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Inclusion of Interference Terms in the Amati-Bertocchi-Fubini-Stanghellini-Tonin
Multiyeriyheral Mod. el*
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An important class of interference terms is included in the ABFST multiperipheral model by adding an
extra term to the inhomogeneous term and to the kernel of the integral equation. This additional term
corresponds to the contribution to the 2-to-4 cross section from interchanging one or two pairs of particles
from two diferent vertices. It is found that these interference terms change only slightly the position of the
output vacuum pole, although they give a non-negHgible contribution to the four-particle production cross
section.

I. DTTRODUCTION

1
W~NE of the popular approximations of multipe-

ripheral models is to neglect interference terms
arising from the overlap of amplitudes with different
particle orderings along the multiperipheral chain.
Supporting, but not proving, this assumption is the fact
that the multiperipheral amplitude is largest when the
longitudinal moIncnta aI'c ordered accol ding to thc
particles' position along the chain.

Recent calculations' ' with the ABFST multipe-
ripheral model, 4 the only multiperipheral model without
arbitrary normalization of the kernel, have found the
kernel to be too weak by a factor of 2 to 5 to explain
the intercepts of Regge trajectories. These calculations
neglected all interference except that inherent in a
2-to-2 process.

Because of the basic assumption of the multipe-
ripheral model, we expect interference terms to be
inversely ordered in importance according to their
complexity. In this paper we study the CGect of in-

cluding in the mode1 the "next order" interference. This
is incorporated in the model, by adding the interference
terms from the 2-to-4 cross section to the kernel of the
integral equation.

We And that including this interference has only a
small effect on the position of the output vacuum pole;
this, however, does not mean that for high-multiplicity
production cross sections interference CGects are
negligible.

Since interference terms in the ABFST multipe-
I'lphcI'al model have their origin in Bose statistics of thc
Anal-state pions, we begin in Sec. II by studying the
effects of symmetry on production amplitudes (ignoring
isospin until Sec. III); we then derive the modified

integral equation and a formula to measure the CA'cct
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on the position of output Regge poles when a certain
class of interference terms is included. Isospin is then
properly taken into account in Sec. III. Section IV
discusses the 2-to-2 m-m amplitudes that we use as input.
We discuss the results in Sec. V. In the Appendix, we
discuss four-particle phase space and the kinematic
variables used in our calculation,

II. MOMFIZD INTZGmL Zqm TION
FOR ABSORPTIVE PART

In this section we consider pions to be isospinless.
The basic assumption of the ABFST multiperipheral
model is that the amplitude for two pions to go to n
pions (I must be even because of G parity) is given by

v'=Z p —p.

p is the pion mass, and Ts(ps, p(, q;,g;) is the off-shell
2-to-2 x-m scattering amplitude. A diagram illustrating
the variables and)representing Eq. (2.1) is shown in
Flg. i.

If we neglect all interference terms due to diferent
orderings of the 6nal-state particles, then the amplitude
in (2.1) may be successfully squared and integrated to
get the 2-to-n cross section. However, since pions obey
Bose statistics, (2.1) is not a proper amplitude. A
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FIG. 1. Schematic representation of Eq. (2.1} for the 2-to-I
amplitude, shmving factorization and momentum assignment.
Each blob is an off-shell 2-to-2 amplitude.
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FIG. 2. 2-to-2 cross section.

properly symmetrized amplitude is

FIG. 4. (a) One of the terms from the class C; the other 15 terms
are represented by interchanging two intermediate lines from one
of the four vertices. (b) Sum of all 16 terms of C. We call this the
single-crossed diagram.

With this assumption, the 2-to-n cross section becomes
M (pl, pl, ,p. ; p.,pb) =g T.((p,({p,});p.,pb), (2.2)

where (P;({p,}) is the ith permutation of the set of n
momenta (Pl,P2, . . . , P ). The 2-to-n cross section is

1
~$ d4'„

23&.(s,ln ' lnb2) (24r) 2"—' n!

X[K 2'.(6"({P;});p.,p )J*

X[K T-((Pb({p }) P. Pb)J (23)

where s is the c.m. energy squared and 4„ is the m-

particle phase space and is given by

d'P'~'(p"- ") ~'(p.+p -2 P'). (2.4)
i=1

The factor 1//n! in (2.3) comes from normalizing the
6nal-state vector or, equivalently, from integrating
only once over the distinguishable region of phase
space. Since the p s are variables of integration, (2.3)
may be rewritten in the unsymmetric form

~2~a(s)
2X(s,nb, 2,2nb2) (22r)'"-'

XT'- (P,p., ",P-; P.,p.)

