Zeros in $\gamma + e \rightarrow W + v$

Karnig O. Mikaelian

Lawrence Livermore National Laboratory, University of California,

Livermore, California 94550

(Received 15 March 1984)

We point out a misprint in the differential cross section for $\gamma e \rightarrow W\nu$ reported recently by Ginzburg, Kotkin, Panfil, and Serbo. The corrected expression has a zero in accordance with the general formula derived earlier by Mikaelian. We plot the angular distributions for different values of κ , the anomalousmagnetic-moment parameter of the W. We suggest that the reaction $\gamma e \rightarrow W\nu$ is an attractive way to measure κ because the distributions are sensitive to it and the zero exists only if $\kappa = +1$ as in the standard electroweak theory.

In this Brief Report we present the differential cross section for $\gamma e \rightarrow W\nu$ and show that it is highly sensitive to κ , the anomalous-magnetic-moment parameter of the W. Correcting a misprint in the expression derived recently¹ by Ginzburg, Kotkin, Panfil, and Serbo, we show their result to be a special case (Q = 1) of the general formula derived earlier² for the photoproduction of W bosons off a fermion of charge Q. We point out that if $\kappa = +1$, as in the standard electroweak theory, then the differential cross section vanishes in the backward direction where the W is emitted antiparallel to the γ .

The differential cross section is calculated using the two Feynman diagrams shown in Fig. 1. The result, for $\kappa = +1$, is

$$\frac{d\,\sigma}{dt} = \frac{\tilde{\sigma}}{x^2} \left\{ \frac{(x^2+1)M^2}{(M^2-t)^2} - \frac{2x^2+x+1}{x(M^2-t)} + \frac{3}{2M^2} + \frac{t+M^2}{2xM^4} \right\} ,$$
(1)

where we have used the notation of Ref. 1:

$$\tilde{\sigma} = \frac{\pi \alpha^2}{M^2 \sin^2 \theta_W}, \quad x = s/M^2, \text{ and } t = (P_\gamma - P_W)^2.$$

Equation (1) is for unpolarized beams and it agrees with Eq. (11a) of Ref. 1 except for the term $3/2M^2$ which appears as $3/M^2$ in Ref. 1.

Equation (1) vanishes at the kinematic point $M^2 - t = xM^2$, i.e.,

$$\frac{d\sigma}{dt}\left[t = (1-x)M^2\right] = 0 \quad . \tag{2}$$

This zero is more clearly seen if we use the expression reported in Ref. 2 for $\gamma q \rightarrow Wq$. Setting Q = 1 we get

$$\frac{d\sigma}{dt} = -\tilde{\sigma} \frac{M^2}{2s^3} \frac{u}{(s+u)^2} (s^2 + u^2 + 2tM^2) \quad , \tag{3}$$

where s, t, and u are the usual Mandelstam variables satis-

FIG. 1. Feynman diagrams for the process $\gamma + e \rightarrow W + v$.

fying $s + t + u = M^2$. Clearly, Eq. (3) vanishes for u = 0. More generally, $\frac{2}{d\sigma}/dt$ contains the factor

$$Q = \frac{1}{1+u/s}$$

which vanishes at the kinematic point 1 + u/s = 1/Q.

These zeros were reported in the crossed channels $q\bar{q} \rightarrow W\gamma$ (Ref. 3) and $W \rightarrow q\bar{q}\gamma$ (Ref. 4). Generalizations to an arbitrary gauge theory and to any number of particles were reported in Refs. 5 and 6, respectively.

The differential cross section (1) or (3), which are equivalent, was not discussed in detail in Ref. 1. Hence we present in Fig. 2 the angular distribution

$$\frac{d\sigma}{d\cos\theta} = \frac{1}{2}(s-M^2)\frac{d\sigma}{dt} \quad ,$$

where θ is the angle between the γ and the W in the γe center-of-mass frame. Since

$$u = -\frac{1}{2}(s - M^2)(1 + \cos\theta)$$
,

FIG. 2. The angular distribution $d\sigma/d\cos\theta$ (in pb) of the process $\gamma + e \rightarrow W + \nu$ for three different values of κ , the anomalousmagnetic-moment parameter of the W. In the standard electroweak theory $\kappa = +1$, in which case there is a zero at $\theta = 180^{\circ}$. The ratio $s/M^2 = 4$.

30 1115

©1984 The American Physical Society

the zero occurs in the backward direction, $\theta = 180^{\circ}$, where the W is produced antiparallel to the γ .

