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where we can immediately identify from (31)

s =-', (ni+ ns+ns) =-', (n —1),
(B4)

M=-s'(ns —nt+ns), cV'=-,'(nt —ns+ns)

or, in our case, with m=0,

or, in terms of the hypergeometric functions,

D=F( y ——M, 1+q —M, 1, sin'L-', (fl+rr)])
XF(—p+M, 1+y+M, 1, sin'P —',(0+rr)]). (&6)

y=-,'(n —1),
M= M—'= ', (n-s n—t) .

Then the matrix element in (3.6) is given by

Finally, we continue this expression to our continuum

(Il4~) values,
q = jet(n —1),

M =-,'(n+ 1),
D=(ntns0~ e "~+'&~'~ ntns0)

=(f,iV(e'-+ * [&m)g(f iV[—e'-+'"if —m).
Now each factor is a rotation matrix element with
"spin" q. Hence

D=D~, sr (&+rr)D sr, sr"—(if+—&)

and obtain

D=F( n, 0, 1,—sin'(-', 8+-'ss.))
&&F(1, 1+n, 1, sin'(-,'ll+-', s))

=f1—sin'(-'g+-'s-)] ' ~= [coss(-'8+-'rr)] ~ '

Pins (rg)]—m—t (li 7)
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The possible role of a scalar-meson nonet in determining hadron masses by means of generalized Gold-
berger-Treiman formulas is studied. Existing data on scalar-pseudoscalar meson couplings are analyzed,
assuming SUB-invariant-couplings for the unmixed mesons. The d/f ratio for the coupling of octet scalars
to the baryon octet is predicted to be the same as in the Gell-Mann-Okubo mass formula. The strength of
the transition vacuum —+ scalar meson (induced by the energy-momentum tensor 8„„)is measured by the
constant F,. Denoting the SU3 singlet scalar meson by o.p and the octet g-like scalar by os, we 6nd F p to
be much larger than F 8, provided that the 0 pBB coupling is not considerably smaller than the 08BB cou-
pling. Then F„is comparable to the usual pion decay constant F . The pseudoscalar octet dispersion rela-
tion is not scalar dominated. This result is also suggested by analysis of partial conservation of axial-vector
current for the scalar-pseudoscalar system, and consideration of the relation to the underlying scale-invariant
limit. Implications for the underlying dynamics are discussed.

I. INTRODUCTlOÃ

HE existence and properties of scalar mesons have
been the subject' of much theoretical specu-

lation. "The difhculty of obtaining unequivocal ex-
perimental information has prevented a decisive clari-
fication of the situation. It is also possible that some of
the resonances in question are too broad to be described
as particles. However, it seems reasonable to assume
the existence of a nonet (with average mass around 1
GeV) of 0+ mesons. Recent studies' ' of broken scale

*Supported in part by the National Science Foundation.
'H. Harari, in Proceedings of the Fourteenth International

Conference on High-Energy Physics, Uienna, l96S, edited by
J. Prentki and J. Steinberger (CERN, Geneva, 1968), reviews
meson spectroscopy from the point of view of the quark model.
Some further references are listed in this paper.' B. Dutta-Roy and I. Lapidus, Phys. Rev. 169, 1357 (1968).
These authors discuss many phenomena in which scalar mesons
seem to be required to give a theoretical interpretation of the data.

~ M. Gell-Mann, lectures at the Summer School of Theoretical

invariance have attributed a more fundamental signi6-
cance to the scalar mesons, i.e., that they should
dominate matrix elements of the trace of the energy-
momentum tensor 8„„and thereby determine the
masses of the hadrons. Variants of this idea have been
expressed previously. 7 ' This paper is primarily con-
cerned with this question.

In Sec. II the couplings of the scalar and pseudo-
scalar nonets are analyzed, assuming that SU3 sym-
metry is maintained in the vertices except for mixing
sects. This view is not universally maintained; for

Physics, University of Hawaii, 1969 PCaltech Report No. CALT-
68-244 Iunpublishedl g.

