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In neutrinoless double-P decay, the contributions of two virtual Majorana neutrinos with opposite
CP parity will interfere destructively. This makes it evident that the amplitudes for reactions in-

volving Majorana particles contain significant new phase factors, reflecting the special discrete-

symmetry properties of these particles. To study this phenomenon, we derive and examine the CI'T,
CP, and C properties of Majorana particles. We then apply these properties, especially to the study
of neutrinoless double-P decay, and to the neutral weak and electromagnetic interactions of Majora-
na particles. We show how the new phase factors in the Feynman amplitudes for Majorana-particle
processes arise, and see that their precise form and location within these amplitudes depends on
one's choice of formalism.

I. INTRODUCTION

Majorana particles, being their own antiparticles, have
special CPT, CP, and C properties, with significant physi-
cal consequences. Since these particles occur commonly
both in grand unified and supersymmetric theories, one
would like to know what these consequences are. In a re-
cent paper, the CPT properties of an arbitrary Majorana
particle were found and then used to learn about the elec-
tromagnetic interactions of such a particle. In addition, it
was shown that in neutrinoless double-p decay [(/3p)o, ],
the contributions of different virtual Majorana neutrinos
of definite mass can oppose each other, even if CP is con-
served. Thus, (PP)o„whose observation would signal
that neutrinos are of Majorana character, may have an in-

visibly small or vanishing rate even if they are of this
character. The possibility of opposing contributions from
different neutrinos was demonstrated in Ref. 1 without re-

lying on field theory (i.e., without using Feynman's rules),
and without requiring any knowledge of the phases of the
leptonic mixing matrix U. However, practical calcula-
tions of the amplitudes for (pp)o„or for other processes
involving Majorana particles would, of course, use
Feynman's rules and would demand a knowledge of any
special phase factors which may occur in field-theoretic
amplitudes when Majorana particles are present. There-
fore, in this paper we focus on these new phase factors.
We uncover their presence in reaction amplitudes, show
how they can appear in different, alternative places in the
amplitudes depending on one's choice of formalism, and
show how they affect Majorana-particle processes, espe-
cially (PP)o„.

In Sec. II we present a very plausible argument, based
on a Feynman diagram, for the false conclusion that dif-
ferent Majorana-neutrino contributions always add in
(PP)o, so long as CP is conserved. This falacious argu-
ment illustrates the traps into which one can fall through
neglect of the new phase factors which appear as a result
of the special C, CP, and CPT properties of Majorana
particles. We proceed to discuss the true situation in
(PP)o as deduced without reliance on field theory or

Feynman's rules. In Sec. III we then begin the proper
field-theoretic treatment of Majorana particles by examin-
ing the C, CP, and CPT properties (derived in the Appen-
dix) of Majorana fields and states. Special attention is
given to the phase factors which appear, and to the re-
strictions on their possible values. The physical conse-
quences of these restrictions are illustrated by a simple ex-
ample. In Sec. IV we find the further constraints on
phases which result from CPT and CP invariance of the
interaction of special interest in (/3p)o, . the charged-
current weak interaction with neutrino mixing. Section V
discusses two especially convenient field-theoretic formal-
isms, or "languages" as we shall call them, which deal in
alternative ways with the phases encountered in
Majorana-neutrino physics when CP is conserved. For
each of these languages, we see how the physically signifi-
cant phases are contained in the (PP)o, amplitude given by
Feynman's rules. The generalization of the conclusions
drawn from this analysis to other problems involving Ma-
jorana particles is discussed. In Sec. VI we use the CP1
properties of Majorana particles to infer the general struc-
ture of their neutral weak currents and to gain informa-
tion on electromagnetic transitions among them. We also
discuss consequences of CP invariance, and see how elec-
tromagnetic transition form factors acquire some of their
traits when they are calculated in terms of loop diagrams.
Section VII summarizes our results.

II. GANGELLATIONS IN {PP)o„

Are neutrinos Majorana particles? The only known
practical way to study this question is to search for neu-
trinoless double-p decay. In this process, a pair of virtual
W bosons, generated by two neutrons in a nucleus, pro-
duces a pair of outgoing electrons by virtual neutrino ex-
change (Fig. 1). As Fig. 1 shows, the amplitude for the
process is the sum of the contributions from all the neutri-
no mass eigenstates v which couple to an electron. This
coupling is described by the general charged-current weak
interaction with neutrino mixing,
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A[(PP)p]= g q(v )iU, i
M A.

neutrinos
(2.2)

FIG. 1. Neutrinoless double-P decay. The v are the various
neutrino mass eigenstates which couple to an electron, each with

a factor U,

H(x)=g g [Wqilyq(1+ps)U!m&m

(2.1)

Here I runs over the charged leptons e, p, and ~, m runs
over the neutrino mass eigenstates, g is the (real) overall
coupling strength, and U is the lepton mixing matrix.
Right-handed currents have been neglected for simplici-
ty.

It is well known that observation of (PP)o would signal
that neutrinos are of Majorana character. However, the
absence of this reaction is not necessarily evidence that
they are not, because the contributions of the different v
in Fig. 1 can interfere destructively and cancel each other
out. Now, Doi et al. have claimed that destructive in-
terference between these contributions requires CP viola-
tion. Were this true, one would not have to worry too
much about suppression of (PP)p through such interfer-
ence, since CP violation appears to be small in the had-
ronic sector, and so one can guess that it is also small in
the leptonic one. However, Wolfenstein asserts that des-
tructive interference already occurs when CP is conserved
but the CP parities of the interfering neutrinos are oppo-
site. Halprin, Petcov, and Rosen agree that destructive
interference can occur when CP is conserved, although
they say that the sign of the interference depends on that
in a "Majorana condition" which appears to express the
C, rather than CP, properties of the neutrino field.

