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phases would be given by expressions analogous to
Eq. (40)."

2After this work had been completed we learned that the
two-ladder diagrams discussed in Sec. II have been studied
independently by B. Hasslacher and D. K. Sinclair, and by
I. Muzinich. Their results are in agreement with ours.
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The general three-point functions invariant under conformal transformations are constructed for both
axial-vector and vector currents. These are used to study the anomalies present in the Ward-Takahashi
identities. The axial-vector anomalies are considered in detail and Schwinger terms are calculated using
equal-time limits.

I. INTRODUCTION

'T has been generally recognized in recent months
- - that the conformal group provides a useful tool for
the investigation of certain problems in elementary-
particle physics. The symmetries involved are obeyed
by systems which include no massive particles and a
dimensionless coupling constant; there is thus nothing
to set the scale for measurements of length. Maxwell's
equations, as an example, are invariant under conformal
transformations since the photon mass is zero. The
relevance of these considerations to high-energy physics
is suggested by the hypothesis that when the energies
involved in an experiment are much greater than the
masses of the particles, it should not matter too much
if we set those masses equal to zero. The behavior of a
dimensionless form factor f(p'/m') as p'~ ~ is the
same as for m' —+0. One might also claim that a
canonical theory's fundamental behavior, which is
probed at high energies, is governed by the commutation
relations; these should be independent of the mass.
The conf ormal group suggests itself as a usef'ul technique
for investigating any phenomenon which appears to be
mass independent.

Once the masses in a theory are set formally to zero,
calculational simpli6cations are great. In particular,
demanding that a given function transform properly
under an inversion of coordinates can in certain
instances determine its algebraic structure, leaving
only one or more arbitrary constants unspecified. In
this paper, we use the simplM. cations imposed by
conformal invariance to study three-point functions.

*Work supported in part by the U. S. Atomic Energy Com-
mission under Contract No. AT(30-1) 2098.

t Present address: American Science and Engineering, Cam-
bridge, Mass. 02142.

In Sec. II we brieQy show how the algebraic structure
of the covariant time-ordered products (T*) of two
and three currents are determined using inversion
symmetry. Our currents vill be assumed to be defined
via fermion 6elds, although this is only relevant for
comparison purposes. It will be seen that the results
are very close to perturbation theory for quantum
electrodynamics with zero fermion mass. We will also
introduce the relevance of this general approach to the
problem of the ambiguities present in triangle diagrams.

In Sec. III we use our expression for the general
axial-vector three-point function to study the anomalies
present in the Ward-Takahashi identities. YVe will
compare our .results for these anomalies with those
obtained by Gerstein and Jackiw, ' who investigated
anomalous triangle diagrams in momentum space.
We will then compute the Schwinger terms of the axial-
vector three-point function by calculating the anom-
alous Ward identities in both covariant and noncovariant
ways (using Johnson-Low-Bjorken-type limits).

II. INVERSION-SYMMETRIC T* PRODUCTS

A. Introduction

The general conformal group under which Maxwell's
equations are invariant is a 15-parameter group which
includes the Poincare transformations (ten parameters),
scale transformations, and the special conformal trans-
formations. These latter form a four-parameter group
which transforms coordinates as

x"~x"=
1+2a @+a'x'

~I. . Gerstein and R. Jackiw, Phys. Rev. 181, 1955 (1969).
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Rather than continually deal with this four-param-
eter transformation throughout the paper, we will
instead deal with the much simpler discrete symmetry,
the coordinate inversion

x~ ~x~=x~/x'. (2)

In order to show the equivalence between the two
approaches, we consider the conformal transformation
for large u and expand to order e ':

Therefore,

B. Two-Point Functions

If we wish to calculate the covariant two-point
function

T""(*y)=(T*(V"( )V"(y))&, (6)
~ It may be noted that although the transformation as written

is a reflection (x —+ —x) implying that the coordinate inversion is
an improper conformal transformation, the entire formalism
could be redone, with the inversion being dered by xl' —+ —g&/g~.
This would remove any apparent restriction of the results to
theories invariant under parity transformations.

We can immediately recognize ul'/u' as a translation,
1/a' as a scale transformation, and g&"—2al"u"/a' as a
Lorentz transformation' (we recognize it as an orthog-
onal. transformation in four dimensions). Since the
15-parameter group includes all of these as symmetries,
the remaining transformation must also be one:
x"~ x"/xm.

