988 ETHAN ]J.
The above theorem certainly holds. We note there that
this theorem is applicable to all the limit-integral
exchanges done in this paper. The integrands always
consist of an integrable function along with either the
denominator D above or a term like (1/#€) InD which
is also bounded.®
Getting back to our commutator, we have found

linol / Y[ T*H0(y,= €) — T*¥10(y,= —¢) ]

2iC 3420

=——z¢

7t 28

0la

2¢ 2%,
t (22)4

¢ Uniform convergence does not hold for some of the integrals,
necessitating the weaker dominated-convergence theorem.

ekﬂla .

(A10)
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This means that the equal-time commutator has a
8%(y) with the above coefficient. In particular,

(1/8)8(x* =y W (T{LA*(), V() 1V°(2)})
3 2ic , la(z—-x)a(z—x)°

=— —¢

wt (z—x)8

3(x—y), (All)

where we have reinserted x. This is seen to be a partic-
ular term of

ic
—eW el (53—1)2g,, —2(z—x%) o(z—2)"]
ﬂ'4

X d4(x—y), (Al12)

(z—x)®

as quoted in the text. We will not bother to illustrate
the veracity of the above expression for other choices
of uvp.
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We present general group-theoretical requirements for the construction of factorizable, dual N-point
functions. Dual amplitudes for the scattering of arbitrary numbers of spinning particles are built as an

example of this approach.

LTHOUGH the SU(1,1) invariance of the
Veneziano N-point function has long been
recognized,! it has not yet been systematically exploited
in the construction of new dual amplitudes. In the
following, we would like to generalize the group-
theoretic structure of the multi-Veneziano function,
discussed earlier by the authors,? to include external
particles of different types. As an example of our
techniques, we give a simple, factorizable dual ampli-
tude for the absorption of arbitrary numbers of high-
spin particles.

For the purpose of this paper, we regard duality as a
purely group-theoretical concept, implying SU(1,1)
invariance but not necessarily any particular asymptotic
behavior (e.g., Regge). Basic to our description are the
three generators of SU(1,1), namely, Lo, Ly, and L_,
which satisfy the algebra

[LoLil==£Ly, [Li,L-]=—Lo. ¢y

We present the following minimal set of group-theoret-
ical conditions for the construction of dual amplitudes.

1Z. Koba and H. B. Nielsen, Nucl. Phys. B12, 517 (1969).
21L. Clavelli and P. Ramond, Phys. Rev. D 2, 973 (1970).

(i) Associate with the absorption of a particle with
momentum £Z,, spin j, 73, internal quantum numbers
{7}, a vertex operator V(k,,7,7s,{\}; 2), where z=¢~'"
is a complex variable on the unit circle.

(ii) Require that V(k,,7,73,{\}; 2) transforms under
SU(1,1) as a spin J g representation, that is to say,

[Ly,V]= —z—d—V , (2a)
dz

d
L.V =——zi‘(z— :FL)V, 2b)
[L,V] =\ (

where we take Jg to be in general a function of the
Casimir operators of the Lorentz and internal symmetry

groups
]S=]S(m2;]'7€)‘) . (3)

(ili) Under the Lorentz and internal symmetry
groups, V is required to transform in the same way as
the field of the absorbed particle. This ensures the
correct selection rules at each vertex.
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(iv) Any number of external particles 1,2, ...,/ ...
can interact in a dual manner only if they have the
same SU(1,1) spin, i.e.,

Js(mjoy,ca’)=Ts(md,jay,cn) foralll. (4)

This implies relations among the quantum numbers of
different particles.

(v) Then the factorizable dual amplitude for the
scattering of particles 1, 2, ..., !/, ..., N, in that order,
is given by

dz
An= —(0| H(—IZZ_ZH-II 1=J80(argzi.1 —argz)

=1 \2;

XV (kv j s Js,{N} s Zz)) 10y, (5)

~where C is the integrated Haar measure, and the
contour is taken around the unit circle. This type of
expression was shown to be SU(1,1) invariant in Ref. 2.
If V is a matrix in the internal group space, the vacuum
expectation value must be defined to include the trace
of the product of the vertices.

We now proceed to illustrate these rules by consider-
ing several examples of dual amplitudes. The best
known example of a vertex satisfying criteria (i)—(iv)
is the one for scalar isoscalar particles:

V(k“,0,0; z)= —k’/2eeik-F1‘(z)eik-F(z) , (6)

where F (z) satisfies?-?

[LoF o(2)]1= —ziF(z), (7a)
dz
2Ely d €

[LyFo(z)]=— 7(232 —2—>F(z) . (7b)

This vertex obeys Egs. (2), with J g= — k2. Its insertion
in Eq. (5) yields the usual multi-Veneziano amplitude,
provided [criterion (iv)] that all the particles have
the same mass. We will let the factor e~#*2¢ be under-
stood from here on.
A simple extension of this vertex for isovector scalar
particles
V (ky,0,L1; 2) =03V (k,:,0,0; 2) ®)

leads to the Chan-Paton amplitude.*
We now apply our criteria to the construction of dual
vertices for particles of higher spin. Our basic building

3 S. Fubini and G. Veneziano, Nuovo Cimento 67, 29 (1970).
( ])E Paton and Chan Hong-Mo, Nucl. Phys B10, 516
1969
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blocks will be the Nambu field®
Q#(Z) =F M(Z) ‘l"FM1t (z)

w f(m—14€)\V/2
(=)

m!