A simple argument supports the contention that the in-
terference cannot be destructive if CP is conserved. We
shall call it argument A. It is as follows.

(1) The two vertices in Fig. 1 connected by a given v~
are identical. Therefore, as shown in the figure, the con-
tribution of v~ is proportional to U,~ .

(2) If CP is conserved, the mixing matrix U is real.
(After all, it is well known that any nonreality in the
Kobayashi-Maskawa mixing matrix for quarks is a mea-
sure of CP violation. ) Then U, is positive for all m.

(3) Therefore, if CP is conserved, the contributions of
all v add constructively.

We hasten to explain that this very plausible argument
and its conclusion are incorrect. Indeed, in Ref. 1 it was
shown that when CP is conserved, the amplitude for neu-
trinoless double-P decay, A [(PP)o ], has the form

Here g, (v~ ) is the CP parity of v~, M~ is its mass, as-
sumed small compared to the momentum transfers typical
of (I3P)o„, and A is independent of m. We see that, as
Wolfenstein asserts, neutrinos with opposite CP parities
do interfere destructively. ' This remains true when the
M~ are not small; the factor M~ in Eq. (2.2) is then sim-
ply replaced by another kinematical factor which can easi-
ly be shown to be positive. (Also, the degree of cancella-
tion between a heavy neutrino [one whose mass is not
small compared to typical (PP)o„momentum transfers]
and a light one varies from nucleus to nucleus. ' )

What, then, is wrong with argument A? Are the two
neutrino vertices in Fig. 1 not to be treated identically?
Or, is the CP-conserving U matrix not real? Or, are both
of these true? In Ref. 1, Eq. (2.2) was obtained in a
manner that did not require any knowledge of Feynman's
rules for systems involving Majorana particles, or of the
phases of the U,~. To acquire such knowledge, we now
proceed to examine the field-theoretic treatment of Ma-
jorana particles, focusing on the new phase factors which
appear in amplitudes when these particles are present. It
will soon be clear what is wrong with argument A.

III. DISCRETE SYMMETRIES OF
MAJORANA FIELDS AND STATES

The symmetry operations which are interesting are
those which leave some interactions invariant. Therefore,
to define the C, CP, and CPT transformations of Majora-
na particles, we begin by imposing a requirement: If a
Lagrangian involving Dirac fields but no Majorana fields
is invariant under some specific discrete symmetry
transformations, then it retains its invariances when the
Dirac fields are replaced by Majorana ones. That is, in-
variance under a discrete symmetry transformation shall
not depend on whether fermions are of Dirac or Majorana
nature. " The most obvious way to fulfill this require-
ment is to define each discrete symmetry operation as
having the same effect on a Majorana field as on a Dirac
one. However, one must ask whether this definition yields
the desired transformation properties of Majorana states,
and whether it is free of inconsistencies. In the Appendix
we show that this is indeed the case provided that certain
restrictions are obeyed.

To present the effects of C, CP, and CPT, we introduce
the general Majorana field

r 1/2

(f u 8'~"+Af v e '~") . (3.1)

Here f and f create and destroy the Majorana particle of
interest, u is the usual Dirac spinor, and v =y2uPS PS PS
The quantity k is a phase factor which we shall call the
creation phase factor. This factor may in general be
present in a Majorana field. As we shall see, one can
choose it arbitrarily, but, as we shall also see, it is some-
times most convenient not to choose A, =1, so we shall
keep this factor explicitly.
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The transformation properties and restrictions found in
the Appendix are summarized in Table I. In the first
column, the symmetry operations C, CP =z, and CPT =g-
are defined to have the same effects on the Majorana field
4 as they do on a Dirac field. However, conveniently de-

fined phase factors ri„~, which are irrelevant in the Dirac
case but not here, are included in the field transformation
laws. If one inserts into these laws the plane-wave expan-
sion Eq. (3.1},one can show (see the Appendix) that the
corresponding transformation laws for the one-particle
state

1 p, s & are as given in the second column. Note that
each symmetry operation does indeed affect the momen-

tum p and spin projection s as it should. Furthermore,
under a given symmetry operation, the state picks up a
phase factor ri which is not the same as that picked up by
the field, but is related to it as shown in the third column.
Note that the relations between the "state phases" q and
the corresponding "field phases" ri involve the creation
phase factor A, . Finally, one finds (see the Appendix) that
our chosen definition of the discrete symmetry operations
in the Majorana case is free of inconsistencies only if the
phase factors satisfy the restrictions given in the final
column. Namely, the C parity of a Majorana-particle
state must be real, while its CP parity (and for that matter
its ordinary parity) must be imaginary. Furthermore, the
CPT "field phase factor" ri& must be imaginary.