4 P. Carruthers, Phys. Rev. D 2, 2265 (1970).' S. P. de Alwis and P. J. O'Donnell, Phys. Rev. D 2, 1023
(1970).' G. Mack, Nucl. Phys. 85, 499 (1968).

M. Gell-Mann, Phys. Rev. 125, 1067 (1962).
P. G. O. Freund and Y. Nambu, Phys. Rev. 174, 1741 (1968).

9 G. 3. West, Phys. Rev. 183, 1496 (1969).
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example, Gilman and Harari have suggested'0 that
some of the mesons in question belong to simple repre-
sentations of chiral SV2&SU~ at infinite momentum.
The experimental situation with regard to candidates
for the scalar nonet is still suKciently obscure that one
cannot say whether the masses are compatible arith a
standard nonet mass relation. We take the e(700) and
e'(1060) (the latter called rfs+ in the Particle Data
Group compilation" ) to be the 0+ isoscalars. For the
I= j. scaIar meson we have three candidates: the narrow'

b(962), the trN(980), and the s.~(1016). We shall
tentatively regard these as manifestations of the same
state and shall use the parameters of the n.~(980) in
our analysis. "," The status of the ~ meson is even
more obscure. Although the «P25) seems to be dis-
credited, " there are. several Ex bumps between 4.4
and 1.2 QeV and. also peripheral phase-shift analyses
indicating a Ex resonance around j. GeV. '4 According
to the standard mixing scheme, m„has to be less than
m, ; our subsequent analysis suggests m„—I GeV and
a scalar mixing angle of about 23'. Should the x mass
violate the restriction m„&m, , one would have to
abandon SUB symmetry pIus mixing or introduce more
particles into the mixing scheme. In particular, it is
interesting to consider the possibility of a third scalar,
isoscalar meson as suggested. by several authors. 4 ""
We give a brief analysis of three-particle mixing.

In Sec. III the conjectured mass formulas, based on
dominating unsubtracted dispersion relations for 8~„by
scalar mesons, are studied. In Ref. 4 it was noted that
these assumptions lead to difFiculties for the pseudo-
scalar octet if only two (nonet) scalars are present. Thus
it is also possible that the breaking of scale invariance
is suKciently severe that at least one of the dispersion
reIations needs a subtraction; otherwise more scalar
mesons are required. On the bas1S of partial conseI'"
vation of axial-vector current (PCAC) relations, Crew-
ther and Gell-Mann have suggested'~ that the pseudo-
scalar octet masses calculated assuming scalar domi-
nance are subject to substantial corrections. This point
of view is adopted in the present work. Analysis of the
baryon octet masses leads to a determination of the
ratio F.,g„ss/F.g«ss, where os, os are (unmixed)
scalars and Il„. is analogous to the usual Goldberger-

'0 F. Gilman and H. Harari, Phys. Rev. 165, 1803 (1968).
"Particle Data Group, Rev. Mod. Phys. 42, 87 (1970};39,

1 (1967).Appendix A of the latter paper analyzes g(725).
"R. Ammar, %'. Kropoc, H. Yarger, R. Davis, J. Mott, B.

Werner, M. Derrick, T. Fields, F. Sch~eingruber, D. Hodge, and
D. D. Reeder, Phys. Rev. Letters 21, 1832 (1968); Phys. Rev.
D2, 430(1970}

"M, A. Abolins, R. Graven, G. A. Smith, L. H. Smith, A. B.
Wicklund, R. L. Lander, and D. E. Pellet, Phys. Rev. Letters
25, 469 (1970).

~4 J. C. Pati and K. C. Sebastian, Phys. Rev. 17'4, 2033 (1968),
is a representative paper analyzing &gs form factors in terms of E*
and ~ pole dominance. Such fits typically yield m, =1 GeV.

'6 H. A. Kastrup, Nucl. Phys. 815, 179 (1970}.
'6 I . N. Chang and P. G. O. Freund, Ann. Phys. (N. V.) 61, 182

(1970).
'7 R. Crewther and M. Gell-Mann (private communication}.

