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Multiplicity moments within the framework of Reggeon field theory (RFT) are considered. RFT
and the renormalization group are reviewed, along with Feynman rules for interacting Pomerons as

well as rules for generating unitarity cuts. A variety of prescriptions for calculating multiplicity mo-

ments to second order are given as well as explicit expressions for multiplicity moments to first or-

der. As has been noted elsewhere, the first-order moments are in good agreement with suitably

corrected experimental results. The second-order corrections are found to be of the same order of
magnitude as the first-order corrections, indicating a lack of convergence of the perturbation series.

We speculate that the RFT perturbation series for multiplicity moments may in fact be an asymp-

totic series where higher-order corrections lead to worsening agreement.

I. INTRODUCTION

High-energy hadron collisions are dominated by mul-

tiparticle production. Multiparticle production cross sec-

tions are related, through the optical theorem, to the ima-

ginary part of the forward elastic scattering amplitude.

Thus, to understand high-energy hadron-collision phe-

nomena properly, one needs a framework which takes into
account information on both elastic scattering and inelas-

tic scattering or multiparticle production.
The bulk of the present paper will be devoted to the cal-

culation of multiplicity moments in high-energy collisions

based on Reggeon field theory. This theory is based on
Pomeron-Pomeron interactions and it contains the in-

gredients for the description of both elastic scattering and

multiparticle production. To put our present work in a

proper context, we first would like to make some histori-

cal remarks on the applications of Regge theory and point
out the distinction between Pomeron and non-Pomeron

contributions.
The application of Regge theory to hadron physics has

a long history. ' The initial enthusiasm came about after
the recognition of a momentum-transfer-dependent power
behavior in the scattering amplitude. This led to the pre-
diction of a certain universal shrinkage phenomenon at
high energies. This enthusiasm was soon dampened by a
series of careful measurements on elastic differential cross
sections (EDCS's). One found that the shrinkage phe-
nomena for different processes were significantly dif-
ferent. For instance, as energy increases, the pp EDCS's
shrink noticeably while the pp EDCS's expand. These
differences have taught us that it is important to distin-
guish the nondiffractive contribution from the diffractive
contribution. The former is contributed by proper Regge
poles and they have particle partners in the crossed chan-
nel. By contrast, the latter involves the Pomeron contri-
bution. The Pomeron is crossing even, and at t=O, has
cross-channel angular momentum J= 1. The Pomeron
does not have a clearly identifiable particle partner. In
the energy region where both the Pomeron and the non-
Pomeron contributions are important, the near-forward

peaks in the EDCS's for various processes exhibit a com-
plicated shrinkage pattern.

Historically, the nondiffractive component, through
the notion of duality, led to the discovery of the dual reso-
nance model and later on to the discovery of the dual
string, which still serves as a model for QCD confine-
ment.

In the realm of the diffractive component, through
high-energy data we have also gained considerable insight
into the nature of the Pomeron. From the rise of the total
cross section, we learn that the Pomeron is not a simple
pole. Its crossing-even property and the approximate
universality of the shrinkage rate for various processes
have also been confirmed, especially after the CERN ISR
data became available. There is also clear experimental
evidence for the triple-Pomeron interaction.

The theoretical framework which systematically takes
into account the Pomeron and its interactions is the Reg-
geon field theory. ' We recall that within this frame-
work, by the introduction of a formal energy variable
E= 1 —j, one maps the asymptotic behavior of the theory
near t=O to the infrared behavior of the theory near
E=O. In the context of a field theory, this has been
elegantly handled by the renormalization-group technique.

The critical-Pomeron solution is the fixed-point solu-
tion of the theory which predicts the following asymptotic
behavior:

Total cross section:

o T ——[ln(s) ]"[1+O(ln(s) ) +O(ln(s) ' ")],
Differential cross section:

do
dt

=[f(t)] [ln(s)] "ln(t ln s),

n-particle cross section:

o„=F(nl(n)),
where ri and A, are the critical indices of the fixed-point
solution. We do not know a priori the energy scale where

30 1084 1984 The American Physical Society



30 MULTIPLICITY MOMENTS WITH INTERACTING POMERONS TO. . . 1085

the asymptotic behavior sets in. Some crude estimates
suggest that it should dominate at ln(s) -=10 (s in GeV ).
But from CERN ISR and SPS collider energies, ln(s)
ranges only from 8 to 12. Despite this large difference,
some authors take a more phenomenological approach
and ask whether the present data can be described by the
scaling parametrization. ' Fits to the total-cross-section
data have been obtained. In the ISR energy region, the ra-
tio of the leading contribution to the nonleading contribu-
tion is about 3 to —2. Although the fine-tuned fit to the
ISR data does give an extrapolated value in the vicinity of
the SPS data, the success of the model is not convincing.
The differential-cross-section fits to the ISR data were
also carried out previously. The present UA4 pp EDCS
data at 540 GeV and

~

r
~

-0.8 GeV are a factor of 10
higher than the corresponding secondary maxima predict-
ed in Ref. 9 based on the critical-Pomeron solution:
Again, a discrepancy.

%'hat is the situation on the multiplicity data? The use
of the e expansion for the critical-Pomeron solution to
derive multiplicity moments has been considered by
Caneschi and Jengo and by Suranyi. If one assumes
some suitable model for cluster productions, their results
are in excellent agreement with the SPS collider experi-
ment. '

To further study the viability of the theory we asked
the following question: Would this agreement hold up if
higher-order diagrams and higher-order terms in the e ex-
pansion are included? That agreement might be in doubt
can be seen in the paper by Bronzan and Dash, where
they computed the critical exponents y and g/a and
found that the order-e contribution was of the same or-
der of magnitude as the order-e contribution originally
calculated by Abarbanel and Bronzan.

We find that the higher-order diagrams as well as the
higher-order e terms make large contributions to the
multiplicity moments. Indeed, we find ourselves echoing
the same sentiments expressed by Bronzan and Dash,
namely, that the e expansion is at best slowly convergent,
and in fact, it appears to be a questionable means to ob-
tain accurate predictions for both the critical exponents
and now the multiplicity moments. Thus, it remains a
challenge to construct a realistic model for the diffractive
contribution, which contains contributions involving the
Pomeron.

The outline of this paper is as follows. In Sec. II we re-
view the generating function for the multiplicity moments
as well as Reggeon field theory and the renormalization
group. In Sec. III we list the cutting rules given in Ref. 6
and the Feynman rules given in Ref. 5. We then write
down the Feynman integrals corresponding to the correc-
tion diagrams for the cut-Pomeron propagator and obtain
a formula for multiplicity moments Cz. Integrals are re-
normalized and evaluated in the Appendix.

