configuration con-
sists of either pure thermal radiation or a black hole in
equilibrium with some thermal radiation.

We are interested in a different kind of boundary, called
the isothermal wall. Unlike the reflecting wall, the iso-
thermal wall holds the temperature constant, but not the
energy. Physically it acts like a perfect absorber, which is
held at a constant temperature by some imaginary exter-
nal heat bath. The isothermal wall can act as a source or
sink for energy, depending upon the temperature of its
contents. Imagine surrounding a black hole with an iso-
thermal wall of temperature T = 1/8srM. Because a black
hole has negative specific heat, any temperature fluctua-
tion will cause it to evaporate completely, or grow until it
swallows the box. The reverse of evaporation is also pos-

sible, i.e., a black hole can form spontaneously inside an
isothermal box.

Recently, Gross, Perry, and Yaffe studied this effect,
by calculating the partition function Z(P) for a large iso-
thermal box. Their results pertain to a box of essentially
infinite volume. In this paper, we see what happens if the
isothermal box has finite volume. Both calculations rely
on the fact that lnZ(P) has an imaginary part, which has
the effect of making hot flat space unstable against the
formation of black holes of the same temperature. The
effect is analogous to the classic work of Langer on the
formation of condensed droplets in a supercooled gas,
which shows that the rate of formation is proportional to
the imaginary part of the free energy Ii =(1/P)lnZ. The
imaginary part of lnZ is due to the presence of a single
"negative mode" of the Euclidean Schwarzschild solution.
Related work by other authors has confirmed this ef-
fect, although there is some question about the exact rate.

This paper is mostly about the negative mode. We be-
gin by describing the Euclidean Schwarzschild solution,
and express its one-loop effective action as a classical ac-
tion plus a functional determinant. This determinant is
the product of a great many positive eigenvalues. If one
of those eigenvalues is negative, as it is for the negative
mode, then the effective action ceases to be real, and ac-
quires an imaginary part. In some situations, this
imaginary part can destabilize a classically stable configu-
ration.

Note. Throughout this paper, we use Planck units
A=c =6 =k =1.

II. THE EUCLIDEAN SCHWARZSCHILD
SOLUTION

The Euclidean Schwarzschild solution is obtained from
the ordinary Lorentzian black-hole metric
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ds =— 1 — dt+ 1—2M 2 2M
r T

+r (d8 +sin ed' ) (2.1)

by Wick rotating the time coordinate into ~= —it. The
metric is then of positive-definite signature for r & 2M:

' —1

ds = 1 — dH+ 1 — dr +r dQ2M
(2.2)

-2

ds =16M dp +p2 d7
4M

+r dQ

Comparing this to the flat Euclidean metric on R, written
in polar coordinates (ds =dr +r de ), we see that r/4M
must be identified with period 2ir to keep the metric (2.3)
regular at p=0. Any other identification is possible, but
would produce a conical singularity at r =2M, and conse-
quently a 5-function singularity in the curvature there.

Because r has period 8~M, any propagators which are
calculated on the Lorentzian manifold are periodic in

imaginary time. This means that any fields propagating
around a black hole behave as if they are being held at a
temperature T=1/P. For this reason, any field theory
calculations carried out on the Euclidean background au-
tomatically reflect the thermal nature of the black hole.
Furthermore, since the Euclidean manifold only includes
the region r &2M, the physical properties of the black
hole are independent of any hidden behavior taking place
inside the horizon or at the singularity.

Left on its own, a black hole will slowly lose energy
through its thermal radiation, and evaporate. One might
hope to prevent this slow disappearance by immersing the
hole in a thermal bath. Unfortunately, because the black-

(2.3)

We shall see shortly that the two-sphere at r =2M can
also be included.

One can define a new radial coordinate by

p =(1 2M/r—). Near r =2M, p=0, and the metric (2.2)
is of the form

hole temperature T =1/8n.M is inversely proportional to
its mass, the system has negative specific heat
5M/5T= 8—nM and is unstable. The hole either evap-
orates entirely or else grows indefinitely as it swallows the
energy stored in the heat bath.