Treiman constant F ."We also predict the d/f ratio

of the octet scalar-baryon octet couplings and discuss

how one can determine the scalar nonet couplings and

thereby check the assumptions of the theory. In order

to disentangle F, from F „we need to know gs/gs, or,
equivalently, g, ~~/g, ~sr and the mixing angle. As an

example, if e' is made of strange quarks and does not
couple to the nucleon, a "canonical" mixing angle
8=tan-'(1/v2) leads to F„/F„=0.19. In this case F„
is about 120 MeV, comparable to F =95 MeV. P, is
much larger than F, if g 8g~ is comparable with g,gg~.

In Sec. IV the relevance of PCAC to scale breaking is
studied, in particular, the matrix element (tran%„'~o),

which leads to the relation F G. .=(tts '—fts, ')Ft(0).
The form factor Ft(0) would be unity in the limit of

chiral symmetry, but is around —, according to our best
value of 6 .This relation suggests that G does not
vanish in the limit of chiral symmetry (unless this limit

coincides with that of scale invariance, in which case
the dilaton mass vanishes).

The form factors Ii~ and Il2 appearing in the matrix
element (trI 5„«to) are evaluated in terms of s and At
meson parameters. The assumption that the divergel|ce
vanishes for f ~~ determines Ft(~). We suggest that
Ft(co) is zero, in which case the Atetr coupling constant
is determined. I'~, , is predicted to be 30 MeV.
Consistency of this determination of gz, with that of a
hard-pion calculation gives the interesting relation
F =en, s/y, mrs~ in good agreement with experiment. In
the approximation m, =m, this is in essence the KSRF
relation "'0

In Sec. V we discuss our results in the light of various

dynamical and structural assumptions about the under-

lying theory. Throughout the paper we tacitly assume

that when interactions that break scale invariance are
turned o8, scale "invariance" is realized by the exis-

tence of a massless Goldstone boson. Only in this way
can we justify the mass formulas based on scalar domi-

nance of matrix elements of 0&„.

In Appendix A we consider the role of e exchange in
m.S scattering and 6nd that g,~~=g, . Appendix IIl

estimates the ratio F,/F, from the baryon-decuplet
masses. The result (0.15) is in reasonable agreement with

the baryon-octet determination.

II. COUPLINGS OF SCALAR AND
PSEUBOSCALAR NONETS

We consider the SU3-invariant trilinear couplings
which can be formed from a nonet of scalar fields o.o,

o; and a nonet of pseudoscalar fields Ps, g; (i =1,2, ... ,8).

"We define F and F,by the following formulas: (0
~
0'„p (

s.«(p) )
(2a&)'Is=sp„F S;; (0(S„,~o(p))(2 )'I'='(g„„p'—p„p„)F,. We use
a metric g„„such that x'=x0' —x'. Numerically F is about 95
MeV and the PCAC relation is BI'S„=Ii I 2x;.

~9K. Ka~arabayashi and M. Suzuki, Phys. Rev. Letters 16,
255 (1966}.

'0 Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071 (1966}.
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These are conveniently written as

@BPP f0004'0 +f1004'i +~3gsdijs0ik j4 0+g 04' sir@ i g

aCBBB=k0&0 +k1000 i +~3ksifij00i&j&k ~

(2.1)

(2.2)

SUs-symmetry breaking is taken into account to the extent that os-os and $0-ps IIIIXIIlg occurs with mixing
angles 8 and P:

e =0'0 cos8—08 sln8,

0'=00 Sin8+os COS8,

lj =ps cosp-$0 sing,

lj =ps slnip+$0 co&jb.