II. GENERATING FUNCTIONS,
REGGEON FIELD THEORY,

AND THE RENORMALIZATION GROUP

Consider the colhsions of any two given hadrons at
high energies, and denote the square of their center-of-

mass energy by s. The final states can be labeled by n, the
number of particles produced, where n =0, 1,2, . . . . To
compute quantities related to the multiplicities of final
states, it is convenient to work with the generating func-
tion defined by

ac ——1 bp(z —1)—,
(4)

where bp is related to the strength of the multiperipheral
production in the Pomeron propagator. Note that as z
goes to 1 the CP reduces to the usual Pomeron. Both
types have a linear trajectory

a( k,z) =ap —apk (5)

with ap being 1 or 1 bp(z —1) de—pending on whether we

mean a UCP or a CP. This gives, for the formal energy
variable mentioned in the Introduction, E = 1 —j= 1

—a(k, z),

E =apk +bp(z —1) .

The Mellin transform of nz(s)err (s) is given by

M [nz(s)err(s)]= iGz'"(E, k =O,z} ~,
c}zP

(7)

where Gz is the renormalized propagator of the CP com-
puted to some desired order in perturbation theory. The
field theory by which Gz will be computed will be given
shortly.

Our program will be this. We will compute Gz pertur-
batively to fourth order in the coupling constant. Diver-
gent integrals will be handled by dimensional regulariza-

o(z,s)= g z"o„(s),
n=0

where o.„(s)is the cross section for the production of n

particles. Note that o( l,s) =err (s), the total cross section.
The multiplicity moments

n~ = (,n (n —1) (n —p + 1) )

are defined by

np(s) = cr(z,s) ~,
1

cry(s az&

By letting z =z —1 + 1 in Eq. (1) in terms of the multipli-
city moments, one may obtain

Oo ]
cr(z, s) = g, (z —1)I'n~(s)crr(s) .

pf

We are going to compute o(z, s) based on Reggeon field
theory. Our approach follows closely the techniques
developed in Refs. 6 and 7. The Pomeron propagator is
assumed to be built up by multiperipheral production or
multiparticles. The multiplicity content of the Pomeron
is revealed by cutting the Pomeron propagator. In fact, as
shown in Refs. 6 and 7, for the critical-Pomeron solution,
o(z,s) can be obtained by considering the interactions of
both the uncut Pomeron (UCP) and the cut Pomeron
(CP). Their intercepts are, respectively,
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tion. That is, we let D, the dimension of the transverse

momentum k, be a free parameter. We let a=4 D—and

extract the singularities as poles in e. Physics takes place
at @=2, i.e., D=2. We will obtain a power series in z —1

for G1(. We then carry out the inverse Mellin transform
from E space to s space and read off the values for
nz(s)o z (s) T.he moments of interest will be

Cz n——z (s ) i[n ((s)]~,

which to leading order are independent of s. We now turn
to a review of Reggeon field theory and the renormaliza-
tion group.

The Reggeon field theory for the cut Pomeron is based
on the following free Lagrangian:

I'" ' are defined by taking the external legs off the con-

nected part of G'" '. We write

n+mr'" '(E;,k;)= g [G""(E k )] 'G'"' '(E k )

where G, is the connected part of the Green's function.
Renormalization is carried out at z= 1, k =0, and
E = Ez —with Ez ~ 0. The renormalized Green's func-
tions depend on E~ and the renormalized quantities r, a',
and b which are themselves functions of E~ and the un-
renormalized parameters ro, cxo, and bo. The connection
between I ~ and I is

Wo ——2ig g —a()V—Q Vg b()(z——1)p 1l/.
ai

(9)
I „'"' '(E;,k;,r,a', b,E~)

Z(n+m)/2r(n, m)(E k r a' b ) (16)
Here (tj=g(x, t) is the unrenormalized CP field, written as
a function of x, a D-dimensional space vector conjugate

to the D-dimensional transverse-momentum vector k, and

t, a variable conjugate to E =1—j. We note that the free
Lagrangian for the UCP field is the same as the above ex-

cept that the last term is absent.
The interaction chosen is the triple-Pomeron coupling

with nonzero bare coupling iro, the factor i being dictated

by signature factors of the even signature Pomeron. Our
full Lagrangian is then

W=Wo —,'iro(Ptg +—H.c. ) . (10)

A11 possible interactions between cut and uncut Pomerons
are symbolically included in Eq. (10). We define dimen-

sions such that

[x]=k ', [t]=E

which implies

where

z-'= .r""
E k'=0

E=—E
z=l

(17)

r,""(E,k', z) „,,=0,
E=0
z=l

(18)

aE
ir,""(E,k', z) „,,

E=—E
z=l

(19)

The normalization conditions we impose on I R' are

[1t)]=k /2, [a()]=Ek

[bo] =E [ro]=Ek
(12) , ir," "(E,k', z) „,,ak'

z=l

= —a'(E)v), (20)

The Green's functions for n incoming and m outgoing

Reggeons are defined as

n m

t y )= II + ~0lTP(y
i =1 j=l

(13)

irg'"(E, k,z) k2
()Z E=—E~

z=1

b(E~) . — (21)

with Fourier transform

5 gE SD gk G'"' '(E;,k;)

n

Note that Eq. (18) corresponds to az ——1 and Eqs. (19)
through (21) are the renormalization conditions which
also serve as the definitions of the renormalized parame-
ters.

It is convenient to define dim ensionless coupling s
go(Ex) and g(E&) by

m

x IIdy, d Je
j=l

g (E ) r E (D/4 —1)(a~ )
D/4—

g (E ) rE (D/4 —1)(a~) D/4—(22)

(23)

)&G'" '(x;, t;;y, ,rj) . (14)

The unrenormalized connected proper vertex functions

The renormalization-group equation for I z' '(E;,k;,g,
a', b, E&) is obtained by noting that in keeping go, ao, and
bo fixed, r'" '(E;,k;,go, ao, bo) does not depend on E„.
Using Eq. (17) and the chain rule one obtains
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+P(g)
~

+Pa' g) ~, +n(g)
~b

t) (), () cl

r)E~ Bg ()a

, (—n +m)y(g) I z' '(E;,k;,g, a', b, E~)=0, (24)

where we have inserted g, defined in Eq. (23), in place of
r, and let

Pg a') =E))(
BE& ap, rp bp fixed

P(g) =Ex a
dE~ ap, rp bp fixed

ri(g) =E~ b (E~)
a

r)Ex ap, rp bp fixed

(26)

(28)

y(g) =E)v 1nZ(E~)
ap, rp, bp fixed

(2S) Using the dimensional analysis given previously one may
obtain

P(g) —+[a' —g(a',g)], +[b —g(g)] + y(g) —1 .I'" )(gE, ,k, ,g,a', b,E )=0,
() ()g

' Ba' db 2

where g=e' is a scaling parameter whose value we are at liberty to choose. This has the solution

P(n In)(/E I g a b) g) —(n +m)y(b) j2P( )(E i g (g) a (g) b (g) )

(29)

(30)

g
&

g(g) =p(g(g)),a

g'
&

a'(g) = —a'(g)+g(a'(g), g(g)),

b(g) = b(g)+ri(g—(g)) .a

(31)

(32)

Fortunately, we do not have to compute y, P, g, and ri
and then solve these equations. y was computed in Ref.
3. Its corrected value is taken from Dash and Grandou:

where the g dependent parameters satisfy the differential
equations

Before we close this section we wish to quote the value
of g at which the Gell-Mann —Low function P(g) has a
zero. We denote this special value of g by g). From Ref.
6, which corrects the value obtained in Ref. 3, we have

2
g 1 E'=—+ [@EM—1nm. —,~ (28ln2+1061n3+23)],

(8~)2 6 12

(37)

where yEM ——0.577216 is the Euler-Mascheroni constant.