X[K 2'.((Pb({p });P.,pb)3 (2 5)

The usual assumption of the ABFST model is that
only those 2"I' permutations corresponding to inter-
changing pions from the same vertex are kept in (2.5).'

~2~m(s)
234(s, 2/2

' 4nb2) (22r) 2"-4

X+2 (plpp2j p pql)[+2(pl)psj p &ql)++2(P2yplj p yql) J

X(ql /4 ) 2 2 (PS) P4j qly q2)

X[2'2(pb, p.l; —ql, q2)+T2(p4, pb., —ql, q2)$

X(q2' —/4') 'X ' X[q( /2& —l' —/4'p'

X+2 (Pn,—ly Pal q(n/2) —lyPb)

X[22(Pa—ly Pa j q(m/2& —ly Pb)

+2'2(p-, P- l —q(-/2)--l Pb) J (2 6)

This leads to the usual integral equation4 for the for-
ward absorptive part of the elastic amplitude with the
kernel being proportional to the 2-to-2 cross section.
This 2-to-2 cross section is schematically represented
in Fig. 2. For n=2, (2.5) is identical to (2.6). But for
n=4, (2.5) has additional terms not contained in (2.6).
It is these additional interference terms to the 2-to-4
cross section with which we are primarily concerned.
For each production cross section a general class of
interference terms will be included in the model when
we add these 2-to-4 interference terms to the previous
kernel.

For n=4, there are 24 permutations in (2.5). This set
of 24 permutations may be separated into three con-
venient classes by dehning the set of permutation oper-
ators D={I,Sl2,S34S)2S24}, where I is the identity
operator and 5,; is the operator which interchanges the
i and jindices. Then {(Pb}=D+C+X, where C—=DS22D
and X=—DS~3524. The sets D, C, and Xcontain four, 16,
and four permutations, respectively. Notice that apply-
ing any of the operators in D does not change the expres-
sloll fol ql= pl+pl p.—=pb —pb —p4, this is why this
particular decomposition of {(Pb}is useful here.

The terms in 0'"' from the permutations of D are
exactly those included in the ABFST model under the

FIG. 3. The terms in a~4 from the permutations of D.
We call this sum the uncrossed diagram.

' Throughout the rest of this paper, we call this the "standard
assumption. "

FIG. 5. Sum of all four terms
in X. We call this the double-
crossed diagram.
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FIG. 6. Schematic representation of the integral equation for
the forward absorptive part of the elastic amplitude under the

standal d assumption.

From these equations, we easily see that the antisym-
metric part of the 2-to-2 amplitude gives zero contribu-
tion. Therefore, we can express (2.8) in terms of the
symmetric 2-to-2 amplitudes, M2, defined by Eq. (2.2).
At this point it is also convenient to switch from mo-
mentum variables to kinematics invariants. Since each
2-to-2 amplitude has one particle o6 shell, it is a function
of three invariants. As in the Appendix, we de6ne

"standard assumption. "These four terms are shown in
Fig. 3. One of the 16 terms in C is shown in Fig. 4(a);
the other 15 terms are obta, ined by interchanging two
hnal-state particles from one of the four vertices. We
represent the sum of all these 16 terms of C by Fig. 4(b).
The sum of all four terms from the class X is represented
by Fig. 5. These interference terms from classes C andI are the terms not included under the standard
assumption.

If we de6ne

gn—=Pa+P2 —Pa, gc—=Pa+P8 —Pa, gx=P8+P4 —Pa, (2 ~)

',—= (p+p, )', ~'.—= (p'-p-)',
t;b= (pb —p;) ) r„=g„,—fol P =D)C,X.

We may rewrite (2.8) as

cn2 4(s)= d C'4

2ll(s, m.2,mb2) (2ar)'

IM2(sa2, &a.,rn) I 'IM2(s84, 4b, rn) I

'
X

4(rn —u')'

(2 9)

and use the abbre»ated ~otation T12 D=T2(PlP2.,
P„qn), etc., then we may write

C2~4 —C 2~4+C 2~4+C 2-+4
2

(2.10a)

«' '(s) = — dC'4
2ll(s, m, 2,mb2)(22r)8 (rn I42)(rc I42)— —

2~4 ~
2X(s,m.2,m82) (22r) '

d44
(Vn' —4

')'
XM2*(S12)tas& rn) M2*(S84)148,rn)

XM2(sa8, ta, rc)M2(s24, t4b, rc), (2.10b)

dC'4 ——

4(rn-I ')(rx-~')

XM2 (sa2)taay&n)M2 ( )st 84) 4b)rn«' '(s)=
2ll(s, m. 2 mb') (2ar)'

d4'4
(Vn' —a ')(qc' —4 ') XM2(sa2, t28, rx)M2(s84, tb.,rx) . (2.10c)