To investigate these issues, it is desirable to enclose the
black hole within a finite-volume box. As discussed ear-
lier, the isothermal-wall and reflecting-wall boxes corre-
spond to different mathematical boundary conditions. To
obtain a spherical "box" we can impose a boundary condi-
tion at r = ra on the Euclidean manifold with metric (2.2).
As shown in Fig. 1, the complete manifold has topology
R XS, and the boundary (box wall) has topology S XS .
By imposing different boundary conditions on the fields
at r =ro, we can mimic the effects of enclosing the black
hole within different types of boxes.

e —= I d[g]e (3.1)

where I [g] is the classical Euclidean action. We are go-
ing to investigate pure gravity and assume that no other
fields are present. If we expand (3.1) to quadratic order
around the Euclidean Schwarzschild solution, the one-
loop effective action of the black hole is '

IE I + —,
' ln D——et(u C) ——,

'
ln Det(u F)

——,
' ln Det(u G), (3.2)

where I is its classical action and u is a regularization
mass.

The classical action is the sum of a volume tenn and a
boundary term. The volume term vanishes because a
black hole is a vacuum solution, and has R—:0. The
boundary term yields

r

2roI=4aM 3+
M

(3.3)

III. THE ONE-LOOP EFFECTIVE ACTION
AND THE NEGATIVE MODE

The effective Euclidean action IE can be defined by a
path integral over all positive-signature metrics g by

&XV (J
FIG. 1. The Euclidean Schwarzschild manifold has topology

R &S . Here each point represents a two-sphere S =(O,y).
The radial coordinate r =2M at the leftmost point and increases
to the right. The periodic time coordinate runs around the
cylinder. To enclose the black hole in a spherical cavity, one im-

poses a boundary condition on the fields at r =ro. The boun-

dary has topology S'&(S .

The action has its minimum value of —4m.M when the
boundary is at ro ——2M, passes through zero at ro ———', M,
and approaches 4aM as ro/M~ ao.

The operators C, Ii, and G arise from the second varia-
tion of the action. F and C are scalar (spin 0) and vector
(spin 1) operators arising from the gauge-fixing and ghost
terms in the action. 6 is the physical, gauge-independent
spin-2 operator

G~~d = —g~~g~ V, V' —2R„~ (3.4)

which acts on transverse, traceless, symmetric tensors h,b.
The determinant is formally defined as the product of the
eigenvalues of its operator. In practice the rigorous defi-
nition of the functional determinants involves a process of
analytic continuation and can be done using generalized g
functions.

The eigenvalues A,„of 6 are defined by all solutions to
the elliptic equation
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(3.5)

where the eigenfunctions h„' are real regular transverse
traceless symmetric tensors which satisfy the boundary
condition at ro. If all the eigenvalues were positive, then
Det(u G) would be positive, and the effective action
(3.2) would be real. However, if k of the eigenvalues are
negative, then the effective action acquires an imaginary
part Im(I, )= —,'m.k. This imaginary part of the effective
action can have important physical consequences.

The imaginary part of lnDetG arises in the following
way. Suppose that the eigenvalues A,„(z) are analytic
functions of a complex parameter z =x +iy, and are real
along the real z axis. If M of the eigenvalues change sign
as z ranges (along the real axis) from 0 to x, this means
Det[A, „(z)] has M zeros between 0 and x. Hence if one
analytically continues lnDet[A, „(z)] from 0 to x, it picks
up an imaginary part +kmi from the logarithmic branch
cuts at those zeros. The C and F terms in (3.2) may also
have an imaginary part, which is eliminated by an ap-
propriate rotation of their path-integral contours. These
terms are gauge-dependent, and are dealt with in detail
elsewhere. '

Some recent work has shown that the imaginary part
of the effective action affects the stability of hot flat
space. The partition function for hot flat space can be de-
fined as a path integral over all fields which have a given,
fixed periodicity (P= 1/T) at the boundary:

Z(P) —J d [g]e mls)

with P= J ds at r =ro, 8=0, y=0 . (3.6)

Using the method of steepest descents, its two stationary
points correspond to hot flat space, and to a black hole
with the given periodicity at ro. The saddle-point contri-
bution from the black hole yields its one-loop effective ac-
tion, and consequently ln Z, and the free energy
F= (1/P)l nZacquires an imaginary part.

One can show that if the free energy of some system
has an imaginary part, then that system is metastable and
can decay via the nucleation of droplets in a first-order
phase transition. In our case, the thermal fluctuations of
hot flat space will occasionally cause a black hole of mass
M & 1/8m T to form. The hole will then grow in size, and
eventually swallow the heat bath. The rate of black-hole
formation (or nucleation) is proportional to Im(F).

less, and since it is transverse V,h b
——0 which implies

that

Ho(r) = r—(r 2—M) d 3r 5M —
H ( ) (42)

r —3M dr r —3M

Hence the potential "negative mode" is determined entire-
ly in terms of a single unknown function H&(r).