III. MULTIPLICITY MOMENTS TO ORI3ER 2
We consider the following diagrammatic perturbation

series, shown in Fig. 1, for the CP propagator. Each dia-
gram, save the zeroth-order one, may be cut in various
ways. These ways of cutting ensure that all multiparticle
production diagrams considered have the same leading
asymptotic behavior. Further, with each type of cut there
is an associated weight factor. Let iro be the coupling
constant of the three-Reggeon vertex with all Reggeons
uncut and ro real. We record the following rules, given in
Ref. S.

(i) The CP propagator carries a factor of 2.
(ii) A vertex with at least one CP and an odd number of

UCP lines is , iro, with an —even number of UCP lines is
1

TTO.
(iii) For each diagram there is one and only one plane

through which the cutting takes place: this plane cannot
intersect UCP lines, which in our diagram can be thought
of as rubber strings that can be pulled above or below the
aforementioned plane. Whenever a vertex such as the

2

(34)

We also do not need to compute r)(g(g)) defined in Eq.
(28) due to an observation by Caneschi and Jengo. ' They
find that due to the cutting rules, the result (in their nota-
tion) y4 ——q holds to all orders. Translated into our nota-
tion y4 ———y and g = —g(g (g))/b (g) so that Eq. (33) be-
comes

kg
b(k)= —b(k)[1 —7'(g)] . (3S)

This has the solution

I) r(g) lb—. —
(36)

2 — =2
C B A

FIG. 1. A diagrammatic perturbation series for the complete
cut-Pomeron propagator. The sums are sums over the various
ways of cutting the diagrams. The factors f and 2 are the
weights associated with the diagrams.

Notice that while both b and I z'" have dimension E, the
scaling factor for b is inverse to that obtained for I z'"
from Eq. (30).

Now suppose we have obtained I I(' ( Ez,k—
=O, g, a', b) If we substit. ute for g and b their corre-
sponding scaling solutions (note that a' does not enter
here since k =0) g(g) and b(g), multiply by g' r, and
then let g= E/EN we would hav—e an expression for
I z "(E,k =O,g, a', b) on the left-hand side of Eq. (30).
The main effort of the Appendix is to getr„""(—E„,k'=O, g, a', b).
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ones in Fig. 2 occurs, the cutting plane must pass between
the two uncut lines. All possible positions of the UCP
lines must be counted as independent. (Here, and in what
follows, an X on a line denotes it as being cut. The
dashed line shows the plane of the cut. )

(iv) The vertices referring to UCP lines that stay below
the cutting plane are the complex conjugates of those
which stay above the cutting plane.

In Fig. 3 we have listed the various ways of cutting the
correction diagrams and their associated weights. Each
weight carries a factor of ro or ro with it depending on
the order of the diagram. These factors are included in
the vertex factors given below in the Feynman rules.
These rules are essentially the same as those given in Ref.
6.

(i) Draw all topologically distinct digraphs (graphs with
arrows indicating the direction of momentum flow).

(ii) f d qdE& around each loop.
(iii) At each vertex put —iro/(2~)(D+ "~~.

(iv) For each Reggeon of momentum k and energy E
use the propagator

Go""(E,k) =i /(E —

aors

6, +is), —
where for a CP 6=ho(z —1), and for a UCP b, =O.

(v) Conserve E and q at each vertex.

FIG. 2. The allowed ways the cutting plane, shown here as a
dashed line, may pass between two uncut incoming or outgoing
Pomeron lines.

(vi) For each two-Reggeon loop with both momenta
flowing from left to right, multiply by —,

' .
(vii) Because of the ie prescription in item (iv), telling

us that only the retarded propagator enters this theory,
Reggeon loops in which all the momenta circulate in the
same direction are zero.

(viii) Multiply by the appropriate weight as obtained
from the cutting rules.

Figure 3 shows the momentum conventions for the
three diagrams we wish to calculate. Note that a —e, 1—p,
q, and r are zero or one according to whether a line is un-
cut or cut, respectively. Applying the Feynman rules we
have the following integrals:

(&, &) 2 ~ 5I g' (E,k =0)=f„i
(2~) + J d k)d kzdE)dE2[E) —a()k) —6, +l'E]

X [El E2 ao(k) —k2) —b,b+ie]

X(E2—aok2 —& +i&) [E—E) —aok) —&d+i&] (38)

(1,1) 2 ~ S
(Ey k 0) foal (D +))y2(2m) +

4

I d k)d k2dE)dE2(E) —a()k) —b)+it)

X [E)+E2 —ao(k)+ kz) —6 +i@] '(E2 —aok2 —5„+i@)

X [E—E) —E2 —ao(k)+ kz) —b,o+ie] [E E, —aok) —5—z+ie] ', (39)

I c(' )(E~k =0)=fci2 (40)

'2—iro D t ~ —1 2 ~ —1

(2~)(D+ ) )/2 d k, dE)(E) —a()k) —6 +i@) [E E) —aok) b,—+i@]—q

where we have used the fact that a =e for every A dia-
gram. The fz, fz, and fc are the weight factors given in
Fig. 3. These integrals are renormalized and evaluated in
the Appendix.

Suppose now that we have all these correction integrals
evaluated and have summed over all the cut diagrams A,
B, and C with their appropriate weights. Call this sum
II(E,k =0), where

We then have the following Dyson series for G

2G=26 +2G II2GO+26OII2G II2G + .

1 —260II

or

6 (E,O) =(1/6() —2II )

(42)

II= QI g+ +I g+ Q I c . (41)
Define I'(E,O) =6 '(E,O), so that
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I'= —i [E —bp(z —1)]—2II .

Now the renormalization constant Z is defined by

(43) I ~'"(—E&,O,z) to obtain, through the scaling relation,

I R' (E,O,z). This is what is done in the Appendix. The
result is a power series in x, where

Z-1=- z=1
k'=o

(44)
bx = — (z —1)

Ex
I

Ex

—(1—y)

(46)

and the renormalized inverse propagator I z by

I g ——ZI (45)

Now we showed in Sec. II that we need only find

This is merely the scaling form of b, given in Eq. (36),
multiplied by —(z —1)/EN. The results from the Appen-
dix are summarized by

i I a'—"(E,O,z) =E~
00 g. 2 4

1 —x —g x"
2 [1+—,e(5+3 ln2)](a„+—,

' ee„)+ f„
p (8m) (8m. )

(E,k)

(E(-E~,k(-k~)

{E,k)

(E),k

(E,k

1+Eg, k i+ kP)

E:,k)
(E,k)

(EI k
I
)

(E,k)

(E-E ),k-kl)
(E E( k kl) (E El E2 k kl k2

(E-El, k -ki)

1/2 l/2 I/
2

The factor [1+—,e(5+3 ln2)] arises from the expansion
of —,

' el ( —,
' e)(8m. )' in powers of e. We have let

5=1nm. —yaM, where yEM is the Euler-Mascheroni con-
stant. If one expanded g to order e one would find the
factor 5 is canceled out. This point is discussed in Ref. 3.