We note that the simplified technique which we are
presenting here would not necessarily hold if we were to
study arbitrary representations of the conformal group,
since in general, inversion is not contained in a general
O(4,2) representation. However, we will only be dealing
with vector and axial-vector operators which are a
part of the 0(4,2) representations of the type which
do contain the inversion operator.

The essence of setting up an inversion-symmetric
covariant time-ordered product is very simple: If we
know how an individual current must transform, then
we know how a product of currents must transform.
In particular, if we consider a vector current, we know
its dimensions to be L '. We write

V~(x) =M~"(x) V„(1/x), (4)

where 1/x is symbolic of x /x'. The transformation
matrix M may be calculated trivially by considering
as a special example of a vector current the operator
(1/x')8/Bx&, which has the appropriate dimensions. It is
easily seen that

M&"(x) = (1/x') (g&"—2x&x"/x') .

T..(*-y)=f((x-y)') g((x-y)')
Bx" By"

Noting that under inversion (x—y)'-+ (x—y)'/x'y', it
is easily seen that the only acceptable form for the two-
point function with dimension L ' is

C B B
T„,(x-y) = ln(x —y)',

(x—y)4 Bx" By"
(9)

where C is an arbitrary constant. We note that this is
the most general two-point function since one cannot
form an invariant from two coordinates.

C. Vector Three-Point Function

We consider the vector three-point functions

(T*(V"(x)V"(y) V'(s) &&, (T*(V"(x)~"(y)~'(s))&

and other permutations whose over-all character is
vector. We Start by observing that we already have a
two-point function. Thus, we first construct a one-
index function of three variables which transforms
properly by itself. Using the same method as for the
two-point function, we find

(x—y)' 8 (s—x)'
Rp(s; x,y) = ln, (10)

(x—s)'(s —y)' ~s' (s—y)'

along with two permutations —E„(x;y,s) and R„(y;s,x).
Again, we note that there are no invariant functions

of three points which can multiply our one- and two-
point functions. It can be easily seen that it requires at
least four coordinates to produce a true invariant

we impose the transformation equation

TI'"(x y) =3EI' (x)N"s(y) T s(1/x, 1/y) . (7)

It is seen to be important not to make use of translation
invariance too soon; translation and inversion do not
commute. Setting one coordinate equal to zero would
make the inversion not well defined. Only after the
algebraic structure is determined can translation
invariance be invoked to "remove" a variable.

The straightforward approach to determining the
form of T""(x,y) is to write down all possible Lorentz-
covariant tensors with arbitrary constants, insert them
in the transformation equation, and find the conditions
imposed on the constants. This is very simple for the
two-point function, as there are only two tensors —g„„
and (x—y) „(x—y)„.But in more complicated instances,
it is advantageous to write the functions as derivatives
of invariant (under inversion) functions. The matrix
transformation is then explicitly accounted for and all
that is left is to count dimensions. Thus, we might
write



ETHAN J. SCHREIER

S&e~c—
1 8 (x—y)'—ln--

(x—y) '(y —s) '(s —x) ' Bx«(x—s) '

8 (y-s)' 8 (s-x)'
X ln — ln, (12)

(y —x)'»' (s—y)'

under inversion; for example,

(T()—x)'(y —s)'/(w —y)'(x —z)' .

It is this fact which allows us to study three-point
functions in a relatively simple way.

Thus, we can combine our one- and two-index
functions in four independent ways to obtain our
inversion-symmetric vector three-point function S&"~.

S""p(xy,s) =cyS]""pgczSg""p+cpSpp"p+c4S4""

Of course, there is a linear relation between them and
the coeS.cient of the two-point function. We will dwell
on this no further.

D. Axial-Vector Three-Point Function

In finding the general form of the inversion-sym-
metric covariant axial-vector three-point functions
(T*fA«(x)A"(y)A'(s))) or (T*(A«(x)V"(y) Vp(s))) plus
permutations, we cannot use the same simple techniques
as in the vector case. The indices p, v, and p now appear
in the four-dimensional antisymmetric tensor e&"&'.