(2.3)

(2.4)

The notation adopted above was chosen for convenience.
It is useful to rewrite Eqs. (2.1) and (2.2) in terms of the constituent isospin couplings. This yields the

following effective I agrangians:

+BPP gs'0'0'0 (Ij ) +g~'«0 9 +g~'«'" ll +g '«'' 0(09)'
+g«00lj +gags'0 QI1 +g'»B0'»Ij 0slj 00+g»B'0» ass%'00+'g»BKKssx'+'0++g»K»(«'+&~+H'c')

+gK„;(Ij'Eg+H.C.)+gK„„(IjEii+H.c.)+g, 01rs+g; 0'Irs+g, KKg&+ge KK0'+&, (2 5)
jt' &%3 t I@888—g~ ~ ~ (q g ~gq ~ ~(q g g~gq q~& & ~gqqq& ~gq ~g~~6 7l"p7 ~gg gpss KK~g8w'gg~t&N ~g8gg6KK~g'jr~ac'R37KY& ~

The coupling constants are given by the following expressions:

g,„„=g0Cossp cos8+sin'@ (gl cos8+gs sin8) —gs sin8 cosp sing,

g,„„=g0sinsg cos8+cossg (gl cos8+gs sin8)+gs sin8 cosg sing,

g,« =sin2$ (—g0 cos8+gl cos8+gs sin8) —gs sin8 cos2$,

g, « =sin2& (—g0 sin8+gl sin8 —gs cos8)+gs cos8 cos2$,

g~~s~s~ =g0 cos Q sln8+sln Q (gl S1118—gs cos8)+gs cos8 cosf sing q

gg~«=g0 sill Q sln8+cos Q (gl S1118—gs cos8) —gs cosH cosf. sing

g»B0'» =2gs srnk+gs COSA& g»B0» =2gs Cosh gs arne) g»BKK =~3gs y

g,K =V3gs, g,K0 =—gs sing+f0 cosp, g„K„=—gs cosg —gs sing,

g,~»» =gl S1118+gs COS8, g,~KK =2gl S1118—gs COS8,

g~ »=gl cos8—gs S1118, g~KK=2gl cos8+gs S1118,

ggyg ks cos 8+kl cos8 snl 8+ks SII1 8~

g, ...=hs sin'8+hi sln8 cos'8 —hs cos'8,

g, „=3h0 cos'8 sin8+hl(1 —3 cos'8) sin8 —3hs sin'8 cos8,

g. ..=3h0 sin'8 cos8+hl(1 —3 sin'8) cos8+3hs cos'8 sing,

g, „K=hl cos8 3hs sin8—, g, »„»B=hl sin8+3hs cos8,

g,„,=2hl cos8+3hs sin8, g,.„„=2hlsin8 —3hs cos8, g „„„=3&3hs.

(2.6)

%e have expressed 25 coupling constants in terms of
seven constants g;, h; and. two mixing angles 8, Q.
Unfortunately it is very diflicult to obtain experimental
information about most of these constants. The success
of the Gell-Mann —Okubo mass formula for the pseudo-
scalar octet indicates' that the q-g' mixing angle p
is small, say, 8'. Therefore to analyze the properties of
the scalars we shall simplify the relations (2.7) by setting
coss$=1, sins&=0.

The most direct information bearing on the couplings
comes from the decays of the (presumed) scalar nonet

. into pseudoscalary. Elementary calculations give the

following decay widths:

ge»» 3p».

4a- m, '
gs'»» 3p»

ge'KK PK
I a'~KK.

4x m, ' 4n. 2m ~'

g»K'» 3p» g«0 pKI g~x& ~. xg=
4
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Since the coupling constants are dimensional, it is
convenient to extract a characteristic mass mp, g8g~
=~pggz~, and to parametrize the coupling strength by
the dimensionless quantity

ps' z=—gsi ~2/42rn222 ~ (2.9)

=0.17, y, =0.020,
0 32' &2rN~y 0 31

(2.10)

The strengths of the singlet-octet-octet coupling
(yi—=gi'/42rnpp') and the octet-octet-octet coupling
(&2=g2 /42rtnp ) are faund, uSing the relatiOnS

'YmSwp =+2q vew~+7e'ww rl+r2 & (2.11)