The eigenvalue equation (3.5) for this mode becomes an
ordinary differential equation for the radial function
H)(r):

1—2M d
dr

2(r 4M—)(2r —3M) d
r (r —3M) dr

+ z Hi(r) =AH|(r) . (4 3)
8M

r (r —3M)

The boundary conditions on the equation determine the
spectrum of A, , and since the equation is second order, two
such conditions are required. The original elliptic equa-
tion (3.5) required only a single condition on the boundary
S')&S, and the spectrum was determined by the require-
ment that the solutions be regular everywhere. In terms
of the radial equation, these conditions become (1) the
boundary condition at r =ra and (2) regularity of the
solution at r =2M.

The boundary condition at r =2M is easy to under-
stand. As we have shown, the manifold is regular there,
since v has been identified with period 8n.M. We can de-
fine a new radial coordinate x =r/M —2 and expand Hi
in a power series near x =0:

H&(x)=x' g akx", ao&0.
k=0

(4.4)

By substituting this power series into the differential
equation (4.3) we can obtain relations satisfied by s and by
the coefficients ak.

There are two fundamental linearly independent solu-
tions (4.4). One has s =0, and the other has s = —l.
Since the s = —1 solution has a simple pole at x =0, it
defines a function Hi(x) which is not regular at r =2M.
It is the s =0 solution which defines the unique regular
solution to the elliptic boundary value problem (3.5). Put-
ting s =0 in (4.4) one can obtain all the coefficients ak in
terms of ao, which is the value of Hi at r =2M:

IV. THE NEGATIVE MODE AND BOUNDARY
CONDITIONS

h'i, ——Diag[ Ho(r), H, (r), ——,
' Ho(r) ——,

' Hi(r),
——,Ho(r) ——,Hi(r)] (4.1)

in a coordinate basis (~,r, O, y). Clearly this mode is trace-

To search for negative modes of the operator G, we
need to return to the eigenvalue equation (3.5). Its eigen-
functions h„' can be expanded in a basis of spin-2 spheri-
cal harmonics, multiplied by radial and time-dependent
functions. One can show that all of the eigenvalues are
non-negative, apart from the lowest-frequency, spherical-
ly symmetric static mode. This mode can be written as

ao ——ao,

ai ———(XM +2)ao,

a2 ———,'(AM +2)(2AM +7)ao,
(4.5)

Now it is clear how the spectrum of I, can be determined.
It is only for particular values of A, that the solution de-
fined by (4.1), (4.4), and (4.5) will satisfy the boundary
condition at ro.

It is easy to see that the metric perturbation (4.1) does
not change the periodicity of ~, since the manifold with
metric g,b+h, ~ is still regular at r =2M. This is because
(4.2) implies that Ho(2M) =Hi(2M) so that the argument
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FIG. 2. The spectrum of eigenvalues X is shown as a function
of the radius rp of the isothermal box wall. At any value of rp,
there is an infinite number of positive eigenvalues, but at most a
single negative one. The negative mode has eigenvalue
A,M = —0. 1919 when the box is very big. When the wall

reaches r, -2.89M, the negative eigenvalue becomes positive.
In the limit as rp/M~ op, all of the positive eigenvalues go to
zero.

IO
I
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FIG. 3. The spectrum of eigenvalues A, is shown as a function
of the radius rp of the reflecting box wall. As in the previous
figure, this only shows the negative mode and the lowest-
frequency positive modes. The negative eigenvalue becomes
more negative as rp decreases, and approaches —oo as rp~2M.

of Sec. II still holds in the presence of the perturbation.
In other words, the perturbation to the metric does not in-
duce a conic singularity at r =2M. It is also easy to veri-

fy that the metric perturbation is regular everywhere on
the manifold. In particular, one can show that Ho and

H& are regular at r =3M, by expanding them in power
series about that point.

One boundary condition at ro which has been discussed
at length by Hawking is the isothermal condition. This
requires that the proper length around the boundary in the
8 direction (see Fig. 1) is unaffected by the perturbation.
Physically it corresponds to a perfectly absorbing wall
coupled to an infinite-energy, fixed-temperature heat bath.
This wall does not behave in the same way as a perfectly
reflecting boundary, because it does not conserve energy.
A perturbation to the metric which changes the three-
volume will also change the energy, since the wall emits
radiation.