The transformation matrices will mix up different types
of terms, e.g.,

( x"x ) x«x»
g«pp» ~

~

gp» 2 ~g
I'pp —g«happ 2 g

«po'
S2) ~p—

(x—y)'(y —z)'(z —x)'

X
Bx" By"

8 (s —x)'
ln(x —y) ' ln— . (13)

»p (s —y)'

We obtain S3 and S4 by a cyclical permutation of (x,y,s)
and (p, v,p). We may reduce the number of independent
constants and at the same time make our three-point
function more physical by imposing Ward identities
on any conserved currents. Since in a massless theory
we naively expect all currents to be conserved (under
PCAC, for example, 8«A«pp)), we require

1 B
S""'(x,y, s) = T" (y —s)P (x—y) —i) (x—s)j, (14)

i Bxl"

We do have to define certain behavior at the 5-function
singularities, so we adopt the symmetric limiting
convention

i)4(x)x xs/x' —p —,'g s()4(x) . (16)

This, of course, is equivalent to the usual momentum-
space technique,

d4ksk k~f(k') -+ '4g»~ d4ksk'f(k') .

along with two permutations. T"~ is of course the two-
point function previously discussed. The differentiations
are all straightforward if we remember that

B 1 B i B B 1
lnx'

~

= — —=4n'i()4(x). (15)
Bx«x ()x« I Bx«Bx x2«

~

~

It is thus advantageous to write the various tensors in a
more or less "unique" way in order to correctly equate
terms in the transformation equation. We will outline
the general method used as it illustrates a convenient
but not widely known identity. '

We start by noting that there are only two types of
terms allowed by the antisymmetry of the e function
and the presence of only two independent coordinate
di6erences. We thus write

T*""'(*,y,z) = ~""'-f( ) +(x y)-(y z—)8—
X(~«»zf «+ ««p»sf «+&~&»sf( «) (18)

where
f(') ' =f'»'+f*my"+f'»'

Zf*=o
j=1

f' =f'((x—y)', (y —s)', (s —x)').

The transformation equation reads

T*p"p(x y s) = iV« (x)M"~(y)—M» (z)

XT* (),(1/x, 1/y, 1/s), (20)

where the minus sign is due to the axial-vector nature
of T~. We now must reduce both sides of the equation
to unique terms which may be equated term by term.

In order to do this, we introduce the identity

e«""=(x.x,/x') (~ "' gps+ e".g"s

«v»»gps+ &«vp»g»z) (21)

where x is any four-vector. We immediately see that
this allows us to dehne a "unique" single contraction
e&"& x . For we have

S«vp —(.&S)«vp+(2(S&p«p S «vp S4«vp) (17)

With this in mind, we find that S~ satis6es each Ward
identity, but only a certain combination of S2, S3, and
S4 can be used:

a«"p'y, = ep"p,x'x y/x'+double contractions,

~ In keeping with our more intuitive approach to conformal
group techniques, we do not use the usual projection of the group
in 6-space to Gnd invariants. See, e.g. , D. G. Boulware et ul. , Phys.
Rev. D 2, 293 (1970).
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and similarly for e&"p s,. We thus find that

( xy xs
af(1) =&. xai f14+ fu+ fis ix' x' )

plus permutations of xys and pvp. In momentum space,
the three-vector ambiguities are

pvgvp
—ppgp~,

+double contractions. (22)
gj gvp

—/pe~ )

(p+e).g" (p+—v) g-.
(25)

E. Three-Point-Function Ambiguities

With the current interest in anomalies of Ward
identities, we will see how we can adapt our general
approach to the subject. We expect these terms to be
singularities on the light cone, corresponding to
polynomials in momentum space. VVe will thus see if
we can form functions involving 8 functions and their
derivatives which satisfy out transformation equations.
We note that under inversion the 8 function transforms
as

64(x —y) -+ x4y4b4(x y) . —

The details of finding the correct combinations of
terms are not hard. We use as a guide the known
ambiguities and the necessary dimensions. In partic-
ular, the ambiguities are linear in momentum. The only
way to construct such terms in configuration space is
via expressions like 8„84(x—y) 54(y —s). The axial-vector
ambiguity is particularly simpl- any term of the form

4""' (8/cjx~) 8'(x—y) 8'(y —s)

will transform properly. This, or course, corresponds to
momentum-space ambiguities like

4pvpctp 4pvpclq, (24)