In spite of appearances, the restrictions on the phase
factors do not result from free-field theory alone, but are
related to interactions. We have defined each discrete
symmetry operation in the Majorana case so that an in-

teraction will be invariant under this operation if it was so
in the Dirac case. It is these definitions which have lead

to the restrictions.
This connection between the phase-factor restrictions

and the interactions can be illustrated by a very simple al-
ternative derivation of the restriction g, =+i. The decay
Z ~v v, where v is a Dirac neutrino, is described by
the CP-conserving interaction

H =gZ~iv yq(1+y5)v

Let us now demand that this interaction remain CP con-
serving when the Dirac field v is replaced by a Majorana
field v . Then Z ~v v must conserve CP. To see
what consequence this has, it suffices to suppose that the
outgoing neutrinos are nonrelativistic. Since the final
state must obviously be antisymmetric, it must then be a
P& state, since this is the only nonrelativistic, antisym-

metric state with J= 1. Now, if

z1v (p,s)&=ri, (v )1v ( —p, s)& (z=CP),

z1&W P, &=~,'(W)( —1)'1WW P, & . (3.2)

Since z(Z )= + 1 and L=1, z conservation demands
that q, (v )=+i."

The constraints g, =+1 and g, =+i have physical
consequences which we illustrate by an example. Consid-
er a decay which may be studied in the future,

X,(2++)~yy, where X,(2++) is the P2 state of t

quarkonium, and y is the spin- —, Majorana photino

predicted by supersymmetric theories. One expects that
this decay is electromagnetic, so that it conserves C and

CP. Since ri, (y) must be real, C(yy)=iI, (y)= + 1, so
C is conserved automatically. However, had g, (y} been

anything but real, C conservation would have been impos-

sible. Furthermore, the requirement that q, be real im-

plies that C-conserving decays of C-odd bosons into pairs
of identical Majorana fermions are forbidden. '

Turning to CP, we suppose for simplicity that the out-

going photinos are nonrelativistic. Now,

z
1 y y "+'L

& =8.'(& }(—IF1r &;"+'L &, (3.3)

so if CP is conserved, g, (y)( —1) = + 1. The constraint

ri, (y) =+i then implies that L is odd. Thus, the outgoing
photinos may be in the P2 or F2 state, but not in the 'D2

state, which is the remaining antisymmetric J=2 possibil-

ity. Since the angular distributions corresponding to D2
and, say, Pz differ, the requirement that L be odd rather
than even is an observable consequence of the restriction
that g, be imaginary rather than real.

As far as we can tell, the CPT phase restriction ri&
——+i,

which concerns the field phase, not the state phase, has no
observable physical consequences. However, as we shall
see in Sec. VI, knowledge of this restriction can be of
practical use in theoretical calculations.

As shown in Table I, the CPT state phase factor ri ~
de-

pends on s, satisfying the relation

We also see from Table I that, while it must obey this re-
lation, q~ is otherwise arbitrary, because the creation
phase factor A, is arbitrary. These properties of g ~ are ac-
tually independent of field theory, as was shown in Ref. 1.
The demonstration is so simple that for completeness we
repeat it here. We consider, in its rest frame, a CPT self-

TABLE I. Effects of the discrete-symmetry operations on a Majorana field %'( x, t) and on the corre-

sponding Majorana state 1p,s). In the table, 4 is (4 }r. The quantity A, is the creation phase factor
in the field %. The phase factor g g depends on s, as indicated.

Symmetry
operation

C
CP (z)

CPT(g}

Effect
on

%'( x, t)

g*, y2+*( x, t)

hazy, y,% *(—x, t)
—q&y, %*(—x, —~)

Effect
On

I p ~&

8. 1p ~&

Sz I

—p, ~ &

'QADI

p~

Relation
between
phases Restriction

q, =+1
gz= kl
'gg= kl
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conjugate particle' of arbitrary spin J and J,=s. The ef-
fect of CPT=g on the state

I
J,s ) of this particle is de-

fined to be

with p, an arbitrary phase. Under this redefinition

(3.15)

gl Js)=g~lJ, —s) .

Let us define an auxiliary operator,

b=—e

whose effect on
I
J,s ) is obviously

Js&=gb IJs&,

(3.5)

(3.6)

(3.7)

but Eq. (3.12) is still obeyed.
In Table I, the arbitrariness of q~ is correlated with

that of A, . But then, from the previous discussion, the ar-
bitrariness of A, must be connected with the possibility of
redefining the states. To exhibit this connection explicit-
ly, let us recall that the field 4, Eq. (3.1), annihilates the
one-particle states

I p, s ) with specific matrix elements:
1/2

with g'b some new phase factor. Like g, b is an antiuni-

tary operator. Consequently,

&0
I
%(0)

I p,s) =
P

Q~ps (3.16)

b
I

Js)=b(g'bl J,s))=(t)b)'b
I
Js&

()b) )b l»s& . (3.8)

Here, we have used the fact that CPT commutes with ro-
tations, and then the fact that a rotation through 2m. yields
the original state times ( —1), independently of conven-
tions. From Eq. (3.9), we learn that for any Majorana
(i.e., CPT-self-conjugate) particle of spin J, ' '

g2 ( 1)zl (3.10)

For any such particie, then, either rotation through 360'
or (CPT) brings one back to the original state, multiplied

by precisely the same phase factor, ( —1)
Now, from Eq. (3.5),

g'I Js)=g(g&l J, —s))=(rt&)*ri &I Js) .

