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Static properties of baryons in the SU(3) Skyrme model
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We study the SU(3) xSU(3) Skyrme model with explicit chiral- and flavor-symmetry-breaking terms.
We evaluate the SU(3)-symmetric meson-baryon coupling-constant ratio «, SU(3) mass breaking in the oc-
tet and decuplet, and the A/ =1 part of the electromagnetic mass splitting in baryons. The theoretical
numbers are in reasonable agreement with the experimental values.

I. INTRODUCTION

The idea that baryons might appear as solitons of a non-
linear o model has been receiving a great deal of attention
recently.! Several static properties of the nucleons (magnet-
ic moment, g4, charge radii, etc.) have been studied with
reasonable agreement with experiment.2 We present here a
calculation based on an SU(3) generalization of these calcu-
lations. In particular, we calculate the ratio o [=D/
(D + F)] of the meson-baryon coupling constants in SU(3).
Further assuming an SU(3) mass breaking in the meson
sector we derive SU(3) mass breaking for baryons in the oc-
tet as well as the decuplet. Lastly, we calculate the elec-
tromagnetic mass difference among the isomultiplets using
the (K *-K° mass difference as input.

One starts from the Lagrangian density

2
£ (V) = T Trl (3,0)'9+U)
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where

U= exp{—in—)\d:] s

with ¢ as the pseudoscalar octet.
soliton solution is given by

The classical Skyrme-

[iF(r)7-%1 0
expliF(r)7-x ] , @

UO(x)=[ 0 1

where F(r)=m at r=0 and F(r)=0 at r =oc. The topo-
logical number associated with such a solution has been
identified with the conventional baryon number. The
quantization of this Lagrangian in the baryon sector is done
through the use of collective coordinates:

U=g(t)Ue (1) , 3

where g (¢) is an element of SU(3) expressed in the funda-
mental representation.

The baryon wave functions in the SU(3) space are given
by the SU(3) generalizations of the D functions, D % (g),
where n denotes the SU(3) representation,> o denotes the
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three quantum numbers (1,73,Y), and 8 determines the
spin quantum number of the baryon state. In particular, for
the spin-5 octet the wave funtions are D,f}‘;,y;l/z,,,,,l with
m= —é— for spin-up and m = +—} for spin-down states.
Similarly, for the decuplet the wave functions are given by
Di%:52m1 With m=—%, —, +5, and +3 describing
the states with spin -35, %, ——-;—, and —%, respectively.
Given the wave functions it is straightforward to calculate
the matrix elements of the relevant operators.

II. DETERMINATION OF «

In order to compute the effective coupling constants
between the baryons states and the pseudoscalar mesons, it
is convenient to start from the expression

1,(8.8)= [@xq-X(BITtIr (U~ UDIIB) . @

Using Egs. (3) and (2), on performing the angular integra-
tions, we obtain

1,(B'B)=ilq;(B'|DSP (g~")|B)
=il (B'ID}®(g)|B) , (5)

where
16

J=—m

3 owr3dr sinF(r) . 6)

We have used the relation
g e =rDgY (g7 .
Now,
(B';8'a'|Dy;(g)|B, Ba)
= [aue)DX® (D3P DP ) . D
where the D functions are normalized:

(8)* (8) (o) =
fdp(g)Dﬁ,a, (&)Dga’ (&) =8,,5 . -
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To evaluate the above we use the Clebsch-Gordan series

® ® 8 8 [8 8 8‘] (8)
Dﬂ'u' (g)D (g) BI y B o j a D
8 8 8'[8 8 82]
B vy Bl Jj «a
+oee 8)

where 8; ( 82) refers to the symmetric (antisymmetric) com-
bination. ( - - - refers to the elements of the series belong-
ing to 1, 10, 10, and 27.) Choosing j=3 (I=1, I;=0,
Y =0) and B’ = B = neutron state, we obtain

Io(nn)=-J5-T . )