The vector ambiguity is slightly more involved. We find

8 8
~'(x-y) ~'(y-s)

ax ax

We may go further and contract two indices on the
identity equation; this allows us to express ~&'~&y sp in
terms of eI'" I'x yp, ~&" t'x sp, and terms like ~&~»x yes~.
We can in this way reduce both sides of the equation
to our unique tensors:

e~"p x e~" t'x yp e~" t'x sp) e" »x~yps~

plus permutations of pvp, but rsot xys. The calculation
is very messy, as should be apparent by now; we shall
omit the mechanics. The answer, however, is far from
obscur- the general covariant inversion-symmetric
axial-vector three-point function has the same structure
as the lowest-order diagram, the triangle graph with
vertices connected by fermion propagators:

T*I'"&(x,y,s) =c Tr{7y&S(x —y)y "S(y—s)
Xy'S(s —x)}, (23)

where
c=const,

S(*—y) =(&/2 ')Ly (*—y)/(* —y)'j

We now compare these ambiguities to those found by
Gerstein and Jackiw4 considering only the structure, not
the constants. We see that their axial-vector triangle
ambiguity is perfectly consistent with ours. However,
it is impossible to construct their vector ambiguity from
any combination of our terms:

g"(p v).+g—-(p e).+g—"(p v).. — (26)

This means that the ambiguity which they calculated
from a conformally symmetric expression, namely, the
lowest-order triangle diagram, is not itself conformally
invariant. It would appear that the divergence present
in the vector triangle breaks the conformal symmetry.
The presence of the y' in the axial-vector triangle makes
that graph only superficially divergent, serving to
preserve the conformal symmetry.

III. ANOMALOUS AXIAL-VECTOR
THREE-POINT FUNCTION

A. Introduction

where C&"p is the noncovariant "seagull" term which by
definition makes T into the covariant T~. The Schwinger
term, which comes from noncanonical behavior of the
equal-time commutators, will thus arise when we take
a derivative to form a Ward identity. In particular, for

4See Ref. 1.. Note that there is a misprint in the AAA
ambiguity. To preserve crossing symmetry, b+a must replace
b —s.

Starting with our expression for the conformally
invariant covariant axial-vector three-point function,
we will investigate the anomalies present in the Ward
identities, finding the anomalous Schwinger terms.
W'orking in configuration space, we will isolate the
anomalous part of the three-point function. This term
will then be used in two ways. First, we will calculate
the "covariant" Ward identity by a straightforward
difFerentiation. Then we wi11 form equal-time com-
mutators by a limiting procedure. It is this last tech-
nique which will lead to a noncovariant result. By
subtracting the two expressions, we will in the end find
the noncovariant Schwinger terms.

We de6ne T*""'(x,y,s) to be our covariant conformally
invariant axial-vector three-point function, either
(T*{AI"(x)V"(y) V&(s)}) or (T~{A&(x)A"(y)A&(s)}).We
let T&"'(x,y,s) be the corresponding time-ordered prod-
uct; thus

(27)
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example, the Schwinger term S"p is given by

gvp Qpvp

Bx~
(28)

We set y equal to zero for simplicity and form the
expression

T~I""&(x x =e; 0, ») T*l'—"'(x, x'= —e;0, ») . (34)

We will also dehne corresponding anomalous parts to
each of the above, whose exact meaning will become
clear later in the section:

2 +p&p =f9"p+Qp"p (29)

We recall that the most general T~f'"p has the same
structure as the lowest-order triangle graph:

Realizing that we are looking for a term proportional to
5'(x) or B~b3(x), we will integrate over d'x or xgPx to
extract the appropriate coefhcient. After integrating,
we 6nally set ~ equal to zero. If we 6nd the result
diverging in this limit, it characteristically means that
there is a derivative of a 8 function. The details of a
typical calculation are given in the Appendix. We here
quote the result:

b(x' —y') &I'*{(A "(*),V"(y)7V'(») }&
=—(c/»') ~ I"" $(» x)'g ——2(»—x)~(»—x) 7

X&4(x—y)/(» —*)» . (35)

T*""I'=cTr{y'y~S(x —y)y"S(y —»)y~S(» —x)} . (30)

This represents equally well &T*{AI'(x)V"(y) V&(»)})
and &T*{A~(x)A"(y)A~(»)}& since the two extra y"s
anticommute themselves away. We remark here that
because of this symmetry, each current gets treated the
same, e.g., A&(x) is not singled out in (2'"{A&(x)V"(y)
)&V&(»)}& since (T"{V&(x)A"(y)V&(»)})has the same
structure. Thus, there is complete crossing symmetry.
(This will be used later in discussing our results. )

It may be recognized that the (»—x) expression is just
the conformally invariant two-point function.