(9a)

m=0
X (a” (m)gmtel 2+d,‘ (m)ty—m—e| 2) (gb)

and its conjugate momentum

P,(2)=1[Lo,0.(2)] (10a)
» (m—14€¢)\2
=i £ ()
m=0 m!
x(a“(m)zm+5/2__a“(m)fz——m—‘n), (10b)

where € has to be taken to zero at the end of all calcula-
tions. It follows from Egs. (10) and (7) that

[Lo,Pu(z)]= —-Z—d—Pn(z) , (11a)
dz
z:!:l d € .
[Ls,P (Z”‘“VE‘[Z; <1+5)]P,.(z)
1€
—z*10,(2). b
'*‘2\/22’:E Qu(z). (11b)

As a first attempt at constructing a vertex for the
absorption of a vector meson, we might consider
etk -Fl(2)gik-F () P, (3). This indeed transforms irreducibly
under the group, but its lack of normal ordering leads
to a divergent dual amplitude. From this stems the
general necessity to consider only normal-ordered ver-
tices, as is common in field theory. On the other hand,
the normal-ordered vertex e Ft@P, (3)e™*F@ does
not transform irreducibly:

[Ly,e* FH P, (5)ei* F ()]

z<d+1+k2> 'kFH)P() ik+ F (2)
=—— 2— — Jerfr Atz z)er Lz
V2\ dz 2 *

kuz
e ik FH(2)gik- F (2) |

(12)

The undesirable extra term can be eliminated only if
one takes the transverse part of P,(z)

P,,(Z)’: (uo—huk o/k2) Py (3) . (13)

Then, a well-behaved normal-ordered vertex for vector

mesons is
Valb; )= P OP,@ekr@  (14)

5Y. Nambu, University of Chicago Report No. EFI 6964,
1969 (unpubhshed)
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and satisfies

[LO; Vﬂ(k,z)] = -—ZiV“(k,Z) ’ (153')
dz

L k il 1 kz) k 15b
(Lo Vo ,z)]—“"\/g[zg; :L.( + JECECES

Thus V, transforms as a Jg= —1—2%k? representation
of SU(1,1). According to our rules, for any fixed value
of k% we can construct a dual vector-meson N-point
amplitude. However, if we wish to have a dual ampli-
tude containing both scalar and vector mesons, criterion
(iv) forces the mass relation

1+3kvi=3kg, (16)

which fixes the vector meson as the first Regge recur-

rence of the ground-state scalar.
As an example we will calculate the amplitude

S+ V — S§4S. Putting 1k s*=ao, we have from Eq. (5)

1 4 /dn
Au=— 11 (-"lzz—th[ “klﬁ(argzwl—argz;))
C =1 \z
X0V (k1,21) Vi(kay22) V (k3y20) V (kiy20) [0)  (17a)

k?p,k2p 1 (dzt
- —_— | —\lg;—2 ag—1
(gup ke )C ;[;Il le 1 l+1|

Xo(argzm—argz,)) IT |zi—z;| %k

1<J

x(z %sz”Lzz) (17b)

1742 21—22

1
=(g“_ k:k:p)/ dx x_l-a(s)(l _x)—l—-a(t)
4 )
L X[k1,(1—2)—ksx] (17¢)

= [ dxx1me@(1—g)ime®
0
X[k1u(1—x) —ksux+keu(3—2)].

This amplitude coincides with the one proposed by
Bouchiat, Gervais, and Sourlas® to represent a vector

17d)

8 C. Bouchiat, J. L. Gervais, N. Sourlas, Nuovo Cimento
Letters 3, 767 (1970); see also R. Bower and J. Weis, Phys. Rev.
188, 2486 (1969); 188, 2495 (1969); Phys. Rev. D 3, 451 (1971).
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current interacting with three scalars. From the group-
theoretical point of view, however, it is clear that the
amplitude more appropriately describes a vector
meson since the mass must remain fixed for duality.
Indeed in the present SU(1,1) coupling scheme, a
dual theory with currents must await the construction of
a current vertex whose SU(1,1) transformation prop-
erties are independent of its squared four-momentum.
Needless to say, it is trivial to calculate a dual
amplitude involving any number of scalars and vectors
using Eq. (5) and maintaining the mass relation (16).
We would now like to investigate dual vertices for
higher-spin particles. If we write symbolically

P (@=11 Pulo), 18)
, =1
then
V™ (3)=eikFt@) : P, () (5) : gik-F () (19)

transforms reducibly under the Lorentz group, contain-
ing spins up to jmax=#. Furthermore, under SU(1,1)

LoV, @] = ] s ki)vm 2
[LaV, (Z)]—‘“'\/—Q[Zgz':t(%'l"z—] L0@), (20)

ie., V,™ transforms as a J g= —n— 3k? representation.
In order for the particles represented by the various
V. to interact in a dual manner, we must have

n+3kal=a0 (n=0,1,...). (21)

This mass relation identifies V,™ as representing
particles at the (#+1)th mass level. By operating on
V. with the various spin-projection operators, we
can separate distinct vertices for particles of spin #,
n—2, n—4, ..., etc. The odd daughers, however,
cannot be constructed in this scheme since V,™ is
transverse in all its indices. Furthermore, we have no
way to distinguish degenerate states at the same spin.

Although we have investigated here only a very
limited class of dual vertices, it seems clear that the
group-theoretical approach should prove useful in
the consideration of internal symmetries, off-shell
currents, and the positive-intercept problem. For
example, the identities found by Virasoro? require only
that Jg=—1, thereby perhaps avoiding the necessity
of introducing an unphysical pole.

7M. A. Virasoro, Phys. Rev. D 1, 2933 (1970).