Thus, Eq. (3.10) implies that

(3.11)

'=( —1) (3.12)

Equation (3.4) is just this relation for J= —,.
Amusingly, for the special case of J = —,', the relation

(3.12) can also be obtained in another simple way. For
this case there are only two spin states,

I
—,', + —,

' ):—
I

+).
%'e denote the matrix elements of the raising and lowering
operators J+ ——J„+iJ& by

Now, the definition (3.5) implies that g J = —Jg. Since g
is antiunitary, it follows that gJ = —J+g. Applying this
equation to the state

I
+ &, we have

That is, b =1 when acting on the states
I
J,s), which

from the definition of b implies that

(3.9)

Now, suppose we choose to work with new states

I p, s )'=e'~
I p, s ), and, correspondingly, a new field

4'=e '&4', which annihilates the new states with the
same matrix elements as usual:

& o
I
e'(0)

I p,s )'= &0
I
q (0)

I p, s ) . (3.17)

2(le 0+&+ale+0 &), (3.19)

where a is a phase factor. We are assuming that
C

I
e+) =

I

e +—) and C
I P

+—) =
I
P+), so that

C
I f ) =a

I f ) if a is real, as Table I requires the Cparity
of a Majorana state to be. Now, the parity properties of
the constituents are

If we express 4' in terms of the annihilation operators
f ' for the new states ( &0

I f'
I ps ) '= 1), it becomes

' 1/2

[f'
u e'~"+ (e 'bA, )f '

U e 't'"] .
p, s P

(3.18)

Note that 0" contains a new creation phase factor
k'=e '~k. Thus, we can give the creation phase factor
any value desired by redefining the states and the corre-
sponding field.

It is amusing to ask how a composite Majorana fermion
made of non-Majorana particles can have imaginary pari-
ty when its constituents have more normal" parity prop-
erties. ' Let us see how this comes about for a spin- —,

'

Majorana fermion f which is made of a charged spin- —,

Dirac fermion e+ and a charged spinless boson
Neglecting binding energy, we shall suppose that f and its
constituents are all at rest, and shall disregard the spin
variables because P does not affect them. Since

I f ) is a
Majorana state, it must have the form

kJ- I+&=P'*I —&=18g I+&
= —J pl+)= —J gg I

—)=—7)(I I+) . P Ie+)= —p'Ie+),
(3.20a)

(3.20b)

(3.13) and

Thus~ 'g
g

= —'g
g .

Apart from the constraint of Eq. (3.12), the individual
phase factors g~ are arbitrary, because one can always
redefine the states

I
J,s ) according to

I
Js)~

I
Js)'=e '

I
Js), (3.14)

(3.20c)

where p may be a complex phase but y is real (think of
P

—+ as a pion, for example). The relations (3.20a) and
(3.20b) follow from the parity transformation law for fer-
mion fields implied by Table I. Together, they imply the
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P If&= (Py Ie 0+& ~P—*y Ie+P &).
1

(3.21)

well-known result P(e e+; S wave)= —1. From Eqs.
(3.20),

&[WE &iyi(1+y5)Ui v ] 0
'

=[rig( W' )ilg(1)vpg(v )][W~+iv U(* y„(1+y,)l]
(4.1)

Thus, if we require
I f & to be an eigenstate of parity, we

must have p= —p'. The parity of
I f&, py, is then ima-

ginary. In a similar way, one can also show that the pari-
ty of a Majorana composite of three charged spin- —,

' fer-
mions is imaginary.

IV. PHASE CONSTRAINTS FROM
A SPECIAL INTERACTION

Under CPT, a term in the Hamiltonian (2.1) responsible
for (pp)o„ transforms according to

Here ii~(v~) is the CPT field phase factor defined in
Table I, and ri~(l), ilg(W ) are analogous factors for the
other fields. Comparing Eqs. (4.1) and (2.1), we see that
CPT invariance of H(x) requires that

g~( W )i}g(l)rig( v~ ) = 1 .

For given i, this relation must hold for all v~ for which
U~~&0. Thus, assuming that U is a nontrivial mixing
matrix, all the ill(v ) must not only be imaginary, as re-
quired by Table I, but equal.

Under CP, a term in the interaction (2.1) transforms ac-
cording to

z[W„ily„(1+y5)U( v ],z '=[g, (W )ri, (l)ri,"(v )][W~+iv Ui y„(1+y,)l] (4.3)

U,
' =U, [q, (W )q, (l)q,'-(v )]. . (4.4)

Now, if all fermions were Dirac particles, CP acting on
the state of any one of them would transform it into an
antiparticle distinct from the original particle. Any phase
encountered in this transformation could be absorbed into
the definition of the antiparticle. Hence, the phases ii, in

Eq. (4.4) could all be eliminated, so that the CP
conserving U matrix would be real. This is the situation
familiar from the Kobayashi-Maskawa treatment of the
quark sector. However, if the neutrinos are Majorana par-

ticles, then CP transforms a neutrino state back into itself,
with a physically significant phase ri, (v ) which
represents the intrinsic CP parity of the neutrino and can-
not be defined away. Thus, the related phase g, (v~) in

Eq. (4.4) can no longer simply be eliminated and forgot-
ten. In this situation, one may proceed in one of several

ways.

V. LANGUAGES FOR PROCESSES WITH
MAJORANA PARTICLES

Given the constraint (4.4) from CP conservation, and

the relation

ri, (v )=A,(v )g, (v ) (5.1)

from Table I, there are two alternative formalisms or
languages which are particularly convenient for neutrino-

physics calculations in the CP-conserving case. We
describe these in turn.