The coefficients a„,e„,and f„aregiven up to n=8 in
Table I. We emphasize that the letters a,e,f do not imply
relative contributions from diagrams A, 8, or C. Indeed
the a's and e's come from diagram C alone while the f's

l

arise from diagrams A and 8 as well as cross terms from
the multiplicative renormalization I z ——ZI. We em-

phasize at this point that we have an expansion in both g
and e, the only connection between the two being that we

know g is of order e; thus, we see that while the g term
has order e and e' coefficients, the g term has only e
coefficients. A priori one might expect 1/e coefficients in

the g term, but these poles are exactly what are canceled

by renormalization. Thus, we see that only the first-order
diagram can ever make a contribution to order e within
the framework of the e expansion simply because g is of
order e.

From here one may proceed in several ways. One way
is to use the order-e expansion for gi as given in Eq. (37),
where gi is the zero of the Gell-Mann —Low function,
and expand —iI ~'" to order e . From there one com-
putes the multiplicity moinents in terms of an e expan-
sion. We will outline this method first before returning to
an alternate prescription.

The result of plugging Eq. (37) into Eq. (47) is

-/2 x "(a„e/6+b„e/36)
n=0

(48)

TABLE I. Coefficients of x". See the Appendix for their
calculation.

-2 (g) 2

FIG. 3. The three large diagrams at the top show the
momentum conventions used in evaluating the Feynman in-

tegrals. a —e, I—p, q, and r, are one or zero according to
whether the corresponding line is cut or uncut. The smaller fig-

ures show the various ways of cutting the diagrams. The num-

bers underneath each figure are the weights as obtained by the
cutting rules.

an

0.5
0
1.0
1.0
1.1667
1.5
2.0667
3.0
4.5357

e„
0.5
0
0
1.0
1.75
2.75
4.3056
6.85

11.1125

—1.8640
0
3.3611
4.6673

10.8869
24.3594
52.2078

109.756
229.548
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where

b„=f„+3e„+3a„[3ln2 —(281n2+ 106ln3+ 23)/144] .

(49)

TABLE II. Coefficients of x". The a„and b„arethe order-
s and order-A, (A. =e/6) coefficients for the expansion of I z.
The e„and d„arethe order-A, and order-A, coefficients for the
expansion of 6& ——(I z)

One now inverts I i(' to find GR. Again, keeping terms

only to e one obtains, letting A, =e/6 for brevity,
—(& —y)6'"= ' x "(1+C„A,+d„A,),

EN EN n=0

(50)

where

0.5
0
1.0
1.0
1.1667
1.5
2.0667
3.0
4.5357

1.1004
0
6.2898

10.5960
19.5537
37.0025
71.1771

139.092
276.169

e„
0.5
1.0
2.5
5.0
8.6667

13.8333
21.0667
31.3
46.069

d.

1.3504
2.9507

12.0909
34.0771
80.0337

170.9095
346.279
682.390

1329.35

c„=g a„(n—k+1),
k=0

d„=g bk(n —k+1)

(51)

i G,"."(E,O,z)
00

)( +i)(i —Y)( 1)
FN

k

+ —,'(n —k+1)(n —@+2) g a a„ )&(E) "+" r'[1+c„A,+d„A,] (53)

m=0

(52)

We now inverse Mellin transform from E space to s
space, where s is the invariant energy squared, with the
aid of the following identity:

The values are tabulated up to n =8 in Table II.
Recalling the definition of x in Eq. (46) gives us a

power series in z —1, which, it may be in need of recal-
ling, is what we are after. [See Eq. (3).]

dE E —(+ )—
0 r(1+~)

Thus,

(54)

;G (,0, )= g ( —1)"(1+ „A,+d„A, )( —b)"( E)'"+'"' —r'(ins) r+" /r((n+1)(1 —y)) .1

EN 0

Now,

o (s)=iG (s,0, 1)= (1+c A, +d k )( —E)v)' r(!ns)

(55)

(56)

and

np(s)a'T(s) = EG (s,O,z)
az~

so we read off

z=1

2

nz(s) =p!( b) ( E~)r —r (lns}i'—(i ) (i ) r(1 y) 1+cpA+dpA,

r p+1 1 —y 1+cok+doA, '
'

Thus~

nz (s)
C =

[n i (s) ]i'

p!r~(2(1—y)}(1+c A, +d A2)i' '(1+c }(,+d A2)

'(1 —y)r((p + 1)(1—y) }(1+cia+IiA, )i'

One way of proceeding is to expand the numerator and denominator separately to order A, and to leave it in the form
of a Pade approximant. Another way is to expand the denominator and again truncate to order X . To do these expan-
sions one needs the following:

I [(n +1)(1—y)]=I (n +1)[1+(n+1)(—y)g„+i+2 (n +1) ( —y) (g„'+i+/„+))], (59)
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where

(61)

and ft ———0.577216 and Pi ——m /6.
For the Pade method one obtains

Cq N/D——,

where

D =1+rla[pc, +pg, + ,
' (p+1—)S,'"]

+ 2~ [2(p —1)t('t[pct+ 2(p+1)(t(jl+~p )l+ 4(p —1)(el+2Cyl)+ 4(p —1)'0l'

+ —,'(p+1) [g', —S' '+(g, +S"') ]+—,'(p+1)C'(tt, +S"')
+p(p+1)ct(gt+S~")+2pd, +p(p —1)c, J,

N =1+A[C~+(p —l)c, +p(1+/, )]

+~'( —p [0'i —1+p(Pi+1)'+(It+1)[C'+2co(p —1)+2c,] I

+dz+(p —1)(do+cue~ )+ —,(p —1)(p —2)c&& ),

(62)

(63)

(64)

and

C=
„

ln —, +—„,I 161 4 37

(&)
Sp

(65)

(66)

1+k/A, +tzA,
C =

+bi~+bzA

=1+~(t&—b& )+&'(r, —b, +S,'—b, t, )+O(X'),

(z)
Sp

One should recognize the value of C' from Eq. (34)
which, written in terms of A, and C', is

—y=A, /2+O'A, /4 . (68)

The results for the multiplicity moments are tabulated in
Table III under the column headed "Pade."