X(T12,aD +T21,an ) In the Appendix, eight invariants are chosen as inde-
pendent, and expressions for all the others are derived
in terms of these eight. The four-particle phase space is

(2 8b) also expressed in terms of these independent variables.
Having found the corrections to the 2-to-4 cross

section, we proceed to investigate the correction to the

X(T84,—Db +T48Db )(Tab, sC,—+T31,sC)

X (T24Cb+ T42,C—b) 1,—
O.g'"' S = dC'4

2l( , l.s,m2)m(2b22r) 8 (qn2 —442) (qx2 —p2)

XTaa, an*(Ta2, xb+T2a, xb)—

XT12, n*(T12, n+T2a, n)
2~4 g

XT84,—nb*(T31,—nb+T43, —nb), (2 8a) 2&,(s m 2 m 2)(2x)8

1

X T84, nb'(T84, sx+ T-48, sx) (2 8c) (a) ~& or

Fxo. 7. Schematic representation of modihed integral equation
when interference terms from classes C and X are included.

Fro. 8. (a) Diagrams not generated by the kernel of this paper.
(b) Diagrams generated by the kernel, which give a larger con-
tribution than the diagrams in (a).
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total cross section due to including these effects in the
integral equation. The integral equation for the forward
absorptive part of the elastic amplitude under the
standard assumption is schematically represented in
Fig. 6. %e modify this integral equation by adding the
interference terms C and X to the kernel and to the
inhomogeneous term. This modified integral equation
is schematically represented in Fig. 7. At this point it
should be mentioned that this new kernel cannot gener-
ate diagrams of the form shown in Fig. 8(a). However,
because these diagrams involve interchanging lines
from non-neighboring vertices, they are expected to give
a smaller contribution than the diagrams of Fig. 8(b),
which can be generated by this kernel. Our kernel also
cannot generate diagrams of the form shown in Fig.
9(a). This diagram may give a comparable contribution
to the diagram of Fig. 9(b), since both diagrams involve
crossing four lines into their neighboring vertices.
Diagrams of the form of Fig. 9(a) can be included by
adding further terms to the kernel. If we want to in-
clude all interference terms, then the kernel is actually
an infinite series. It is hoped that the magnitude of
this first modification gives an indication of the rate of
convergence of this series.

To study the effect on the position of the output poles
from changing the kernel of the integral equation we
examine the diagonalized integral equation, which can
be written as'

Fio. 9. (a} Diagram not
generated by the kernel of this
paper. (b) Diagram generated
by the kernel, which may give
a contribution comparable to
that in (a}. -z.z
Snider' found a particularly simple expression for the
trace for J near 1. It gives

D(J) = 1—2I('./J(J+1) (J+2), (2.15)

ds 0(s). (2.16)

Mg(s, 8),((,)„))=&2(s,8(s,t,r,7')) . (2.1&)

The approximations are (a) the trace approximation,
(b) neglecting the high-energy tail of o"(s) Lin our
calculation we set oe)(s) =0 for s&3 GeV'1, and (c)
neglecting the pion mass in doing the ~ integration.
Besides these approximations, there was also the choice
of oQ'-shell prescription. As in Ref. 2, we let the off-shell
continuation be completely contained in 8, the e.m.
scattering angle, i.e.,

F~(r, r') =F0~(r,r')+ dr"F~(r, r")K~(r",r'),
(2.11)

where

This prescription leads to a simple relation between the
two-particle contribution to the kernel and the vr-x

elastic cross section. Other equally plausible prescrip-
tions lead to less-manageable relations. For the four-

with

y(g a2 a2)c—(7+1)g(e,r, r')
(ga)

X (2.12)
J+1

cosh))(s, r,v') =(s r r')/2(rr')"—', —
X(a,b,c) = (a'+b'+c' 2ab 2ac 2bc)—')', — —

I 2

and o(s) is the ~-m. cross section to be included in the
kernel. For our case, we have (see Fig. 7)

Because we are concerned with the relative e6ect of
including a correction, we will avoid all intricacies of
solving the integral equation. For the Fredholm de-
terminant D(J), whose vanishing determines the pole
position, we use the trace approximation, i.e.,

Fio. 10. Various kinematic
invariants.

D(J)= 1— dr IP(r, r) . (2.14)

By making certain approximations, Chew, Rogers, and
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particle contribution to the kernel, we calculated its
magnitude when the external lines are on shell. 6

Finally, from Fqs. (2.16) and (2.13) we see that a
measure of the effect on the position of the output pole
by including interference terms is

=- d ["'-'()+- '-'()7
+el

ds 0'"2(s) . (2.18)

III. INCLUDING ISOSPIN

where A s, 8 s, and C s have the same arguments as
T; s. The individual vertex amplitude of a definite
isospin in the t channel is given by

(T;)0 38;+A;+C4, ——
(T;)1 A; C;, —— —
(T4)2=A;+C;,

where the subscript outside the parenthesis refers to the
t-channel isospin at the ith vertex.