From the explicit form (4.1) of h,b, no change in the
size of the S means that Ho(ro)=0. Since Ho is given in
terms of H~ by (4.2), this Dirichlet condition on Ho de-
fines a mixed boundary condition (BC) on H&,

H'& (ro) 3ro —5M
Isothermal BC at ro . + =0 . (4.6)

H& ro ro ro —2M

The spectrum of A, determined by this isothermal boun-
dary condition is shown in Fig. 2. For a given value of ro
it displays the discrete (positive and negative) values of A.

which satisfy (4.6). This graph was obtained by numeri-
cally integrating Eq. (4.3) outwards from r =2M using in-
itial conditions (4.5), and finding the values of A, which sa-
tisfied (4.6) at r =ro. It can be seen that for ro &r,
=2.89M the spectrum of G is positive.

It is also interesting to derive a boundary condition for
a reflecting wall which conserves energy. There are at
least two definitions of the energy within a spacelike (to-
pological) two-sphere. Fortunately, the Hawking mass
MH (Ref. 10) and the Penrose mass Mp (Ref. 11) are
equal for the spherically symmetric case. In the presence
of the metric perturbation (4.1) the total mass MH(r)
within a two-sphere of radius r, to first order in the per-
turbation, is

MH(r) =M +— r (r —2M) [Ho{r) +H q(r)]+ (r 3M)Ho(r)+ (3—r 7M)H ~(r)—1

4 dp
{4.7)

The reflecting-wall boundary condition at ro is MH(ro) =M Using the de.finition of Ho, (4.2), and the equation satisfied
by Hq, (4.3), this can be expressed as
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Hi (rp) 2M(3rp —10Mrp+9M ) —Arp (rp —2M)(rp —3M)

Hi(rp) Mr()(rp —2M)(2rp —3M)
=0. (4.&)

The spectrum of A, determined by this boundary condition
is shown in Fig. 3. It can be seen that with this boundary
condition the negative eigenvalue becomes more negative
as the boundary is brought in from infinity.

V. CONCLUSIONS

Since the negative mode goes away for a small enough
isothermal box whose wall area is less than

r,
A &4m

8@M
2M
rc

T =0.54T (5 1)

hot flat space can be stabilized against decay. This is to
be expected. If the box wall is at a temperature T, then
for a black hole to form and grow (rather than to evapo-
rate) it must have a temperature less than T, and hence a
mass M&1/SnT. This means that its horizon area is
greater than ABH & 16m.M . If this area is larger than the
area of the spherical box wall, then the system is stable.
Unfortunately this argument does not yield the correct
factor of proportionality, perhaps because the quantum
stress-energy tensor becomes thermal only far away from
the horizon.

It is the nonthermal form of the quantum stress-energy
tensor which causes this behavior. If the quantum stress
energy were exactly thermal outside the hole, then the lo-
cation of the isothermal wall would not matter. This is
the case sufficiently far from the black hole, where the
stress energy becomes asymptotically thermal. Here the
negative eigenvalue tends to a constant value (see Figs. 2
and 3). However, near the black-hole horizon, the stress
energy must be nonthermal. One can see this without de-
tailed calculation. In order for a black hole to evaporate,
its horizon area must decrease. The area theorems' then
imply that the weak-energy condition must be violated.
Since a thermal stress-energy tensor obeys the energy con-

N(E) = f e ' (s)d [g]H(gi=E (5.2)

over all field configurations of a given fixed energy, then
the negative mode would contribute an imaginary part to
lnN(E). However, as things stand, we can only conclude
that the effective action for a black hole in a reflecting
box always has an imaginary part, regardless of the size of
the box.

The significance of the negative mode for the canonical
ensemble (the isothermal box) is reasonably well under-
stood. It remains to be seen if the imaginary part of the
effective Euclidean action for a reflecting box has some
simple physical interpretation.
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dition, the stress-energy tensor near the horizon must be
nonthermal. So by putting an isothermal wall near the
horizon the black hole is forced to act differently than it
would with the wall at infinity.

The interpretation of the negative mode for a reflecting
wall is not clear. It cannot indicate an instability like that
of the isothermal box because the reflecting box has been
shown to be stable. With the isothermal boundary condi-
tion, the path integral yields the canonical ensemble Z (P),
and the negative mode indicates an instability to black-
hole nucleation. In the case of the reflecting wall, we do
not understand the significance of the negative mode. If
the microcanonical ensemble could be shown to be gen-
erated by a path integral
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