Interchanging r ~ p, y~ s, we get a similar expres-
sion for the Pl",V&7 commutator. By adding the two
expressions and setting p, equal to zero, we get a
representation of the Ward identity as calculated from
the T roduct.

B. Naive Ward Identity
p

The naive (nonanomalous) Ward identity may be &2{Ay(x)V.(y)Vp(»)}&
written down by inspection. Since i Bx"

8
-7~—S(x—y) =b'(x —y),

8$~
(31)

=(» )b( '—y')&»P'( ),V"(y)7V'()})

+(»'»(*-")&»LV (),A (»V()}&. (36)

we see that, e.g.,

l9
T*""'=c T-r{y'y"S(x—»)y'S(» —x)}

z 8$
Xr b'(y —») —b'(y —*)7=0. (32)

(Tr{y'y ay. by cy d}=4i~"""u„b„c,d, If any tw. o vec-
tors are the same, the trace equals zero. ) This, of course,
mirrors the fact that &T*{A"(x) V"(y) })=0, i.e., that
it is impossible to construct a covariant antisymmetric
two-point function. We may also show that there
exist no nonanomalous Schwinger terms. We do this
by forming equal-time commutators via the standard
limiting procedure, ignoring, of course, the anomalies:

Pj"(x,0),j"(0,0)7=(lim —lim )T{j'(x, )j"(0,0)}. (33)

Here T refers to the usual noncovariant time-ordered
product. But since the ambiguous seagull terms are
local in time, we may form the equal-time limits from
the covariant T~ product.

The method of 6nding the equal-time commutators is
as follows. We take 2'*""'(x,y,») for a given choice of
pvp and go to a Euclidean metric: xo —+ ix4, etc. Let us
say we are looking for the equal-time commutator in
x andy:

&T*{EA"(*),V"(y)7'~ V'(»)}) .

But of course we see that when p=0, each commutator
term is identically zero. We have thus shown that

T+yvp — Tpvp —P
7

Bx" Bx"
(37)

with similar equations for the other two Ward identities.
There are, then, no Schwinger terms in the nonanom-
alous part of the T product.

C. Anomalous Ward Identities

for the Lj",j"7 commutator, then the anomaly will
occur when (y»0(' y+e. We will evaluate the eBects
of this pinching by integrating over de. This has the
effect of extracting those parts of Tp"p which occur when
s lies between x and y. A slightly more detailed analysis

We are now ready to show that the Schwinger terms
come from the anomalous parts of the T~ product.
We erst must calculate these anomalous parts. The
anomalies in Ward identities occur when, in the forma-
tion of an equal-time commutator, the third current
gets "pinched" between the two in the commutator.
If one thinks of the limiting procedure involved, say,

hm &~{i~(x y'+.)j (y)i ~(») }&
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of this point can be found in Jackiw and Johnson, '
which also discusses more generally the type of anom-
alies associated with the axial-vector current. On a
more naive level, since we know that anomalies are
associated with the more singular behavior of the T
product, we may consider the integration over one of
the coordinates as isolating a four-dimensional 8 func-
tion (or derivatives) in that variable. If we then form
an equal-time commutator, we are studying a product
of 8 functions; one cannot get too much more singular.
Of course, the order of integrations is important, by
analogy with the problem of translating the loop
momenta in the superlicially divergent triangle graph
in momentum space. We will unambiguously decide
the order of integrations by considering which variable
can get pinched in a given commutator term.

Let us consider without further ado the naive Ward
identity

1 8 1T'""'= -&(y' —')(T*{~"(x)El'"(y), l"(s)3))
i Bsp Z

+(1/i) B(x'—s') (T*{V"(y)(V'(s), A "(x)j)) . (38)

Fzo. 1. Sum of direct and crossed
axial-vector triangles.

products, omitting the details:

gPVP
t9

d4x x'T*~"~ 84(x—y)-8$

c 8 (s—y)"
&p0 pa

(2~)'asl (s —y)4
gP VO'Q

X 8'(x—y), («)
8$

(s-x)~
go'v p cs

(s—x) 4

8
8'(y-x).