One could now expand the denominator into the
numerator. Consider the following expression:

~here the definitions of t& z, b& z can be read off from
Eqs. (63) and (64). The results for the multiplicity mo-
ments are tabulated in Table III under the column headed
"e expanded. "

We now return to Eq. (47) to discuss another way of
proceeding. One takes the point of view that the e expan-
sion is a device for ordering our calculations and regular-
izing integrals. Now that we have obtained an expression
for I It'" consistently expanded to order e we may set
@=2. Our point here is that once the value of g is deter-

TABLE III. Multiplicity moments to order p=8. The first-order results are due to diagram C alone.
The second-order results are due to diagrams 3, B, and C. The experimental results are from Alpgard
et al. , Ref. 7. The P~ are the experimentally measured moments f3~=(n~)/(n)~. The C~'s are
corrected to correspond to our definition C~=(n(n —1) (n —p 1+)) (/n) by assuming some
model for the average multiplicity (n ).

First order
n Pade Expanded e Pade

Second order
e expanded g Pade g expanded

Experimental

P~ rr model 3m model

2 1.123
3 1.294
4 1.501
5 1.751
6 2.062
7 2.465
8 3.006

1.250
1.778
2.653
3.994
5.997
8.976

13.446

1.286
1.697
2.252
3.017
4.110
5.730
8.220

1.772
3.675
7.590

15.303
30.353
59.786

117.835

1.160
1.428
1.794
2.281
2.935
3.829
5.083

1.184
1.424
1.544
1.321
0.437

—1.646
—5.911

1.28
2.01
3.61

1.26
1.91
3.33

1.21
1.75
2.85
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mined, we want to expand in powers of g, our coupling
constant, and not in terms of e.

If we take this point of view, then we must take the ex-

pression from Ref. 3 for P(g) in terms of g and e and

solve for a numerical value of g [actually g /(8~) ]. Let

g~ be a fixed point of P(g). Equation (73) of Ref. 9 tells

US

2

P( g, ) =0=g, ——+ [—,
' +e( —,", + —,

' ln2+ —,
' 5)]

4 (8~)

—y= —,'(1+31n2+5} z(Sm)
4

+ ( —' ln2 ——' ln3+ —' )2 4 8
(8 )4

=h, —h
(Sm) (Sm)

where in (73) we set @=2 and (74) defines h ~ and hz.
We now define a

~
as

(73)

(74)

4
157 53 4

(Sn.)
4( 38+ i~ »3}

Set e =2, and assuming g & &0, one obtains

(70)
a1 —— ——0.0923 .g&

(Sn. )

Return to Eq. (47), expand in e, and set e=2 to obtain

—t'I ' =F.

(75)

(Sm)

0.9247
0.0923 . (71)

1 —x —g x"(a~a„'+a&b„') (76)

Since we want an infrared fixed point we must pick

2
——0.0923 .

(Sm )

where

a„'=a„+e„+a„(5+3 ln2),

b„'=
(77)

(78)

We must now express y in terms of g. From Ref. 3 [Eq.
(76)],

Invert and expand in a& exactly as before in terms of A,

to obtain

iE~G~' "(E,O,z) =
- -(1-y)

g (I+a)c„'+a,d„')(z—1)"
EN n=0

—n(1 —y)

(79}

c„'=g ak(n —k+1),
k=0

(80)

n k
d„'= g b/, (n —k+1)+ 2(n —k+1)(n —k+2) g a' ak

k=0 m=0
(81}

These are tabulated up to n =8 in Table IV. Proceeding exactly as before, one can obtain the following for Cz, in a Pade
approxim ant,

C =—
p

(82)

where

N =1+a&[c~+(p —1)co+2ph ~(g~+ I)]

+a& [d~+(p —1)do+ 2~ (p —l)(p —2)co +(p —1)c~co+2phg[c~+(p —1)co](@i+1}

+2p h) (g(+1) +2p[h) (1(') —1)—h2(Q)+1)]I,

D = I+a& Ipc & +A, [(p+ 1)S~"+2pg&]]

+a~ Ipd~+ —,
'

(p —1)ci +pcth~[(p+ 1)Sq"+2pf)]+ , (p+1) hi (Sq" Sq ')——
—hz(p+1)S,'"—2phzli+2h i'p'4i'+2h i'p(p+ I W 4,"'+ ,'h i'PIp(p+3} J . — (84)
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TABLE IV. Coefficients of x". The a„' and b„' are the
order-a~ and order-a~ [a~ ——g~ /(8m) =0.0923] coefficients for
the expansion of I ~. The c„' and d„' are the order-u& and
order-a~ coefficients for the expansion of G~ ——(I ~ )

Ia„
2.3235
0
3.6470
4.6470
6.0048
8.2204

11.843
17.791
27.654

—1.864
0
3.3611
4.6673

10.8869
24.3594
52.2078

109.756
229.548

2.3235
4.6470

10.6174
21.2348
37.8569
62.6996
99.3847

153.861
235.991

d:

3.5345
12.4676
47.1076

130.355
309.633
670.509

1361.26
2637.86
4947.47

where f(z)=d/dzlnl (z), one may show that I' is in-

dependent of g~.]
For completeness we wish to give the analytic form for

Cz to first order. This was the case considered in Refs. 1

and 2. Let

2' —2
az

——g (p —k+1)
k=2

and let Sz" be as in Eq. (66). Then to first order

1+a[a, +p (q, +2)]
I+A,[(p+1/2)S~ '+p(1(i+1)]

for the Pade method and

(85)

(86)

C, =)+X a, +p —~+ S,'"2
(87)

for the e expansion. As before A, =e/6.
The multiplicity moments calculated by both methods

are given in Table III under major column heading "first
order" and minor column headings "Pade" and "e ex-
panded". Notice that to first order there is no distinction
between an e expansion and a g /(8m) expansion. Thus,
both methods to second order are to be compared to the
same values in first order.

The values for Cz are listed in Table III under the column
heading g Pade.

If one now uses Eq. (69), replacing A, by a&, one can ob-
tain an expression for Cz with D expanded into N up to
order a~ . The results for the multiplicity moments Cz
are listed in Table III under column heading g expanded.

One may verify that in both the e-expanded and g-
expanded analytic expressions, the dependence of Cz on

1(~
———yEM ———0.577216 completely cancels out. [The

factor 1(~ comes from expanding I' functions. These
occur in the combination

F=I't'(2(l —y)}/I ~ '(1 —y)I ((p+1)(1—y)) .

Using the identity

IV. DISCUSSION

%e have calculated the multiplicity moments to second
order by two methods, in each case giving the final ex-
pression in the form of a Pade approximant as well as a
formula for expanding the denominator into a power
series to obtain what we have termed the "expanded"
form. The full summary of our labors is given in Table
III. The experimental values given under the column
heading Pz are taken from Alpgard et al. " As these
numbers are measurements of (n~)/(n )~, they are not
suitable for direct comparison to our

C~ = (n (n —1) (n —p+1) )/(n )~

except when (n )~ oo, i.e., s~ oo. However, by choosing
some suitable model for the basis emission unit along the
multiperipheral chain for the bare Pomeron, we may
"correct" these numbers for direct comparison.

For illustrative purposes, two emission ansatz are con-
sidered: single-pion emission and the nominal 3~-cluster
emissions. A comparison between the theory and the
corrected experimental data at V s =540 GeV, taking into
account the emission ansatz, is shown under the columns
headed m. and 3m models.