We choose mp to be 1 GeV.
In order to obtain some information about the coupl-

ing strengths, we assume the following parameters.
Further clariGcation of the experimental situation could
lead to drastic revision of these values. For e we assume
mass 700 MeV and width 320 MeV. The decay modes
of p' (1060) into 2rir, EEare imprecisely known (I'~,~ =80
MeV, I' (65 MeV, I'KK)35 MeV) and we use
I 2 g I~g —27 MeV to get a rough estimate. We
assume the decay width of 2r&(980) into pry to be 50
MeV. (The ~ is controversial, so we do not use it as
input. ) Using these parameters, we find

is much less than unity (0.062). Our value g2 = —0.83gi
may be compared with the SU»(SU3-symmetry rela-

tion g~= —V2g~. When y, vanishes, a canonical
mixing angle goes with the chiral symmetry relation

g2/gi = —V2. Solving (2.13) gives two solutions:
8=22'40' and 8=63'. The latter may be rejected by
using the prediction

r2=—
-tan8 —(g,/2gi)

1—(g2/gi) tan8
(2.14)

According to (2.10) this ratio is 1.89, while the values
22'40' and 63' found from Eq. (2.13) predict r2=1.52

and 3.24, respectively. Both (2.13) and (2.14) are com-

patible with 8—23'. Canonical mixing can be obtained
only if we have overestimated I', ~ and underestimated
F ~ „by substantial amounts. From the foregoing
parameters, we predict m, =1 GeV and F„~ =140
MeV.

Next suppose there is a third isoscalar meson 5
which mixes with op, a p. (An explicit model of this sort
was considered in Ref. 4.) Since the mixed fields p;

(i= 1, 2, 3) may be chosen real, the transformation from
the unmixed basis is exactly the same as the rotation
of a vector

p;=/exp( —i821 t)7@2;& ',
to be comparable:

where sp= (o p, o p,S) and (t;);2= i p@2. The —axis of
yg

——0.112, yg =0.078. rotation is identified by two mixing angles $1 and $2,

Having chosen 8 positive, the relative sign of g~ and g~
~ ~ A=(sin icos, , sin 1 sin 2, cos 1).

has to be negative since the ratio

1( tan8+g, /g, y
'

'r 'KK 4 Eta118—g2/2gi)

The case of op-o-8 mixing corresponds to a rotation

(2 13) around the s(s) axis. In detail, the general mixing
transformation is

pi cos8+n12(1 —sin8)
p2 —— np sin8+nin2(1 —cosH).22, n2 sin.8—+ninp(1 —cos8)

np sin8—+nin2(1 —cos8)
cos8+n2'(1 —cos8)
ni sin8+npnp(1 —cos8)

n2 sin8+ninp(1 cos8) —o p

ni sin8+npnp(1 —co—s8) 0's

cos8+np'(1 —cos8) . ~. S.
(2.15)

The angles can be related to the matrix elements m;;~
of the unmixed basis in a familiar way.

III. HADRON MASSES AND TRACE OF
ENERGY-MOMEÃTUM TENSOR

The energy-momentum tensor 8„, occupies a key
position in elementary particle physics because of its
familiar role in the construction of the Poincare gener-
ators. In addition, the dilatation and special conformal
operators are expressible as simple moments of 8„„in
renormalizable Geld theories. In this manner the viola-
tion of scale invariance and conformal invariance is
directly related to the trace 8=8„&by the local relations
BI"D„=H and 8&E„„=2@,8, where D„ is the dilatation
current and E„„the conformal current. A review of the
current status of the subject is given in Ref. 21. It is

"P. Carruthers, Phys. Repts. (to be published).

interesting to explore the consequences of assuming that
the violation of scale invariance is gentle in the sense

that the single-particle matrix elements of 8 vanish as

the momentum transfer t —+~ and that the dispersion

relation is dominated by a set of scalar mesons. These

assumptions lead to mass formulas analogous to the
usual Goldberger-Treiman relations when one recalls
that the matrix elements of 8 coincide with those of the
energy density Hpp for single-particle rest states. In this
section we analyze more closely the formulas derived in
Ref. 4.