Language L1. In this language, we exploit the arbitrar-
iness (proved in Sec. III) of the creation phase factors by
choosing A, (v~) =1 for all v . Then the Majorana neutri-
no fields have conventional plane-wave expansions with
no extra phases. However, the CP-conserving U matrix is

Here i},(v~ ) is the CP field phase factor defined in Table
I, and g, (l), ri, (W ) are similar factors for the other
fields. We see that if H, Eq. (2.1), is to conserve CP, we

must have

I

not real. To see this, note from Eq. (5.1) that

q, (v ) =g, (v ). Thus, unless all neutrinos
I
v & happen

to have the same CP parity, Eq. (4.4) implies that when

CP is conserved the phase of UI~ varies with m. One
can, of course, still choose g, (l) so that, say, Uii is real.
Then, since g, (v )=+i for all v~, each Ui will be ei-

ther real or purely imaginary. With this choice of g, (l),
Eq. (4.4) implies that

ii, (v )
Uim'=

I Uim I

'
g, (vi)

(5.2)

g (v ), —r'
5

L2 +m L1

and new fields

(5.3)

& 'vm» —'5
(v )L2 ——i * '

(v )ii, (5.4)

where 5 is the Kronecker 5. Obviously, the v~ mass and
kinetic-energy terms in the Lagrangian, being of the form
v~v~, are invariant under the transformation (5.4). So,
similarly, is the diagonal neutrino neutral-current interac-

Language L2. Here we set out to make the CP-
conserving U matrix real. This is accomplished by choos-
ing A(v )=g, (v )/i. Then },(7v)=+i for all v, so
that according to Eq. (4.4) the phase of Ui~ does not vary
with m. We may then choose 71,(l) and il, (W ) so that
the U matrix is real. Of course, nontrivial creation phase
factors A, (v~ ) =+1 are now present in the Majorana neu-

trino fields, and these factors will appear in reaction am-

plitudes.
In Sec. III it was shown that changing a creation phase

factor is equivalent to introducing a new one-particle state
and a corresponding new field which keeps the one-

particle annihilation amplitude at its usual value, as in Eq.
(3.17). In particular, from Eq. (3.18) and the discussion
following it, going from language Ll [A.(v~ ) = 1] to
language L2 [A(v~ ) =ri, (v~ )/i] is equivalent to introduc-
ing new neutrino states



1028 BORIS KAYSER 30

tion of the standard model. However, in L2 the charged-
current interaction (2.1) obviously has a new U matrix re-
lated to the Uof Ll by

( Ulin )L2(van )L2 ( Ulnl )Ll(vill )Ll (5.5)

From Eq. (5.2) for Ut, &, U„2 is real, as previously stated.
Consider, now, the contribution of v to (PP)o~ depict-

ed in Fig. 1. From Eq. (2.1), a Feynman-rule calculation
of this contribution, carried out in any language, involves
the product of currents

[eye(1+y5», v j[ey.(1+ys)U, v 1 (5.6)

Now, the conventional neutrino propagator is a contrac-
tion of the field v with v . To make possible such a
contraction here, we rewrite the current for one of the ver-
tices in terms of the fields v~ and e', where for any fer-
mion field 4, 4":—y2%*. It is a mathematical identity
that

A,(v ) appears as an extra factor in the amplitude. 22'2~'

We see that in the field-theoretic amplitudes for pro-
cesses involving Majorana particles, new phases related to
these particles appear. The precise location of these
phases within the amplitudes depends on the choice of
formalism. However, the phases are present somewhere
in the amplitudes, and can have important physical conse-
quences.

While we have uncovered these phases in (PP)o a pro-
cess produced by the C- and P-violating weak interac-
tions, it should be clear that they are a general feature and
will also occur where the interactions conserve all of the
discrete symmetries. For example, our analysis of (PP)o,
would be practically unaffected if we were to suppose that
the weak interactions are, say, pure axial vector, and
hence C and P conserving. Furthermore, imagine that we
do suppose this and also that, for instance, the neutrinos
v& and v2 couple to a C-odd spinless boson P through the
interaction

ey (1+y5)U, v =v y ( —I+ys)U, e'. (5.7) H =gPV~vq+H. c. (5.11)

y,%*=A;% . (5.8)

"rhus, v =P(v )7, and we my now contract v~ with

, whereupon (5.6) becomes

Furthermore, from Eq. (3.1) it follows trivially that when
4 is a Majorana field, ' Then one can show that if the creation phase factors in

the v~ fields are adjusted to make the C and P-

conserving U matrix real, the C-conserving scalar cou-
pling g cannot be real, and vice versa. Calculations ignor-
ing the complexity of these quantities will give erroneous
results.