One can see the best comparison is in the first-order ex-

panded terms. Indeed, it was this close agreement which
prompted our investigation of whether this would hold to
higher order in perturbation theory.

The most discouraging fact is not that we get poor
agreement to experiment, but that even with the large
number of prescriptions we have given for calculating Cz,
not one of them seems to give sensible results in terms of
perturbation theory. For each method the second-order
contributions are as large as or larger than the first-order
contribution. This leads us to doubt whether the e expan-
sion even converges. Perhaps it is in the nature of an
asymptotic series in which the first term gives reasonably
good results but further terms in the series lead to poorer
and poorer agreement. In the context of this optimistic
interpretation, the straightforward expansion is somehow
preferred over the Pade method.

Our conclusions here, together with our comments in
the Introduction approximately summarize the present
status of the phenomenological applications of the critical
Pomeron solution of the Reggeon field theory to hadron
collisions. In closing we mention that currently there is
yet another approach to hadron phenomenology which
appears to be promising. It is based on the so-called
modified eikonal model, which in the context of Reggeon
field theory corresponds to the strong-coupling solution of
the theory. We refer the interested reader to Ref. 12 and
also to Ref. 10 together with the references quoted therein
for details.
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APPENDIX

In this appendix we will calculate the integrals corresponding to the second- and fourth-order correction diagrams.
From these it will be possible to compute the renormalization function Z and so obtain the renormalized inverse propa-
gator I z".

For diagram C the Feynman rules give us
r 2—l 1"p

(2~) + " d k)dE)(E) —aokl —b, +ie) '[E E,——ao(k —kl) —iI(, ~ie]T
r", "(E,k',.) =f,i2

(Al)

Use Cauchy's theorem to evaluate the integral over E) and the formulas of 't Hooft and Veltman' to evaluate the in-

tegral over ki. One obtains, at k =0,

I""(EOz)= I 1 ——( E+b—, +b,„) (A2)

Recall the definition of go from Eq. (22) and let e=4 D T—hen. Eq. (A2) becomes

2 1 —e/2

I c' (E,O,z) =ifcE~ 2
(8m. )' I ——1

fp, i, e —E+~q+ ~.
2(8')

(A3)

Turning to diagram A, we have from the Feynman rules,
r 4

I q'"(E,O,z)=fbi
—

leap

)(D+1)/2
—,
' f d k)d k2dE)dE2 (E1

—ao k) —i))„+ie)

X [El —E2 —ao(k 1
—k2)' —~b+) &l

X (E2 —a() k2 —b,, +i e) '(E E) —a() k)——hd +ie) (A4)

—3

X k, +xk2 —xk) k2+ [ E+6,+Ad—+x( b,, +kb+5,)]-
2CXp

(A5)

where we have used the fact that a =e for each possible cutting of diagram A. Use Cauchy s theorem twice and intro-
duce a Feynman parameter x to collect denominators to obtain

I '„'"(E,O,z)= f dx(1 x)d k, d —k
2(2m ) (2a(') )

We make use of the following integral, given in Ref. 3:

f d k)d k2(ak, +bk +ck, .k +d+ek k)+fk k2) =(2m') d I (a D)(4ab c) —/ /1—(cr),

where

kd=d — (be +af cef) . —
4ab —c

The result of using this, inserting the dimensionless constant go, and letting e=4 Dis—
4

1I'„'"(E,O,z) =if„(4mE )'I (e 1) f dx(1 —x)(—4x —x )'/ [—E+&,+&d+x( —&, +&s+&,)]
2(4n )

(A8)

Leaving I z in its present form we turn to diagram B. We have

4

I 2) "(E,O,z) =f2)i (2~)(D+1)/2 f d k)d k2dE)dE2(E) ao k) +) +)e)

X [El +E2 ao( k)+ k2) —5 +i e] '(E2 —aok2 —b „+ie)
X[E E) E2 —a()(kl+k2) —b„—+ie]—'(E E) —a()k) —bp+ie—) (A9)
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Using Cauchy's theorem twice we have

rz'"(E, O,z)= d kid k2[E —2ao(ki+k2) —b b, ]-
(2m. )

&([E—2ao(ki +k2 +k, kz) —b,„b,,—b—i] '(E —2aok i —b~ —5i) (A10)

Collect denominators with Feynman parameters x and y, use the identity of Eq. (A6), and let E=4 D to—obtain

4
go 1 1 —x

I &' (EOz)=if~ (4mE&) I (e —1)f dx f dy[3 —2(x+y) —(x —y} ] [c+x(a —c)+y(b —c)]
(4 )' 0 0

where

a = —E+AI+4~, b = —&+~ +~„&=—I+~I+~ +~o

Change variables by letting u =x +y and U =x —y and defining

a= (a ~b —2c)= ( 6(+4 —&, +—&i, —2~, ),1 1

P= (a b)= —(b, i —b. —&, +& )
1

2EN 2EN

One obtains
4

I g'"(E,O, )=if~ „(4E~)'r(e 1)—
2(4~)"

1 1 0 0
X f du f du+ f du f du (3—2u —U )' 'i [c+E~(au+pu)]'

(Al 1)

(A12}

(A13)

(A14)

As shown in the text, summing the Dyson series leads to the following expression for the unrenormalized inverse prop-

agator:

I~' '='E b(z —1}——2i g I „+g I + g I t .
B C

Applying Eq. (17), we have for Z
2

z-'=1+ ', (8~)'"r —'
(Sm. )

4
1

+ (4m. )'r(e) g f„f dx(1 —x)(4x —x )'
(4m )

(A15)

+ g fIi f dv f du + f du f du (3—2u —U')'~' '
B

(A16)

Thus,

2 4

Z=1 — ~(8~)' I — g fc+ I — g fc
(Sm) 2 c (Sm)

4
1

, (4 )'r( ) g f„f d (1— )(4 — ')'"-'
(4m) 0

2

+ g f~ f du f du+ f du f du (3—2u —U')'~z z

B
(A17)

We pause in our discussion to note a consequence of the cutting rules on the value of b. The renormalized parameter b

was defined in Eq. (21) as
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(A18)

From Eq. (A15), and Eqs. (A3}, (AS), and (A14), we see that the right-hand side of Eq. (A18) is equal to bo plus terms
linear in the 6's. It is a general consequence of the cutting rules that the sum of the weights of diagrams with a given
line being cut is zero. This may be explicitly verified for the diagrams under consideration by glancing at Fig. 3. Thus,
Eq. (A18) assures us that

b—=ho .z
We now write down the renormalized inverse propagator I ~'"——ZF""as

i I'R'—( EN, O—,z)

(A19)

=E 1+ (z —1)+ (Sm.)' I' — g f
EN (Sn.) 2 c 1 —e/2

4 I —e/2
(Sn)' I — gf gf

(Sm)4 2 c c 1 —e/2

4
(4m. )'I (e) g fg f dx(1 —x)(4x —xz)'~2go

(4n )