This may be interpreted as the #%nn coupling if we consider
the leading term of the expansion in (U—U'). This is
equivalent to dropping higher-order terms in the 1/N expan-
sion, since they involve higher-loop corrections. Similarly,
we can also evaluate Ino(n,n ) (j=28) and obtain

—

1 _
1 5.9
10v3° 71

This determines the SU(3)-symmetric coupling-constant ra-
tioa [=D/(D + F)] through

g’qoml 4a - 3 '\/_3-

I"o(n,n )=—

leading to a = -1—9;-, which compares well with the experimen-

tal number* & =0.65 +0.03. This result, we may observe, is
identical with what one obtains in the strong-coupling
theory.’

IIl. BARYON MASS DIFFERENCES

We introduce an explicit SU(3)-symmetry breaking in the
meson sector. This will induce a definite symmetry break-
ing in the soliton sector as well. The symmetry-breaking
term that incorporates the meson masses is

M2+ 2mg?
Ag= —48’1"—F,2Tr[(u+ U -6l
_mlma? 2Trlag(U + UM
83 " 8 :

This implies an SU (3)-mass-breaking Hamiltonian

2
AH®= | PN Sl 2

2 t
Wil FA2Tring(U4+ U]

We may now evaluate SU(3) breaking in the baryon sector
by computing the matrix element of AH® between the cor-
responding baryon states. Using the wave functions for the
baryons and performing the angular integrations we have

(BaB|AH®|Bap)

= —am [du(@)DB* (©)DP* @DP (o

where®
am =22 (m=m ) [ (1= cosF)rar
~ 388 MeV .

The SU(3)-mass-breaking contribution to the baryon octet
is

(NIAH®|N) = = 38m - (A Ag®|p)= — A
10 10
®)|y)_ Am = @)=y 24m
(ZIAH®|3) 0 (EIAH®|E) BT

for the decuplet is
Am
5’

Asﬂ, (Q-|AH®|0-)=Am

(A|JAH®|A) = — (Y*AH®|Y*) =0 ,

(E*|[AH®|E") =

This unfortunately cannot explain the mass differences
completely even though the Gell-Mann-Okubo sum rule is
reproduced. However, it has been argued’ that there is a
need to supplement it with an extra term proportional to hy-
percharge which contributes to the mass difference as well.
The analysis using both terms has been done and it leads to
Am =390 MeV, which is in agreement with our predictions.

IV. ELECTROMAGNETIC MASS DIFFERENCES
(AI =1 PART)

The AI =1 electromagnetic mass splitting in the meson
sector is introduced by means of the extra term

2
m m
AH® = _i_—KO

2 3 1
—F, JaxThaw o

This gives rise to Al =1 mass differences, which in particu-
lar are responsible for the neutron-proton mass difference.
Evaluating the matrix element (B|AH®|B) gives us the
Al =1 part of the mass difference. For the octet we have

Oy e — 3],y M
(plAH®|p) 10 (n|AH®|n) 0

(>:+|AH‘”I>:+)=—J‘2L, (S)AHPz) =0 ,

GETlAH®Iz) =4

(ENAHPIEY = - Fu, (E-[AHPIE ) =34 ,
where

u=§-1r(mkoz—mK+2)F,,ZJ; (1—cosF)r%dr =33 MeV .

The mass splittings are m,—m,=0.6 MeV (1.3),

my-—mgyy =33 MeV (8), mg-—mg=2.4 MeV (6.4).
(The numbers in parentheses are the experimental values.)
Certainly all the signs are correct. An introduction of
AI=2 part in terms of m_i—m_g mass ‘difference could
similarly give the AJ =2 part of the % mass differences.

We conclude our discussion by observing that the static
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properties of the baryons can be obtained using the proper-
ties of the meson sector as input. The SU(3) generalization
we have attempted here appears sufficiently encouraging
that other dynamical properties of the model should be con-
sidered seriously.
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