X(v )U, [ey&(1+y5)v ][V y ( —1+y5)e'] . (5.9)
VI. CURRENTS OF MAJORANA PARTICLES

This expression will obviously lead to a (PP)o„amplitude
of the form

A [(PP)o„jcc g A, (v )U, M (5.10)

where the mass M comes from the v propagator. 20, 21

In language Ll, A,(v )=1, but (assuming now that CP is
conserved) U, ~ri, (v )

I
U,

I
[see Eq. (5.2)], so the

result (5.10) agrees with Eq. (2.2). In this language, it is
the assumption that the CP-conserving U matrix is real
that is the false part of argument A. In language L2,
U, 2=

I
U, I

~, but A, (v ) ccrc,(v ), so again Eq. (5.10)
agrees with Eq. (2.2). In this language, it is the assump-
tion that the two vertices connected by v are identical
that is the false step in argument A. Yes, they are identi-

cal, but they are not treated equally. The current at one of
them must be rewritten in terms of V~ and e', whereupon

H =ZpQp (6.1)

is to conserve CPT, the entire neutral current X& must be
CP'r-odd. From the antiunitarity of CPT and Table I, it
then follows that

A great deal can easily be learned about the electromag-
netic and neutral weak interactions of Majorana particles
just by exploiting their CPT and CP properties. For ex-
ample, suppose we want to know how a y couples to a Z .
There is no direct coupling, but an effective one is induced
through loop effects. This effective coupling may be
described by giving &y IN&(0) I y), where N„(x) is the
complete neutral weak current to which Z couples.
Now, the Z is known" to couple, in particular, to the
electron neutral current ieyz(a +by5)e. The latter is ex-
plicitly CPT odd. Thus, if the neutral weak interaction

&y(pfpf) IN&(0) I y(p s ))=—[Ugy)l'n~(y)&y(p; —~;) IN, (o) Iy(pf ~f))

Lorentz invariance implies that the left-hand side of this constraint can be written in the form

(6.2)

&y(pi, si)
I
N&(0) I y(p;, s;)) =iu [y„(V+Ay5)+cr&„q„(M+Eiyq)+q„($+Piyz)]u (6.3)

Here q =pi —p;, and V, A, M, E, $, and P are form factors depending on q . Similarly, the right-hand side (RHS) of
Eq. (6.2) can, after some algebra, be written as

RHS= [[gg(y) j g~ (y)( —1) ' Iiu [y„(—V+Ayg)+cd q„(—M Eiyg)+qq—($+Piy5)]u (6.4)

From Eq. (3.12), the combination of phases in curly brackets is + 1. Thus, comparing Eqs. (6.3) and (6.4), we see that
V=M =E =0. Hence, the most general expression for the matrix element of the neutral weak current of a photino, or
of any other spin- —,

' Majorana particle, is
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(y(pf, sf)
~
&„(0)

~
y(p;, s;)& =iu [Ay„ys+q&(S+Piys)]u (6.5)

y(Pf sf) I Jp (0)
I
y(P' s )&=iu- [G{q )(q yp qqp)ys]u-

We see that a spin- —,
' Majorana particle has only one electromagnetic form factor, G.

For the electromagnetic matrix element connecting two different spin- —, Majorana fermions, f1 and fz, we find from

Lorentz invariance and current conservation the form

(6.6)

Our derivation of this result illustrates the use of the CPT properties of Majorana states, and especially of Eq. (3.12),
to constrain the matrix elements of operators with known CPT characteristics. To find (y

~ J& (0)
~
y&, where

J&™(0),the electromagnetic current, is also a CPT odd-operator, we need only impose on Eq. (6.5) the requirement that

the current be conserved. This yields'

&fz(p f »f )
l J1 (0)

I f1(pi»1 ) & ='uz(pf»f )[(q y1
—qq1 )(F21+G21ys)+0'1 ~q~(M21+E211ys)]u1(pi»i') (6.7)

Here Fz1, Gz1, Mz1, and Ez1 are transition form factors.
As discussed in Ref. 1, the CPT constraint on

(fz ~ J& ~ f1 & analogous to Eq. (6.2), when combined
with the Hermiticity of J&™,implies that

F21 = —/F21, G21 =$G21

(6.8)

M21 W 21 ~ E21 K'21

In these relations,

4=8 /f1 )8((fz), (6.9)

If1(p;,s;) &'=e'~ ~f1(p;,s;) & .

where ri~(f;) =g ~=+' (f;).
As explained in Ref. 1, the most important feature of

Eqs. (6.8) is their implication that the phases of the form
factors are independent of q . If these overall phases are
divided out, the form factors become real functions suit-
able for representation by conventional dispersion rela-
tions. The actual overall phase of each form factor has no
absolute significance, because we can always decide to
work with new initial states

A,(vz)

k(v, )
(6.10)

~ vz I
J&"

l
v1 & = Ut 2 Ut 1 u 2 ~p( y s )u 1 (6.11)

with some specific 1 &(ys) of the form shown in Eq. (6.7),
involving y5. Diagrams 5 and S' together then yield

Hence, once the creation phase factors are chosen, the ar-
bitrary phases of the form factors are fixed, apart from a
sign, and may be read off from Eqs. (6.8).

When CP is conserved, F21 ——Mz1 ——0 ( Gz1 ——Ez, ——0) if
f1 and fz have the same (opposite) CP parity. ' For radi-
ative decay involving a real photon, f1~fz+y, only the
M and E terms contribute [see Eq. (6.7)]. Thus, when CP
is conserved, the radiation will be pure El (pure Ml)
when f1 and fz have the same (opposite) CP parity. s

This selection rule is easily understood by going to the
cross channel y ~f1+fz, where one quickly discovers
that it is the crz q,ys (cr&,q„) coupling which conserves
CP when f1 and fz have the same (opposite) CP parity.