()yO'

c 8 (s—x)&
~(u) gPVO'A

(2s.)4 Bs (s x)4—

The anomalous behavior occurs for x between y and s
in the Qrst term, and for y between x and s in the second
term. We will deine two "anomalous T* products, "
integrating over de for one and over d4y for the other.
As it turns out,

d'x T*""I'= d'y T*""'= d's T*""~=0 (39)

1 8
()

i Bsp

2x c 8 8
8'(x—y) 8'(s —y),

(2s)' Bx as

It is straightforward to calculate the covariant
anomalous Ward identity now. Noting that
Xa,a f(s) =0 by the antisymmetry of e, and that
8,$(s y)&/—(s y) j—=2s'i84(s y), w—e 6nd that

2m2c 8 8
8'(y —x) 8'(s —x).

(2s.) ' By Bs

It is trivial to show that these two expressions are
equivalent. This result for the anomalous Ward
identity may be compared with that found by Gerstein
and Jackiw, ' who found ambiguities due to the super-
6cial linear divergence of the triangle diagram. In
particular, their result corresponds to setting c=2 in
our calculation for either 8/By" or (8/Bs, )T*&"&.This is
due to the fact that their calculation sums both the
direct and the crossed diagrams as shown in Fig. 1.
Each of these contributes the same amount to the
anomaly. The difference between their results and the
above calculation lies in the third Ward identity:
(8/Bx&)T*I'"'. They obtained zero for this anomaly,
whereas we have found a complete symmetry between
the three identities. The contradiction is not due to the.
crossed diagrams cancelling; the same situation holds
for the three-axial-vector case. What occurs is that
their treatment, while making use of the ambiguity of
the divergent loop integration, has still, singled out one
vertex as diferent from the others in assigning mo-
menta; crossing symmetry is only imposed on two of

T&~&*""I" = d x x T*""~( yxs)

with a similar definition for T(„)*&"p'.Since these two
functions represent coefficients of derivatives of
functions, we must decide what these 8 functions are.
That is, does T&,~* give the coeKcient of B,B'(x—y) or
8,54(x—s)? Since J'd4x T*=O, it is obvious that

d'x(x-s)'T"~"~ = d4x(x-y)'T*~"~ = d4x x T*~"~.

We require that the covariant anomalous Ward
identities agree; this means that we must be considering
the same 8 function in both T~'s, in particular,
8 84(x—y). We can now write the actual anomalous T*

' R. Jackiw and K. Johnson, Phys. Rev. 182, 1459 (1969). See
especially the note added in proof, Sec. IV.

8
indicating that the coefficient of the 5 function in any Z („)+~vp-
variable is zero. We thus look for a first derivative of a
5 function; in particular, we define
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TAax,z I. Schwinger terms from axial-vector
three-point function.

Ward identity of the T product

00 0

gpv Tpv p

$ BSl'

2m2c 8 l9

~'(y —)
(2s)' By" Bx'

Oj
kr'c 8 8

e&'~—84(y —2)—84(x—y)
(2~)4 ay~ ax~

4''c 8
J0 &

jlk g4 (y &) g4 (x y)
(2~)» ay~ ax~

Xg4(x y)(g v~vrok
g v~vaok) (4{))

We see that there are only contributions for (p, v) = (0,j)
or (j,0), where j is a spatial component. In particular,
we can write these contributions as

2m2c 8 t9 8 8
'LJ — c'& ~ —8' (x—y) — 5' (y —s) ——~' (y—~)—&' (x—y)

(2m)4 Bx' Oy~ yo Bxk

Tpv p-
l BSl'

2mc 8 8
~'(y -s)

(2s)' By' Bx'

X8'(x—y) c" "(80"5,&—5&&6;") . (47)

the currents. Our result is manifestly symmetric in
all the variables. The di8ering results may just be
considered as due to di6erent definitions of the
ambiguity.

We are now ready to compute the equal-time limits
from the anomalous terms, using T~,~* for the y —s
commutator and T(„~*for the x—2' commutator. Going
to a Euclidean metric as in the naive case, we 6rst form

2 (*)*""'(y'=s'+~) —2 (.)*""'(y'=s' —~)

Using the standard integral and limiting method as
before, we 6nd a derivative of a spatial 5 function in

y —s in the equal-time limit:

(&/ )~(y' —")(T(~"( )[p'( ) ~"(y)1))

2Ã C t9 l9

~'(y- ) ~'( -y)
(2s.)4 By" Bx

x[~" "(go"g '—g' g"')

~""-(go'g-' g'-g'") j, —(43)