The 2-to-4 amplitude squared is given by

I T I '=p[TX*TIX*TIIITIV/(~D —f ')'7,

where the sum is over all nonexternal isospin indices.
The expression I

T
I

' has 81 terms and can be written as

I T
I

'= [1/(211—f42) 27(A 8.0&.g+&&.a».+CGA kg), (3 3)

where 3 has 30 terms, 8 has 20 terms, and C has 31
terms. As we are mainly interested in the change in the
position of the output vacuum pole, we consider only
the case in which the isospin in the t channel is zero.
This gives

I
T

I ore=0 ——[1/(rxl —f42) 27(38+A+c) . (3.4)

' This is an approximation, since using Kq. (2.17) for the 2-to-2
amplitude to calculate the 2-to-4 cross section does not lead to a
2-to-4 cross section that is independent of the mass of the external
pion s.

~ G. I'. Chew and S. Mandelstam, Phys. Rev. 119,467 (1960).

We now consider the problem of isospin alone. Later
we will see how to take into account both isospin and
statistics. The kinematic invariants for all three dia-
grams are shown in Fig. 10. We work out the procedure
in some detail for the uncrossed diagram; the procedure
is the same for the crossed diagrams. The isospin
indices for the uncrossed diagram are shown in Fig. 11.

Following the notation of Chew and Mandelstam, ~

and de6ning T; to be the 2-to-2 amplitude at the ith
vertex, and for each i defining A;, 8;, and C; to be three
independent amplitudes at the ith vertex, we have

Tx(szoefza&VD) Arbafflek++I~ae~fk+Crflakflef e

Txz(S34,~43,&xl) =Azz~kf~gj+I1xzbkg~ff+Cxr~kfflfg e

(3.1)
Txxx(S34ezekeo. D) =A Zxxe1 eke1 gf+&XII&eg&kf+Czxz~ej ~ok e

TZV (SzoefzaeTD) ~A IV4k&el+&Iv~ge~kk+CIV4k~ek e

Tx =Tz(szo, tz.,vxl),

Tzx =Txz(S34, &4o,rD),
TII X TII I(S24e4ke&C) e

Txv =Tzv(sz3, 4.,rc) .

(3 8)

The double-crossed diagram is given by

I Tl'x, =o=[1/(r —
x 2)(r —f 2)7

+0 (TI) (TII) (TIII) (TIV)
+3(TI)'*(Tzx)'*(Txxx)'(Txv)"
+3 (Tx) '*(Tzz)'*(T»z) '(Txv)'
+2 (TI) (TIX) (TIIx) (TXV)

+(5/9)(TX)'*(T»)'*(Tx»)'(T»)'
+(5/9)(TX)'*(Tzz)'*(Tzzx)'(Tzv)'
—(5/6)(TX)'*(T»)'*(T»z) '(T»)'
—(5/6) (Tz)'*(T») '*(T»z)'(Tzv) '
+(5/18)(TX)'*(T»)'*(T»z)'(T»)'7, (3.9)

8 Equation {3.5} is also true with the same coeKcients as those
of Kq. (3.6) if the isospin indices are taken as s-channel isospins.
The freedom of interchanging s- and t-channel isospin indices
occurs only for the uncrossed diagram.

From isospin conservation we also know that

I
T

I 'xe=o = [1/O'D —X4') '7[43(TI)0*(TII)0*(TIII)o(Tzv) o

+&(Tz)o*(TIX)2'(Tzxx) 2(Txv) o

+&(Tz)2*(Tzz)0'(Tzxz) o(Txv) 2

+&(TI)1 (TII)0 (TIII)0(TIV)1
+4'(Tz)o*(TIX)1*(TXIX)z(Txv) o

+d(TX) 1 (TII)1 (TIII)1(TIV)1

+e(TI)2*(Tzx)1*(TXIX)1(Txv)2

+e(TI)z*(Tzz)2*(Txrx)2(Txv)1

+f(Tz) 2*(Tzx)2*(Txzx)2(Tzv) 27 (3 5)

Since (3.4) and (3.5) must be true for all A s, 9 s,
and C s, we can equate the two expressions and thereby
determine the unknown coelficients in (3.5). We findo

41=-0', b=5/9, c=-o, , d= 1, e=5/3, f=25/9. (3.6)