It is instructive to see, in a language-independent way,
how the phases of neutrino transition form factors behave,
and how some of these form factors vanish in the CP
conserving case, when the form factors are calculated in
terms of the one-loop diagrams of Fig. 2. Of the two dia-
grams, only diagram S would be present for Dirac neutri-
nos. This diagram by itself gives

If the transition form factors are still defined by a relation
of the form (6.7), they will then clearly change by a factor
e'~. Nevertheless, the phase of a form factor relatiue to
that of other amplitudes contributing to the same process
obviously is significant. For example, in v1+d~vz+d,
where d is the down quark, one-photon exchange, which
depends on form factors of the kind in Eq. (6.7), interferes
with two-8' exchange. Thus, it is useful to be able to
check that, given one's arbitrary conventions, the phase of
a form factor resulting from an actual calculation is
correct. This one can do with aid of Eqs. (6.8). From
Table I, we see that once the creation phase factors are
chosen, g is determined apart from a sign, so that Eqs.
(6.8) specify the phase of each form factor, except for a
fourfold ambiguity. More usefully, if f1 z in Eq. (6.7) are
neutrinos v~ q which mix under the weak interactions,
then as shown in Sec. IV all g~(v ) are equal, so that

V2

n
V)

W~+ iV2U, 2]'q(1 + }'5)8

gWl2 i'&(1+ y5)U„V,

V2

—g W& iv2L(v2} U t2)r)2(1 —&'5}k'

Y

—gW)2 i k')')2(1 —y5}U &&k (V1) V

V)

S

FIG. 2. gauge-boson loop diagrams for the transition
v~~v2+y. The term in the Hamiltonian (2.1) which is active at
each vertex is written next to it. In the diagram S', the vertex
terms are rewritten in terms of the fields I' and v' using Eqs.
(5.7) and (5.8). (It is understood that these diagrams are accom-
panied by similar ones where the photon attaches to the 8' line. )
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* UI1/ Ul 1 ~ (vl)1(y)— . , I ( —y)
UI2 /Uj 2 X ( v2)

(6.12)

where the minus sign in front of the S' contribution is due
to the photon vertex. From Eqs. (4.4) and (5.1), we see
that in the CP-conserving case, the quantity in brackets in
Eq. (6.12) is just

g, (v))
I „(yg)— I „(—y5)

g, (v2)
(6.13)

imam

Uj ——U) e

Hence,

i(p) —p2)
U~'2 &ii =Ui2U11~

(6.15)

so that according to Eq. (6.12) the new form factors are
phase rotated from the old ones by the amount that they
should be in view of the new states. Equation (6.8)
correctly refiects this change in the form factors, since ac-

cording to Eq. (6.10) the new g is g'=pe 2i(~1 ~2 35

VII. SUMMARY

The amplitudes for reactions involving Majorana parti-
cles contain new phase factors, characteristic of these par-
ticles, with important physical consequences. The precise
location of these phase factors within the amplitudes
varies with one's formalism or language. Going from one
language to another involves a change in the creation
phase factors which occur in the Majorana fields, and
amounts to a redefinition of the states and fields of the
Majorana particles, with corresponding changes in the
coupling constants so as to keep the physics unchanged.

The new phase factors in the reaction amplitudes are a
reflection of the discrete symmetry properties of a Ma-
jorana particle, and in particular of the fact that such a
particle can have a physically significant CP quantum
number, and sometimes a C quantum number as weIl.
The CP parity must be imaginary, and the C parity real,
and we saw examples of the corisequences of these rules.
We also showed that for a Majorana particle of arbitrary
spin J, ( CPT) = ( —1), which implies that q ~pz
=(—1) q czr. This constraint was used to find the gen-

Thus, if the neutrinos have the same (opposite) CP parity,
the form factors F2&, M2~ (62&, Ez& ) vanish, as re-

quired. Whether or not CP is conserved, imagine now
that we change the language by replacing the creation
phase factors A, (v~ ) by new ones,

A, '(v ) =A,(v )e (6.14)

To preserve the physical content of the theory, we must
simultaneously change the U matrix so that the net effect
is a rephasing of the v states, plus a corresponding re-

phasing of the v fields so that Eq. (3.17) is obeyed.
From the discussions surrounding Eqs. (3.18) and (5.5),
the new states are

~

v ) ' =e
~

v ), and the new U ma-
trix is given by

7),(v )
~U, (7.1)

to which the (pp)o„amplitude is proportional. Chang and
Pal have found that in some realizations of SO(10) grand
unified theory, M,~r is an order of magnitude below the
lightest of the actual masses M of the neutrinos. Neu-
trinoless double-p decay remains an extremely interesting
experiment, representing as it does the only currently
known way to tell whether neutrinos are Majorana or
Dirac particles. However, we must bear in mind that an
experimental upper limit on the (pp)o„amplitude does not
really imply an upper limit on the mass of any Majorana
neutrino.
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eral forms for the neutral-weak-current and electromag-
netic interactions of spin- —, Majorana particles.

If neutrinos are Majorana particles, then, even if CP is
conserved, either the U matrix is not real, or else there are
creation phase factors in the Feynman amplitudes for
neutrino reactions, or both, depending on one's language.
In particular, when CP is conserved, two neutrinos of op-
posite (like) CP parity will contribute with opposite (like)
sign to the amplitude for (pp)o„. Now, the radiative de-

cay of the heavier of these two neutrinos to the lighter one
will yield pure Ml (El) radiation when the neutrinos are
of opposite (like) CP parity. Thus, when CP is conserved,
there is a model-independent correlation between the char-
acter of the radiation in this decay, and the character of
the interference between the contributions of these same
two neutrinos to (pp)o„.