I 1+(b/EN)(z —1)[a +d +x ( —a +b +c)]I
'

X —1
1 —E'

1 ] 0 1

+X~& f dU f du+ f d& f du (3—2u —u )'~

I 1+(b/EN )(z —1)[l+n +o + ,' u (p +m——l —o —2n)+-,'u ( —p+m +i —o)]I'
1 —g

where g=(b/E~)(z —1)(q+r). Define

(A20}

(A21)

J(G,a,P) = f du f du (3—2u —U2)'~ (A22)

C =1+ (z —1}(a+d),b (A23}

D = —(z —1)(—a +b +c),b (A24)

6 =1+ (z —1)(l +n +o},b

ba = (z —1)(p +m —i —o —2n),
2EN

bP= (z —1)(p —m +i —o} .
2E~

(A25)

(A26)

(A27)
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Further, let

2

, (8~)"r—
(Sm. )

Then we have

(A28)

b (1+gz —1)1—e/2
—1r„""(—E„,o,z) =E„1+ (z —1)+Z gf,

C 1 —e
( 1+g)1—e/2—1 —&' 'gfc gfc

c c 1 e/2

4

4(4~)'1(e) Q fqI(C, D)+ g fg[J(G,a,p)+J(G,a, —p)]
(41r) A B

We now wish to remove the Z ' in the order-E (order-go ) term. To this end we note that to order g02, Z is

Z '=1+X g fc .
C

Putting this into the order-K term and expanding to order K gives us

(A29)

(A30)

f (1+gZ ')' '
1 ~ ~ f (1+g)'

1 —e/2 c 1 —e/2

We recall from Ref. 3 that to order g
2

go g g 61+ 2
—+(—', +51n2+35)

(Sm) (Sm) (Sm)

where

5=inn. —yEM .

+&' gfc g fckl+4) ".C, C
(A31)

(A33)

Thus, I ~' ' can be written completely in terms of renormalized quantities as

iI„'—( E~,0, )=E—~ 1+ (z —1)+,(8 )' I' — g fc(1,1) g e/2 (1+/)'-"'
EN (8~)2 2 c 1 —e/2

r

1+P I —e/2+, —+(—, +51 2+35) (8 )'/'I — g f

2

(8 )6 P g f g f ( +g)
(Sm) 2 c c 1 —e/2

—1 —g(1+/)

(4m)'I (e) g f&I(C,D)+ g fs[J(G,a,P)+J(G,a, —P)]
(4m. )

(A34)

It remains to calculate I(C,D) and J(G,a,p). We will treat I(C,D), defined in Eq. (A21), first. One extracts the
singularities in e by using the following identities:

2 1f dx x' 'f (x)=—f(0)—f dx ln(x)f'(x), (A35)

1 1f dx x'/ f(x)= —+ 1 f'(0) —f(1)—f dx ln(x)f"(x), (A36)

where for I(C,D)
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f()(4) / (C+Dx)
1 —e

(A37)

At some steps we will make use of the fact noted above, namely, that the sum over weights of terms linear in the 6's is
zero. This allows us to ignore certain terms. In particular,

D 1 —e C+DX e—1= 1 —@in(C+Dx)+ —ln (C+Dx)+ . —1
1 —e 1 —e 2

=C+Dx —1+O(e) .

We may set C+Dx equal to 1 since C=1+ terms linear in 5 s and thus will disappear later in the sum over weights.
We now apply Eqs. (A35) and (A36) to Eq. (A21) for I(C,D).

After considerable algebra one finds

I(C D)= —„((C—2D)ln C —C+ —,a[in C[(C —2D)(1+21n2)+ —,C]

—(C —2D)ln C+ —", (C+D)ln(C+D)+C(ln3 —41n2 —5)

—D(61n —,
' + —", )+32I(C,D) j ), (A38)

I
I(CD)= f dx jn(x)tD (4—x) (C+Dx) '+ln(C+Dx)[D(4 —x) —2(C+5D)(4 —x) +6(C+4D)(4 x) ] j —.

(A39)

In obtaining I(C,D) use has been made of the following integrals:

ln(x)
(4—x)

ln(x)
(4—x)

ln(x)
(4—x)

1 3=—ln—4

=—(ln ———)
1 3 1

32 4 3

(ln —————) .1 3 1 7
192 4 3 18

(A41)

(A42)

Using the above and the following formulas,

f dx z ln(C+Dx) = —, ln3 ln(C+D) —,ln41nC+ ——f dx D f dx-ln(x) 1 1 D ' lnx —ln(4 —x) ln(x)
(4—x) 4 o C +Dx o (C +Dx)(4 x)—

(A43)

x ln C+Dx =ln(x) ln3

(4—x) 32
1 ln(C+D) lnC—ln4 —1

D ' lnx —ln(4 —x ) D 1 D 1

+ dx +— dx
32 o C +Dx 8 o . (C+Dx)(4 x) 2 o

ln(x)
(C+Dx)(4 x)~—

(A44)

f dx ln(C+Dx) =ln(x)
(4—x)

ln3
192

5

192
ln(C+D) ln4

192
3

384
'"

D ' lnx —ln(4 —x) D lnx+ dx — dx
192 o C+Dx 3 o (C+Dx)(4—x)

D
d

1 1 1
dx + d

48 o (C+Dx)(4 x) 24 o (C+Dx)(4 —x)
r

1 1 D 1

(C+Dx)(4 x) C +4D C +—Dx 4 —x

(A45)

(A46)
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1

(C+Dx)(4—x )

1 D~ 1 D 1 1

C~4D C~4D C~Dx C~4D 4—x (4—x)'

1 1 D 1 D2

(C ~Dx)(4 x)—' C+4D (C ~4D)' C+Dx (C ~4D)' 4+

One may, after some algebra, obtain the following for I(C,D):

1 D 1 1

—x C+4D (4—x) (4—x)
(A48)

I(C,D) =+, lnC[(C —2D)21n2 ——,C]—3, ln(C+D)[(C —2D)ln3 ——', (C+D)]

~ » D ( 10ln —, ~ —, ) —» D ( C —2D) f dx
lnx —ln(4 —x)

Plugging into Eq. (A40) and changing the dummy variable in the integral from x to y, we obtain

I(C,D)=+[(C—2D) lnC —C]+ lnC(C —2D)(l+41n2) —(C —2D)ln C

—ln(C +D)[(C—2D)ln3 —4(C+D)]—C(5+41n2 —ln3)

1

4D (1——ln —, ) D(C ——2D) dx
C+Dy

For J(G,a,P) we take Eq. (A22) and integrate by parts once to obtain

J(G a P)= du (1— )'i ' —1
2—e 1 —6'

(A50)

In the last term expand

2„„z.n-i [G+(~+P)u]' '
1 —E

1—1 — du 3—2u —v 6+Au + v

(A51)

(G +au +Pu) '=1—min(6+au +Pu) .