Similarly, we can derive analogous equations for the
two crossed diagrams. The single-crossed diagram is
given by

I TI",=o=[1/(V —f 2)(« —f 2)7

&&[!(T).*(T*).*(T ).(T.).
+(5/9) (Tx)o*(Trz)2*(TIXI)2(Txv) o

+(5/9) (TI)2 (TII)0 (TIII)0(TIV) 2

—',(Tx)z*(TII)o'(Tzrz) 0(TIV)1

3 (TI)0 (TII)1 (TIIX) 1(TXV)0

+2(TX)1 (TII)1 (TIII)1(TIV)1
+ (5/6) (TI)2 (TII)1 (TIII)1(TIV)2

+(5/6) (Tx)z*(Txr)2*(Tzzz) 2(Txv)1

+(5/18)(TI)2 (Tzz)2*(TXIX)2(TIV)27, (3.&)
w~ere
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Fxo. 11. Isospin indices for the
uncrossed diagram.

I 20—

where the superscript outside the parenthesis refers to
the s-channel isospin at the ith vertex and

OO
00

Tz TI(s12)flsy&D) y

TII TII($34&f4b)rD) q

Tzzz =Tzzz(sx2, fsb, rx),
TIV =TIV($24)fsgprx)

(3.10) 0 0.5 I.O

~s (GeV)

I.5

Fxo 12 (iV) 1 and (844) 11 as a function of s"2.

2.0

Combining the results of this section and Sec. II,
we see that to include both isospin and statistics just
means that we should replace the numerators of Eqs.
(2.10a)—(2.10c) by the terms in the brackets in Eqs.
(3.5), (3.7), and (3.9), respectively. Of course, the f-

charinel isospin wiH now appear as an index in Eqs.
(2.11)—(2.16) and (2.18).

IV. ~-~ AMPLITUDES

From Eq. (2.10) and the discussion in Sec. III, we

see that we need as input the 2-to-2 x-x amplitude for
all three isospins with one of the pions off shell. As was
discussed in Refs. 1—3, the low-energy contribution must
be the dominant contribution in generating the output
poles. Therefore, in this paper we input only 5 waves
(both I=0 and I=2), I' wave, and D wave (I=0 only),
and leave out the Pomeranchuk tail by setting the
amplitudes equal to zero for s&3 GeV'.

For the I' wave and D wave, we use Breit-Wigner
terms with widths equal to 140 MeV and with m, =765
MeV and my=1260 MeV as their resonance masses,
respectively. Since these two partial-wave amplitudes
must behave near threshold as k"+', where k is the
magnitude of the c.m. momentum, we multiply the
Breit-Wigner terms by

($2(s)) (2/+I)/2( 4s (21+I)/2

E s ) ks, -4/2

where sg=m, ' and /=1 for the I' wave, and sg=my'
and l=2 for the D wave. The factor (4.1) is chosen
such that it is normalized to unity at the resonance
mass and has constant asymptotic behavior.

For the 5 waves we use the phase shifts shown in
Figs. 12 and 13.' Because of the uncertainty in the I=0
5-wave phase shift, we have used two diBerent forms.
The form (822)z corresponds to a broad resonance at the
mass of the /2. The (Bo')11 does not correspond to a
resonance, but rather it asymptotically approaches 90'.

9 We thank Robert D. Mathews for suggestions on the phase
shifts.

AH these 5-wave amplitudes have scattering lengths
near the current-algebra values. " Since there is some
indication" " that the 5-wave o6-shell scattering
lengths may be larger than the on-shell values, we also
tried 5-wave partial-wave amplitudes with scattering
lengths increased by a factor of 3.We 6nd that although
for small s the 2-to-4 cross sections become larger, all
essential features of our results remain unchanged.

~ ~ 4

432"U

og Cb "30
zo

4 I 4 4 l 4 1 2 4 I 2 I 1 4 I 2 1

0.5 I.O l.5
~s (GeV)

Fro. 13. Bo as a function of s'I'.

'o S. Weinberg, Phys. Rev. Letters 17', 616 (1966).
» G. Wolf, Phys. Rev. 182, 1538 (1969)."F.Wagner, novo Cimento 64A, 189 (1969).

2.0

V. RESULTS

Using Monte Carlo integration, we calculated the
2-to-4 cross sections for I~=0 from the classes D, C,
and X. The results for classes C and X are shown in
Figs. 14(a) and 14(b), respectively. As is expected,
class C in general gives a smaller contribution than
class X, since the former splits up the resonances. The
result for class D and the sum of the results for classes
C and Xare shown in Fig. 15.We see that for low energy,
the contribution of the interference terms is not negH-
gible. But as the energy increases, the crossed terms
drop oG faster with s than the uncrossed term, because
at high s the momenta of the Anal particles can be very
diferent, and so interchanging two such momenta can
greatly increase the momentum transfers. We also find
that the two diferent forms of 800 do not give rise to
different results until s gets large, when (bbo)z gives a
small amplitude, whereas (82') zz gives a large amplitude.