The main questions of interest are as follows. (1) Is it
reasonable to set 8(pp) equal to zero? Only then can the

masses be simply expressed in terms of scalar-meson

parameters. (2) How many scalar mesons are there? (3)
Do the scalar mesons dominate the dispersion relation,
even when 8(pp) =0'?
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m, 'Il G
8(()=P +background.

m2 —t
(3.3)

Dropping the background term and setting 1=0 gives

2ms=p F G (3 4)

and a similar analysis for spin-2 baryons gives

~B Q FegeBB ~ (3 5)

Since G has dimension (mass) while g BB is dimen-
sionless, a further analysis is required to establish that
the spinless mesons obey quadratic mass formulas. We
shall return to this question in Sec. V.

For the baryon octet, Eq. (3.5) has the unmixed form

The assumption that 8 —+ 0 as t —+ is indeed reason-
able, although not true in simple perturbation-theory
models. However, such models ignore the key feature of
hadron physics, the large multiparticle amplitudes
(which through unitarity tend to suppress a given
matrix element). Broken SUs requires at least two
scalars if the subsequent mass formulas are correct.
With regard to question (3), it seems likely that the
scalar-dominance hypothesis is reasonable for baryons
but possibly wrong for the pseudoscalar octet. Therefore
we 6rst derive the various parameters of the theory from
baryon data. In Sec. IU we take up the question of
symmetry breaking for the pseudoscalars.

For each scalar meson 0-, we delne a constant F
(pp mass) by

&0I8p. ln(p))(2~)'ls=sF. (gp.ps —Ppp. ) (3 1)

so that (OI 8„"Io)(2pr)'~s is sis,sF,. For spin-zero mesons
m, we dehne a O.mm coupling constant by

G, =(4 )'i'(
I j tI pip) (3.2)

with all particles on-shell. j = (ms+8s)g is the meson
current, so that 6, will in general diGer from the
constants g by a constant depending on the number
of times the 6eld @ occurs in the effective couplings
(2.1) and (2.2). Writing 8(t) =(4p~p&')'I'(p'I8(0)

I p), we
6nd

siss —mx ——(4n/V3) F.,gs,

mz+sNg =2F„gp.
(3.9)

The mixing parameter 0. is easily estimated using the
observed masses of the baryon octet. One finds

=0.132.
m- —m~ 3 1—Q

(3.10)

Equation (3.10) gives a d/f ratio of —0.198, or
n= —0.25. Now Eq. (3.9) gives

F.,gs/F;go = —0 117 (3.11)

In order to evaluate F,/F „one needs information
about the coupling constants gg and go.

We note that gs is the m-~NE coupling constant de-
fined by Z=gspsB. N~N. Knowledge of the d/f ratio
then allows one to predict the pure octet scalar (war and
s) couplings to the baryon octet. The p, p' couplings
require in addition a knowledge of both go and the mixing
angle.

The mass formula predicts the d/f ratio for the
coupling of the unmixed scalar octet to the baryon
octet. This can be checked by an eventual determination
of some of the +~GAB and ~88 couplings. The mixing
angle 8 is perhaps most easily determined from the
scalar decay strengths as in Sec. II. The coupling
constant gp could be obtained from g,B.Ns+g, .~Bs
=g«~~'+g«~~' provided g,~~ and g;~ip can be found.