Note that we have an a in front and g~ flu =0, hence, we may ignore the term involving l. Use the identity

1 2f dv(1 —u)'i 'f (v) =—f(1)~ f du ln(1 v)f'(v)—
with

(A52)

f(v)=(1+ up/2 —1 (G +A+pu)
1 —E'

to obtain, after a moderate amount of algebra,

(3 ).r~-i [G+«+&»]' '
1 —6

(A53)

J(G a,p) =
~ [(6+a+p)[1—1n(G+a+P)] j+—(G+a+p)[3 —31n(G ~a~ p) ~in~(G ~o~p)]2

~ln36(l —1nG)~4a f du f du
3 —2u —v

1

+ dv 2 ln 6+a+ v ln 1+v —ln 1 —v

—(a+@)ln[G +(a+P)u][ln(3+u) —ln(1 —u)] }

(A54)

We are now ready to expand in powers of z —1. To this end we define

x= (z —1) .b

EN
(A55)
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Since we are interested in s=l we treat x as a small parameter. In terms of x we have

C =1—x(a+d),
D = —x( —a+b+c) .

Now consider the sum over weights of I(C,D). The following sums hold:

g fz (C —2D)lnC =2(1—2x)ln(1 —x)—(1—4x)ln(1 —2x), (AS8)

g fg (C +d)ln(C+D) =6(1—x)ln(1 —x)—6(1—2x)ln(1 —2x)+2(1—3x)ln(1 —3x),

g fg (C —2D)ln(C+D) =(6—9x)ln(1 —x) —6(1—x)ln(1 —2x) ~21n(1 —3x),

g fg(C —2D)ln C=2(1—2x)ln (1—x)—(1—3x)ln2(1 —2x) . (A61)

A;„,(x)= g f~D(C —2D) I dymt A 0 c+3
By expanding

1j(C+Dy)=1/I 1 —x[a+d+y(a+b+c)]I
in a geometric series, integrating, and summing over weights one can obtain the values listed in Table V for A;„,(x).

By using Eqs. (A58) and (A61) one can obtain

16+f&I{C,D)= ——,
' +2(1—2x)ln(1 —x) —(1—4x)ln(1 —2x)

(A62)

+—
I
—&;„,(x)——,'(5+4»2 —»3)—2(1—2x)ln (1—x)+(1—4x)ln (1—2x)

+ln(1 —x)[(1—x)(28+ 16 ln —9 ln3) —(2+ 8 ln2 —3 In3)]

—ln(1 —2x)[(l —2x)(26+8ln2 —31n3)—(1+4ln2+31n3)]+in{1—3x)[(1—3x)8—21n3]I .

{A63)

SD,„,(x)=gf,4a I du I du, +(P P), —ln(G+au+Pu)
3—2Q —U

Bs;„,(x)= g fz I duIZPln(G+a+Pu)[ln(l+u) —ln(l —u)]0

—(a+p) ln[G+(a+p)u][ln(3+u) —ln(l —u)]I+(p~ —p) . (A65)

TABLE V. Results up to n=8 of evaluating the integrals left over in the evaluation of I(C,D) and
J(G,a,P). 8;„,is the sum of Bq;„,and Bu;„,.

0.0
0.0
0.0

16.048
52.555

144.42
379.80
989.11

2581.9

0.0
0.0

—1.4522
—5.291

—12.481
—27.225
—58,431

—125.79
-273.66

0.0
0.0
1.4987
8.353

21.901
51.792

120.01
278.87
655.03

0.0
0.0
0.0465
3.062
9.420

24.567
61.583

153.08
381.36
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I.et 8;„,(x) be the sum of Bo;„,and Ss;„„.All three are hsted up to n=8 in Table V. The following sums hold:

g fs(G ~a+P)ln(G ya+P) =2(1—x)ln(1 —x)—(1—2x}ln(1—2x),

g fsG lnG =6(1—x)ln(1 —x)—6(1—2x)ln(1 —2x)+2(1—3x)ln(1 —3x) .

One then can obtain

4 g fg[&(G, tr, P)+&(G,~, —P)]=1+2(1—2x)ln(1 —2x) —4( 1 —x}ln(1—x)

+ —[3+ln3 —8;„,(x)+4(1—x)ln (1—x)—2(1—2x)ln (1—2x)

—12(1~ln3)(l —x)ln(1 —x) ~6(1~21n3)(l —2x)ln(1 —2x)

—41n3(1 —3x)ln(1 —3x)] .

Putting it all together one has

16 g fgI(CD)~ g fs[J(G,a,P)~J(G,a, —P)]

= —,
' —( l4 —12x)ln(1 —x)+(7—12x)ln(1 —2x }

+—j —(48,+A. ,)+—' —21n2+ 2 ln3+(14 —12x)ln (1—x) —(7—12x)ln (1—2x)

—ln(1 —x)[(20—16ln2+ 57 ln3)(1 —x)+(2+8 ln2 —3 ln3) ]

+ln(1 —2x)[(—2 —8 ln2+ 51 ln3)(1 —2x) +(1+4 ln2+ 3 ln3) ]

—ln(1 —3x)[(161n3—8)(1—3x)+2»3]f . {A69)

If one looks back to Eq. (A34), one will see we have t:wo more terms to do to get all the g terms. Recalling Eq. (A20)
where g' is defined, one may obtain

1+ 1 —ei2

gf +0
1 /{ 1 ~g) —E'l2

C

—,
' + ln(1 —2x)—2 ln(1 —x)+—[—,

' +(1—2x) ln(1 —2x) —2(1—x) ln(1 —x) ——,
'

ln (1—2x)+ ln (1—x)]

(A70)

The remaining sum over the C term is done in a similar fashion. Finally one can put the above together with Eq. (A69)
to obtain the g terms of Eq. (A34) to be

(8 )4 8 2 4 2[———' ln2+ —' ln3+ —'(7—6x)ln (1—x)——'(7 —12x)ln (1—2x)

—in{1—x}[(1—x)( ——,
' —12ln2+ —", ln3)+(1+21n2 ——', ln3)]

~ ln(1 —2x)[(1—2x)( ——", —61n2~ —", ln3)~( —,
' ~ ln2~ —', ln3)]

—ln(1 —3x)[(1—3x)(81n3 —4)+ln3] — (48 +A )] . — (A71}

The g term of Eq. (A34) are easily obtained to be
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2 [I+&—,(&+3»2)] I
——, +2(1—x)ln(1 —x) —(1—2x)ln(1 —2x)

(8~)

+e—,
'
[——,

' +2(1—x)ln(1 —x) —(1—2x)ln(1 —2x)

—(1—x)ln (1—x)+ —,
' (1—2x)ln (1—2x)]] .

By using the cxpa.&sloe

ln(1 —ax) = —g (ax)"

n=1 n

one can easily compute the curly brackets, I I, terms of Eqs. (A71) and (A72). Writing the two as

2 g x" 1+—(5+31n2) a„+—e„
(Sm) „o Pf 2 Pl

4 tx)

x"
(g )g g fll

the values of a„,e„,and f„aretabulated in Table I in Sec. III.

(A75)
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