To calculate the effect on the position of the output
vacuum pole, we calculated AR2/Ro" defmed in Eq.
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that the infinite series of the kernel (as discussed in
Sec. II) most probably converges rapidly.

Our relative magnitude of the interference terms to
the noninterference term in the 2-to-4 cross section is
probably consistent with the recent result of Jurewicz
et i/. ,

"who found that the contribution to the cross
section from the set of all interference terms for the
reaction m+p —+ p 3n.+ 2~ at 8 GeV/c is about 80 jo of
the contribution from the noninterference term. We
expect their e6ect to be much larger than ours because
there are more interference terms for n=6 than for
n=4, and because they include all interference terms,
whereas we include only a subset (although the im-
portant subset).

That interference terms are important in calculating
n-particle production cross sections but not important
in calculating the position of the output vacuum pole
is understandable because

E

+X
0.5

&total(s) —P &n(s) ~ s(al 0
—1) (5 3)

00 10
s (GeV )

7
1 I I

l5 20

FIG. 14. Oq2 4(s} and gx' '(s} for I~=0. Solid curve uses (ho)I »
input, and dashed curve uses (hoo) II. (a) a~4(s). (b) cry~4(&}.

(2.18), where the subscript specifies the t-channel
isospin. We 6nd

DRO 0.06, if (800)q is used

Roe' 0.08, if (800)rr is used.

which shows that a small change in o.q 0 can give rise
to a large change in 0 "(s) for large s.

In conclusion, although the inclusion of interference
terms can greatly increase n-particle production cross
sections for large e, it does not alter appreciably the
positions of the output Regge poles. Therefore, another
mechanism must be sought to strengthen the kernel of
the ABFST multiperipheral integral equation. One
possible mechanism is the inclusion of E-meson
exchange.
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al 0=0.30 to o.g 0=0.33. (5.2)

The smallness of this correction to the kernel indicates

1
)

J ) g i
l

I I I 1
l

J j I

Using the numerical calculations of Ref. 1, we Gnd"
that corresponding to this 6-8% increase in the kernel
strength, the output vacuum pole changes only from

APPENDIX PHASE SPACE AND
KINEMATIC VARIABLES

Although n-body phase space has previously been
worked out by others, for completeness we include a
discussion of four-body phase space in this appendix
)most of the material in this Appendix was worked out
by one of the authors (D. R. S.) in collaboration with
Terence Rogersj. We define n-body phase space as

d'p' ~'(p" ~"»'(p +p~ 2p') (A1)—
i=1

IQ

s (Gev')
l5

Two-body phase space may be written as

X(s,m&', m2')
Cm(s; m. ' ning m, 2 m, ') = dn

Ss
Fzo. 15.a~~4(s) and a~4(s)+ax~4(s) for I4 -—0. Solid curves use

(h00) q as input, and dashed curves use (boo) qq.

'3%e could have used Kq. (2.15) to calculate the position of the
output pole. However, because of the approximations used in
deriving (2.15), this method of calculating output pole position
is not so accurate as the numerical calculation of Ref. 1.

4lb. (s,ns, ',ms'')
dt+, (A2)

' A. Jurewicz, L. Michejda, J. NaInys]. ewski, and J. Turnau,
Warsaw report, 1970 (unpublished),
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where

d~

an les in the c.dy are scattering

variables are s ow
de6ne

( 2+ha+ca 2bc)"'q 2 g(4s, b,c) =s=(pa+pe '
d cosK4'~

Vp

V2 =- sl2 S2P s@4

a

ment of momentari tion of assignmen oFzG. 16. Descry io men o
and kinema ic

'

and

P'=Z pt,
j=l

.2'vs=I g

to get
(A3)

.2;=P;—p„ t;=q; .
owt ah t the four-body p asWe will now sh

g

b4(ps+ pa+ ps+ p4 —p.——.—Pe)

be wntten as

a+qs ~ Ps 2s +Pa).+Pe ~ P4+Ps)c'2(P. s

vs. We start at the P4
h h h 6 1 lend and lump t e o

to ether by using

8(Pa+qs ~Pl+Pa+Ps

8)cu(p.+qu~ ps+pudvu %(P.+qs ~ Pu+Pa

sed in termsC's are expressewhent e sThis gives for 44
of invariants)

m pSZ2 ~ma ~SZ4'm 2 2 2C'4($; 22aa, usse ) 212,

nZ ' m~, ~3,m42 ~ 2(O'V2 d83 42 S) 5$~ q

a e)b (pl+pu+ps 8)d'Ps 54(P8+P4 —P, eb—
2t2', my, 542a, '

V fÃ )8'4( jUuula, 2,5$ ~t3, V2)tÃ3
and also

Ps b+(Ps —'Us) .d4I'3= des d 3 describ

X(vs, vu&2828 )X(s,v8, 22842)

44 = d83
8@3

o E . (A1) for C4, we obtainInserting these into Kq.