—2Ã c l3

)4(y z) )4(x y) (&Poojtgov &Ivan) (44)
(2x)4 By" Bx

Similarly, we have for the other commutator

(I/')~(* -")E(L~ (*),I ()Ã (y)&)

where k indicates only a spatial index. The term which
occurs in the 8,T~I""I' Ward identity of course requires

p =0; the above commutator becomes

We now recall the covariant anomalous %Yard

identity, along with its evaluation for diferent choices
of (p,,v):

1 8
T pvp

i Bs~

2'' C 8 8
S4(x—y)- S4(y —s)

(2s.)4 Bx By

21i C 8 8
&jkot', g4(x y) g4(y s)

(2s)' Bx By'

8
8'(y —s) 8'(x —y), p, v = j, k

Bp' Bx

2K C 8
e'&" 8'(x—y) 8'(y —s), p, v =0, j

(2s.)4 Bx' By'

8 8
8'(x—y) 8'(y —s), v, , v= j, 0

(2x)4 Bx ay'

=0, p, , v=0) 0.

8
P'+v~v Tv~v)

i BS'l'
(49)

which we list in Table I.

We can finally evaluate the Schwinger terms by
comparing the covariant and "noncovariant" Ward
identities to obtain the anomalous Schwinger terms

2m2c 8 8
p4(x s) )4(y x) (~vvrk ~avokg v) (4g)

(2s) 4 Bx~ By

It may be noticed that each of the ~&" ~ terms is plus
or minus the covariant Ward-identity anomaly. Adding
the two commutator terms, these two covariant con-
tributions cancel, and we anally get for the anomalous

IV. SUMMARY

By invoking conformal invariance or, more specif-
ically, inversion symmetry, we have been able to derive
certain facts about the three-point function. The vector
and axial-vector functions have been determined to
within two and one arbitrary constants, respectively.
The covariant inversion-symmetric structure of possible
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ambiguities in these functions was also easily obtained,
making possible both a comparison with a momentum-
space study of anomalous triangle graphs, and a determi-
nation that in the vector case the anomaly breaks con-
formal symmetry. Finally, using our expression for the
axial-vector three-point function, we obtained general
forms for both the Ward-Takahashi identity anomalies
and the Schwinger terms.

An interesting extension of this work would be a
more detailed study of the vector three-point function,
since the conformally invariant vector terms do not
reproduce lowest-order perturbation theory as trivially
as does the axial-vector function.
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APPENDIX

We. will demonstrate the limiting procedure by
calculating

h( '—r')(2'([~'(*) l"(r)5l"( )}).

We have chosen for definiteness k and 1 as spatial
indices. We set x equal to zero for simplicity and we
assume s/0, y&2' since we are not dealing here with
any anomalies. We thus exhibit the relevant T~ product.

2'&klo(0 y s)

=e»(v'v'~( —r)v'~(r —s)v'~(z) }

obtain
2cs+~y46

2ros4(s2+y2 2y ~ z) 2(y2+y42) 2
(A3)

We have explicitly written out the relevant denom-
inators, except that we have already set y4=0 in the

(y—s)2 term W. e may now find the coefficient of the
spatial 8 function in y by forming the equal-time
commutator and integrating over d'y:

lim d3y[2'oklo(y4 0) 2'oklo(y4 o)5
e~p

=lim
e-+0

2ics4s ~'"
d'y-- (A4)

(y'+0') (s +g —2g'z)

The angular integration is done first, yieldingdQ„= . (A&)
(s +2g 22gz cose) ' (s2+g2) '—4goz2

00 1
4x e'dN- (A7)

(u2+. 1)2[(s2+.u202) 2 4u202z25

Rather than to explicitly do this integral, we now carry
the lim, p through the integral to obtain

We thus have left the integral

00 1
4m@ g dg (A6)

(g2+ 02) 2[(s2+g2) 2—4y2z25

Letting pig/ owe have

T (v'v'v yv'v (y —)v'v }
(22r2)3y424(y s)4

4x " I'dl
s4 0 (u'+1)' s4

(AS)

We recognize that the commutator 8 function will

come from a "singularity" when both y and ~ go to
zero; thus we can let y =iy4 go to zero right away in
the (y —s)' denominator. Because of the antisymmetry
of the ~ function, it becomes obvious that the only
term odd in y' is

—4ic
2sPs ype~" .