It is, of course, important to ask whether neutrinos not
only can interfere destructively in (pp)o„, but actually do
so in popular, reasonable models. Unfortunately, it is very
easy to construct gauge models in which there is signifi-
cant (or even total ) cancellation. If all M are small
compared to typical (pp)D momentum transfers, one can
accomplish this simply by making the electron-electron
element of the neutrino mass matrix small or zero. What
is worse, there are popular models which were constructed
without (PP)o in mind, and in which severe cancellation
occurs. The severity can be expressed in terms of the ef-
fective mass
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If we Hermitian conjugate Eq. (A3a), it becomes

Cf,C ' =(g, A, )f (A3a')

APPENDIX: DISCRETE-SYMMETRY
TRANSFORMATIONS OF MAJQRANA PARTICLES

Here we show that if C, CP, and CPT are defined to af-
fect Majorana fields as shown in Table I, then they will

affect the corresponding states as indicated in that table.
We also prove that this definition of the discrete-

symmetry operations requires that the phase factors be re-

stricted as stated in Table I.

From Table I

C
i p, s) =(g, A, )

i p, s} . (A4)

Thus, the one-particle state transforms, as desired, into it-
self under C, except for a phase factor rl, given by

tc Ic (A5)

Furthermore, the consistency of Eqs. (A3a') and (A3b) re-

quires that this g„ the C parity of the Majorana state, be
real.

CP

Applying this relation to the vacuum, which we define to
be C even, we find that

C% C-'=~*,y,%* .

Using Eq. (5.8), this becomes

C% C '=(q, A-, }'I .

(Al)

(A2)

From Table I, we define CP (=—z) by

z%'(x, t)z ':—7},*y4y2+*( —x, t) . (A6)

Cf C '=(rkk) f (A3a)

From the plane-wave expansion of f, Eq. (3.1), this im-

plies that
Using Eq. (5.8), this reads

z'P(x, t)z '=(rt, A, )'yq%'( —x, t) . (A7)

and

Cf C '=(rkA} f (A3b)

Inserting the plane-wave expansion of 4 into this equa-
tion, and using the relations y4u =u, y4Ups —ps' ps= —U, we obtain—ps

z%(x, t)z '=(g, A, )* g E V
p, s p

Comparing this with Eq. (3.1), we conclude that

zf z '=(g, A) f
and

zf z ' = (rig A)'f— (A8b)

(A7')

I

stricted g, is required, in particular, to be imaginary is
due to the minus sign in Eq. (A7'), which, in turn, is due
to that in the relations y4u =u, y4U = —U

PS —PS PS —PS
The latter minus sign is the same one which causes the s-
wave states of positronium and quarkonium to have nega-
tive parity.

Upon Hermitian conjugation, Eq. (A8a) becomes

zf' z '=(q, 7,}f'- (A8a')

z
~ p, s)=(g, A, )

~

—p, s) . (A9)

This reversal of p but not s is indeed the desired effect of
CP on the one-particle state. Note that the phase factor
rt, picked up by the state under CP (that is, the CP parity
of the state) is

7l.—n.k

Most importantly, note that the consistency of Eqs. (A8a')
and (Agb) demands that rt, be imaginary.

As we see, the restriction on g, (and similarly on g, )

arises from the fact that the Majorana field %' both an-
nihilates and creates the same particle, so that Eqs. (A8a)
and (ABb) both constrain the same operator. That the re-

Applying this result to the vacuum, which we define to be
CP even, we have

CPT

Here, due to the antiunitarity of CPT (—=g), we en-
counter some special features. Applying g to the plane-
wave expansion of 4' yields

1/2

[gf g '(u e'P )'g%(x)g
P,S P

+g+ gf g
—1( —EPx)4 ]ps ps

(Al 1)

From Table I, this is to be equated to —g~y5'p*( —x).
Since

y, u =( —1)'-'"u
p, —$

and

ysu = —( —1)' 'i
ups p, —$
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we have

1/2

( —1)'M

p, s P

X[A,'f (u e'~")' f —(U e '~")*] .

We recall that

&b IQ I~&=&&~ IPQ'0 'IP&
for any operator Q, so that if we define g ~

0& =
~
0&,

I= &0
I f-„f-„I

0&

=&0~ gf g-'gf' g-' ~O& . (A14)

Using Eqs. (A13a) and (A13b), we then have

Comparing Eqs. (All) and (A12), we see that

g
—1 (~ g)e( 1)s —1/2f (A13a) so that g~ must be imaginary. In view of this result, the

application of Eq. (A13b) to the vacuum gives

(A13b)

Since g &g, it is not so obvious how to Hermitian con-
jugate Eq. (A13a). Therefore, rather than try to compare
Eqs. (A13a) and (A13b) directly, we see whether the con-
sistency between them restricts the CPT phase factors by
constructing a relation which depends on both of them.

g~ p, s&=g&A, ( —1)' '~
~ p, —s& . (A16)

rl g= rial, ( —1)' (A17)

That is, the action of CPT on a one-particle state reverses
s but not p, as desired, and introduces the s-dependent
phase factor'
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