8s
2'd4 4 8+(p42 —2224d4Ps &+(Psu —Us)44 = 653 d 3

X(U2,22822, 22222)

X d~2
8@2

d' 2 6+(pau 22822)—Xb'(P +p -p.—pe)

the c.m. frameand alI1
1 bh ri h1

+

d th oth fo of t o- ocould have use(. ), ."phase space, Eq.

2d4 8 b+(Psu —2888d4, b+(puu —~22

X&'(Ps+P +Ps —
q

—s —p.)

+p4)

XCs(p.+qs ~ Ps+Pa2+Ps) ~ @4——

Xca(va,

of the system itC2in eth c.m. frame oWe evaluate each
es to get

dvs C'2(P +pe~Ps
d~2dt2d$2dvsdts~s

2)Q.(Vs, ts, 2224X(s,use 2,2288
we repea t this step ford Ps (and hence qs)Now for axe

. That is, weuse
dtstAjba

C'3

a —qs) = d'Uu d u4P2 b+(Pu' —vu)b4(ps+ps+ps —p.—qs =

)b'(Pa+P

(A5)
4X(vu, tu, ul. u)

t s is molere complicated. Tobut now the rang
—I' calculate the rg, ngq in t; or2 2X64(Pa+ps —p.—qs



1004 D. R. SNIDER AND D. M. TOW

use the equation
V'+1(V'+1+2t' ~ t'+1 1' —m;+1)+(~ t'~l)(V '~~1)

cos0;=
X(V;+l,m. ', t;+1)X(V;+1,V;,m;+1')

and set cos8;= 1 and —1.
We need to be able to express any kinematic variables

in terms of those chosen here. In particular we want to
6nd expressions for the various Mandelstam invariants
in terms of the set of e's, t's, and p's. The first step in
this is to express the two-particle "subenergies" s» and
s34 of Fig. 16 in terms of this set.

Consider the diagram in Fig. 17. Now, p; 1 is the
azimuthal angle for the two-body reaction q;+p, ~
P;+P; 1. That is, it is the azimuthal angle between P; 1

and p;+1 in the frame where P;=y,+q, =O and where

y, is along the +s direction, as shown in Fig. 18. From
an examination of this we see that the two-particle
suhenergy s;,;+1=—(P,+P,+1)' is a function of P;. To
find this function we write

needed energies and three-momenta to find cosg, and
therefore s;„+~, in terms of @; ~."After some algebra,
from Eq. (A7) we lnd

3ii+1 , Vi+1+Vi—1

—Det(A)+2LG(8; 1)G(f))"3 cosg; 1

X3(V;,m. 3,t;)

G(8; 1) =G(V;,t; l,m.3,t;,V; l,m'3)

(A9)

where

G(lP) G(Vi)t)~1)tile )ti)Vi+1)mill ) )

with G being the Kibble function, given by

G(s, t,a,b,c,d) =st( s t+—a+—b+c+d)
t(a —b) (c—d)

(ad bc—)(a+2—b c) . ——
—s(a —c) (b—d)—

&i,i+1= (Pi+Pi+1) =P i+1 ~i—1)

=v,+,yv;-, —2P;+13P; 1'+2[P,„1[IP, 1[

&((cosg cost; 1+sintP sine; 1 cos; 1), (A7) The matrix 2 in Eq. (A9) is

where we have introduced the angle f shown in Fig. 18.
To find/, we use

t;+1=/;+1 =(g;+P;+1) =t;+85;+1 +2/, P;+1
+2 I q'I I p*'+ll cosP. (A8)

For these two equations we need a number of energies
and three-vector magnitudes in this frame of reference.
In general, if

ky+k2=ks~ @3=0& and k& =us for i= 1& 2, 3
&

then

A= V;+m. 3—t;
.Vi+Vi—1 ~i'

V,'+m, 3—t;
SZQ

2

Vi—1+ms ti—1

V +V;~l —m+1
V;+1+m.3—t;+1 .