(22r2)3y4z4(y s)4
(A2)

—4ic
[ooaoesp(y2g l 2y yl)

(22-2) 'y4s4(y —s) 4

" '0yPp(s'g—' 2s s')5 —(A1).
At this point, we 6nd the terms odd in y, for it is only
these which will contribute to

Our justi6cation for the exchange of integral and
limit is given by the dominated-convergence theorem.
We state this theorem for reference.

Theorem: Given lim, 0 J'dx f(x,o) with lim, of(x,e)

=&(x), if we can find a g(x)g~ f(x,o) ~&g(x) and
J'g(x) & ~ for 0 in a neighborhood of zero, then

lim dx f(x, o) = dxI'(x).
e~p

In applying this theorem, we note that the denom-
inator is always nonzero:

D = (z'+u202)2 —4u202zo=u404+2u242(z2 —2z')+s4

[The discriminant of D is 4(s' —2z2)2 —4s'= —16s'z'&0
since we are in a Euclidean metric with s&0.Thus, there
are no real roots in the variable (uo).5 Thus D'is-
bounded: 1/D&K for all (uo). Then certainly the inte-
grand is bounded by an integrable function:

Now going to a Euclidean metric y'=iy4, s'=is4, we u'/(u'+1) D&Ku'/(u'+ 1)'. (A9)
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The above theorem certainly holds. %e note there that
this theorem is applicable to all the limit-integral
exchanges done in this paper. The integrands always
consist of an integrable function along with either the
denominator D above or a term like (1/up) lnD which
is also bounded. '

Getting back to our commutator, we have found

d'y[2'*'"(y = )—2'*"'(y = —)3
&~0

This means that the equal-time commutator has a
P(y) with the above coefEcient. In particular,

2pc (» —x) (» —x)'
-pPP'N 8'(x—y) ) (A11)

X4 (»-x)'

where we have reinserted x. This is seen to be a partic-
ular term of

2' s+~
~kOla

X4 S'

zc—p' " [(»—x)'g ~ —2(» —x) (»—x)&]

~(*—y), (A12)
(» —x)'2c s s»»,

p"" . (A10)
~4 (»p)4 as quoted in the text. We will not bother to illustrate

1 1
6 Uniform convergence does not hold for some of the integrals, the veracity of the above expression for other choices

necessitating the weaker dominated-convergence theorem. of

happ.
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Group-Theoretical Construction of Dual Amplitudes

L. CLAVELLI AND P. RAMOND

National Accelerator Laboratory, Bata~ia, Illinois 60510
(Received 5 October 1970)

We present general group-theoretical requirements for the construction of factorizable, dual N-point
functions. Dual amplitudes for the scattering of arbitrary numbers of spinning particles are built as an
example of this approach.

A LTHOUGH the SLr(1,1) invariance of the
Veneziano E-point function has long been

recognized, ' it has not yet been systematically exploited
in the construction of new dual amplitudes. In the
following, we would like to generalize the group-
theoretic structure of the multi-Veneziano function,
discussed earlier by the authors, ' to include external
particles of di6erent types. As an example of our
techniques, we give a simple, factorizable dual ampli-
tude for the absorption of arbitrary numbers of high-
spin particles.

For the purpose of this paper, we regard duality as a
purely group-theoretical concept, implying SU(1,1)
invariance but not necessarily any particular asymptotic
behavior (e.g. , Regge). Basic to our description are the
three generators of SLr(1,1), namely, Lp, L+, and L,
which satisfy the algebra

[Lp,L~7=aL~, [L+,L j= Lp. —
We present the following minimal set of group-theoret-
ical conditions for the construction of dual amplitudes.

' Z. Koba and H. S.Nielsen, Nucl. Phys. B12, 517 (1969).
~ L. Clavelli and P. Ramond, Phys. Rev. D 2, 973 (1970).

(i) Associate with the absorption of a particle with
momentum k„,spin j, j'3, internal quantum numbers

(X},a vertex operator V(k„,j,jp, (X};»), where»=e "
is a complex variable on the unit circle.

(ii) Require that V(k„,j,jp, {X};») transforms under
SLr(1,1) as a spin Js representation, that is to say,

[Lp, Vg = —»—V, (2a)

—1 d
[L„V]= »+ »—~J. ~V,

VZ d»
(2b)

(iii) Under the Lorentz and internal symmetry
groups, V is required to transform in the same way as
the 6eld of the absorbed particle. This ensures the
correct selection rules at each vertex.

where we take J~ to be in general a function of the
Casimir operators of the Lorentz and internal symmetry
groups

J»= JB(m',j,c") .