In Sec. II we found that the e'm-m coupling is sup-
pressed, as in the picture wherein e' is composed of two
strange quarks. It is reasonable and illustrative to see
what this model predicts for scalar-baryon couplings,
since g, ~~=0 allows some predictions. Supposing the
mixing to be canonical (even though our rough estimates
of Sec. II gave 8=23') gives g«~~/g pNip= —1/V2, or
gp/gs = —2(3—4n)/v3 = —1.64, and

where g8 is the m.~XX coupling constant and n is delned
by the effective scalar octet-baryon octet coupling

ZBBB 2gs——B;[nd,,.s+i(1 n) f—;,sgBsS;. (3.8)

We note that the Gell-Mann —Okubo mass formula is
automatically satisfied. Combining (3.6) with (3.7),
we find (go—=g,BB)

~B F«gapBB+F«g«BB ~ (3.6) F„/F,=0.19. (3.12)

The erst term gives the average baryon mass and the
second term gives the SU3 breaking. g,~~ is independent
of g, while the g,~g are given" by

g. ipN=t (3 4)/~&jgs, —
g:.x= r(3 -2n)/~—~jgs-
g.,~~ = —(2n/v3) gs,

g«sz =(2n/v3)gs,

(3.7)

"P. Carruthers, Introduction to Unitary Symmetry (Interseience,
'New York, 1966), p. 118.

P,go=1.15 mN =1.08 GeV,

gs = —0.126 GeU,
(3.13)

In Appendix B the baryon decuplet is shown to give
the value 0.15. This prediction is quite reasonable in
view of the approximate SU3 invariance of the vacuum.
A reliable determination of the ratio F,JF«would
provide an important clue to low-energy hadron
dynamics.

Eliminating F«g«~N from Eq. (3.6) using Eqs. (3.7)
and (3.11) gives
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Given the corrections of the nonet assumption, an ex-
perimental determination of go and g8 will determine
Ii, and F,. It is interesting to explore the consequences
of the quark-motivated relation g,.+~=0, since we have
some information on g,~~ from m.E and SE scattering
(see Appendix A): g, = (gs)g, sr~=9 for g,~~'/4s. =10
and, hence,

P„—120 MeV, F„=23MeV. (3.14)

It is interesting and suggestive that F„is roughly equal
to F„(=95MeV).

A similar analysis of the mass formula (3.4) for the
pseudoscalar octet leads to difficulties; in particular,
that F,&P,. In detail, the unsubtracted mass formulas
for the pseudoscalar and scalar nonets are

applied to the real world, as already noticed in Ref. 4.
Rewriting the pion mass formula in the unmixed basis
gives m '=F„g&+F„gs, where gr and gs are 1 GeV.
Neglecting m then gives roughly F„/F„——g&/g, =1.2.
This result, exact in the SV3)&SV3 limit, contradicts
the approximate SU3 invariance of the vacuum'4 as
well as the rough calculation leading to (3;12).

In Ref. 4 it was suggested that the above discrepancy
be resolved by the introduction of another scalar meson.
Here we follow a more conservative approach in which
the scalar-dominated mass formulas are abandoned for
the pseudoscalar octet. This attitude is useful since one
can make many more predictions if the extra meson
does not exist.

~W FEgCTW+FC gE 1I'W 7

~'g FEgEtP/+F8 gc tP/ I

2~x =Fegexx+Fe'ge'Icx yl

.2=F
Wats & Calf lf +F0 gt s

2 —Pme~ =~ cgem~x~+Fe'ge'm jyw~l

m, '=3F,g„,+~, g, „,

(3.15)

IV. PCAC AND BREAKING OF SCALE INVARIANCE

The success of PCAC is generally regarded as due to
the smallness of m relative to other hadron masses.
In the limit of a conserved axial-vector current (m =0),
one has the exact formulas

F.g ~~= —MFP~(0)
F G, = —m, 'Fr (0),

2~K FfgEKK+ 6 g6 KC )

m~r —&' g ' '+3~&'gs'e's' ~—L'

Suppose we set m '=0, which corresponds to the energy
density having SU2&(SV2 symmetry. Eliminating P,
then gives for the pseudoscalar mesons (ignoring rl-rl'

mixing)
m„'=2grgsF;/g. ..,

2mx =3grgsF /g

m „=—gogsF '/g2

(3.16)