0

N ext we would like to express all other two-body
invariants in terms of our basic set, now taken to be

v2, v3, tj, t2, t3, s», s34, and of course s. Once we have found

the three-particle invariant s334= (P,+P,+P4), which is
like v3 but on the opposite side, the remaining two-

particle invariants come simply. To 6nd s»4 we com-

press P3 and P4 together. Figure 19 shows this and s334

Ikl[ = Ik3[ =x(xl,x3,x3)/2x3'") kl =

and
(x3+x3 xll

u, =~[

Xi+X3 X3

pl+I ~I+i

Z

ge
l

Pt-t =- p)

In our case we have

+i—1+Pi ~i) ~4+1 Pi~1 +i) p,+g;=P;, P, =O.

Since we know all the momentum squares, we have the

Pal

FIG. 17. General kinematics.

Fxo. 18. Definition of variables in frame where P;=0.

'5 Another method for ending the expression for cosP is to use
an analogy with a c.m. scattering angle g. In general, to 6nd cos8
in terms of s, t, and the four masses, one uses k +kq =E=k,+kg,
K=O, s=X', t=k~ —k„and 8 is the angle between k and k, .
From Figs. 17 and 18 we have p +q; =P;=P;+&+(—p;+1),
P;=0, v; =P 2, t;+1——(p,—P;+1)', and p is the angle between p
and P;+1. Therefore, if cosg =f(s,t,m,,,m~, mp, mq ), then
COSIP =f(V))t)+))&43)t))V)+))Bgi+)3).
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vp
s234

Sp4

where

and

'Gl =G(52 tl mo t2 ml m2 )
G2 ——G(es,m8', m. ',4,$,$88),

282
A'= e2+m, 2 t2-

e2+ml —tÃ2

82+me —t2

5$Q

ml'+m, '—tl

'V2+S—$38

s+m 2 —m82

0

FIG. 19. Diagram for calculating sm&4.

—D etA'+2(G1G2) 't ' co+1
$284 =$+ml +

X'(tts, mo', t2)
(A10)

in relation to the known variables. From this figure we
see that the calculation of s234 is completely analogous
to the calculation of s;,;+1. We immediately write the
answer:

The other two-body invariants can now be easily
shown to be

S13 es e2 $28+ml +m2 +m3

$24 $234 $23 $88+m2 +ms +m4

t28 4 4 $284+$34+ms + mb',

ts =t3 t2 —$128—+e2+ms +m
TU —m2 +ms +tl t2+4 $28

T» =m, '+me' t2+tt2—+$34 s—
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Crossed-Channel Partial-Wave Expansions and the Bethe-Salpeter Equation*
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The Bethe-Salpeter equation for the direct-channel absorptive part of the scattering amplitude is analyzed
in the ladder approximation to investigate the relationship between SO(1,3) and SO(1,2) crossed-channel
partial-wave analyses. The SO(1,2) expansion, used when the momentum transfer Q is spacelike, is studied
in detail in the limit Q„—+ 0. The connection between the SO(1,3) and SO(1,2) partial-wave amplitudes at
Q„=0 is obtained explicitly, as is the familiar result that a Toiler pole is equivalent to an in6nite sequence of
integrally spaced Regge poles at Q„=0.

I. INTRODUCTION
' QARTIAL-WAVE analyses of scattering amplitudes

and dynamical equations in the crossed (t) channel
offer a powerful formalism for studying directly the
high-energy behavior of the scattering process in the
direct (s) channel. ' The functions of interest are ex-
panded in matrix elements of representations of the

*Research partially sponsored by the U. S. Air Force OS.ce of
Scientiic Research under Contract No. AF 49(638)-1545 and
partially by the U. S. Atomic Energy Commission under Contract
No. NYO-2262TA-226.

t Present address: Stanford Linear Accelerator Center, Stanford
University, Stanford, Calif. 94305.

g Present address.
' A good discussion and bibliography of past work is given in

lectures by P. Winternitz at the Dublin Summer School (1969),
Rutherford Laboratory Report No. RPP/T/3 {unpublished).

little group of the momentum transfer vector Q, the
underlying symmetry group of the reaction. An expan-
sion coefFicient, labeled by the values of the group's
Casimir operators when restricted to a speci6c repre-
sentation, is precisely what is meant by a partial-wave
amplitude. If Q is spacelike (Q2(0), as in nonforward
scattering, the little group is SO(1,2), and if Q is a null
vector, as in the forward scattering of equal-mass
particles, the little group is SO(1,3). Because the
representations, and therefore the expansions, are
different, there is in general no obvious connection
between the forward description and the nonforward
description in the limit Q„—+ 0.

In this paper we discuss this connection in a simple
model, the spinless Bethe-Salpeter equation for the
absorptive part of the scattering amplitude, using a