Equations (1) and (3) assume that κ , the anomalousmagnetic-moment parameter for the W boson, has the value +1 as predicted by the standard electroweak theory. The zero exists only for this value of κ . In Fig. 2 we also include the angular distributions for $\kappa = 0$ and $\kappa = -1$. The appropriate expressions are given in Ref. 2, where the angular distribution is derived for arbitrary κ and Q, and where we pointed out that if $\kappa = +1$ then the differential cross section can be written in an exceptionally simple form for arbitrary Q. The three curves in Fig. 2 are obtained by setting Q = 1 and $\kappa = -1$, 0, and +1 in $T(\kappa, Q, s, t)$ (see Ref. 2).

The overall scale of our cross sections is set by $\tilde{\sigma} = \sqrt{2\alpha}G_f \approx 46$ pb. We need not specify the mass M of the W boson but only the ratio s/M^2 . In Fig. 2 we set $s/M^2=4$. The same distributions are shown in Fig. 3 for $s/M^2=10$. We see that the overall shape of the curves does not change much as we go to higher energies. The zero occurs, of course, at all values of s/M^2 if $\kappa = +1$. In the limit $s >> M^2$ and for $\kappa = +1$ we get

$$\frac{d\sigma}{d\cos\theta} \xrightarrow[s \to M^2]{\sigma} \left(\frac{M^2}{2s}\right) \frac{1+\cos\theta}{(1-\cos\theta)^2} \left[1+\frac{1}{4}(1+\cos\theta)^2\right] \quad (4)$$

It is clear from Figs. 2 and 3 that the angular distribution of the W bosons in $\gamma e \to W\nu$ is highly sensitive to the value of κ , and can be used to measure the magnetic moment of the W. The advantage of this reaction over $pp(\bar{p}) \to W\gamma X$ (Ref. 3) and $W \to 2$ jets $+\gamma$ (Ref. 4) is that only leptonic reactions are involved which are presumably simpler than hadronic processes. Acquiring the necessary high-energy γ and e beams, however, is no simple matter, as discussed in Ref. 1. Furthermore, background from $\gamma e \to Z^0 e$ (see Ref. 1) may be a serious problem around $\theta = 180^\circ$, and hence the forward direction, $\theta = 0^\circ$, may be more convenient for measurements. Though there are no zeros in the forward direction, Figs. 2 and 3 show that $d\sigma/d \cos \theta$ in that region of phase space is still quite sensitive to the value of κ .

We should point out that the zero persists with polarized γ or *e* beams: since the unpolarized cross sections are obtained by summing over the absolute squares of the helicity

FIG. 3. Same as Fig. 2 for $s/M^2 = 10$.

amplitudes,

$$d\sigma \sim \sum_{\lambda} |M_{\lambda}|^2$$

clearly $d\sigma = 0$ implies $M_{\lambda} = 0$ for all λ . As shown in Ref. 5, the factor Q - 1/(1 + u/s) occurs in each helicity amplitude and hence the zero is independent of any initial or final polarizations.

We would also like to mention that the *total* cross section for $\gamma e \rightarrow W\nu$ with $\kappa = +1$ as reported in Ref. 1 is correct. The κ dependence of the total cross section was given in Ref. 7. It is a curious fact (see Ref. 2) that the total cross section in the high-energy limit is independent of Q for any value of κ . Finally, the difference in the total cross sections for $\kappa = -1$, 0, and +1 is not as striking as the difference in their angular distributions. These distributions, particularly the zero at $\theta = 180^{\circ}$ if $\kappa = +1$, are a good measure of the magnetic moment of the charged intermediate vector boson which has recently been found.^{8,9}

This work was supported by the U. S. Department of Energy under Contract No. W-7405-ENG-48.

- ¹I. F. Ginzburg, G. L. Kotkin, S. L. Panfil, and V. G. Serbo, Nucl. Phys. **B228**, 285 (1983).
- ²K. O. Mikaelian, Phys. Rev. D 17, 750 (1978).
- ³K. O. Mikaelian, M. A. Samuel, and D. Sahdev, Phys. Rev. Lett. **43**, 746 (1979).
- ⁴T. R. Grose and K. O. Mikaelian, Phys. Rev. D 23, 123 (1981).
- ⁵C. J. Goebel, F. Halzen, and J. P. Leveille, Phys. Rev. D 23, 2682

(1981).

- ⁶S. J. Brodsky and R. W. Brown, Phys. Rev. Lett. **49**, 966 (1982); M. A. Samuel, Phys. Rev. D **27**, 2724 (1983).
- ⁷E. A. Choban, Sov. J. Nucl. Phys. 13, 354 (1971) [Yad. Fiz. 13, 624 (1971)].
- ⁸G. Arnison et al., Phys. Lett. 122B, 103 (1983).
- ⁹G. Banner et al., Phys. Lett. 122B, 476 (1983).