The ratio ness/m&' ——ss is exactly what is expected from
the Gell-Mann —Okubo mass formula. (Our mixing
assumptions are essentially equivalent to using lowest-
order perturbation theory. ) It is to be noted that terms
involving gr' and gss cancel in arriving at (3.7). We also
note that the coupling constant go is given by

ge
———2grm, '/m„'. (3.17)

This evaluation of go may be compared with g~,g2 found
in Sec. II:

go: gi: g2= —6.1:1:—0.83. (3.18)

It is interesting to note that if particles o „P;(i =0, ... ,8)
belonged to a (3,3)+(3,3) representation, the
SV3&SV3-invariant coupling would give the ratios
—2:1:—v2 in place of (3.18). The result (3.18) seems
to show a remnant of SV3&SV3 symmetry.

Although relations (3.15) are true in some models, "
they lead to unreasonable numerical results when

~ In a purely mesonic model in which scale breaking is due to
a linear term o 0+ca 8 alone, Eqs. (3.15) are satisfied. The 18 meson
fields 0;, p; are put in the representation (3,3)+(3,3) and interact
via quartic couplings in the scale-invariant limit.

where Frs'~(0)=G~/Gv ——1.18 and the form factor
F, (0), studied in detail below, is of order unity.
According to (4.1), G remains large in the limit of
SV&)(SV3 symmetry, unless that limit also corresponds
to the scale-invariant limit, in which case 0. is the mass-
less dilaton. The relevance of the second PCAC relation
in Eq. (4.1) has been pointed out by Crewther and
Gell-Mann '~

The PCDC (partial conservation of dilatation cur-
rent) hypothesis does not have such a reasonable
foundation since the lightest candidate for the "massive"
dilaton has m, 2=0.5 GeV'. In the limit of exact scale
invariance we would have, analogous to (4.1),

i

F+,„=2m', F,g,srsr M, ——

for sPin-0 and sPin-sr Particles. (Here we have assumed
only one dilaton, as seems dynamically most reasonable. )
Apart from mixing efkcts, it is reasonable to suppose
that F is not changed appreciably as explicit scale-
invariance-breaking interactions are turned on. How-
ever, Eq. (4.1) indicates that G changes drastically;
although other contributions now occur Lsee Eq. (3.4)
or (3.15)j, it seems unlikely that they will compensate.
t Neglecting mixing gives 2m = —(F,/F )m, sFr (0)
=O(m. ').j

Hence it seems that PCDC must be abandoned for
the pseudoscalar octet. The mass formulas for baryons
and heavy mesons ( 1 GeV or greater) may be trust-
worthy, although not with the same accuracy as pion
PCAC relations. If e(700) is the main remnant of the
dilaton in the real world, we can organize the low-lying

~ M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 175,
2195 (1968).
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particles according to the following pattern: (a) m'(m, '
(pseudoscalar octet), (b) m'= m, ' (p meson), (c)
m')m, ' (baryons, scalar octet, pseudoscalar singlet).
It is a moot point whether even the mass relations in
category (c) are reliable. Further work is needed to
learn how to calculate scale-invariance-breaking cor-
rections. Nevertheless, the picture is consistent if we
assume the validity of the scalar-dominated mass
formulas for category (c). For particles in category (b)
corrections are expected to be substantial but not so
drastic as for the pseudoscalar octet.

It is interesting to combine the CAC an.d CDC
relations for the nucleon to obtain

I p./F. I =g.~N/G~g. xx=1 (4 )

using the physical values of the couplings. This calcu-
lation ignores mixing but supports the analysis of Sec.
III, whi. ch found Ii„=Ii .

In order to study the implications of PCAC for SPP
couplings, we de6ne form factors Iij and Ii2 by the
relation

(4„„') & (p;(P')
I p„,'ISI,(p))=- L(P+P)„p„,.(t)+(P'-P).P.;,.(t)7, (44)

where F»' is the usual octet axial-vector current while
i and k label pseudoscalar and scalar states P and S.
We write the PCAC assumption in the form 8&F„
=F;m,2&; and obtain from (4.4) the relation

F,G~.~.s,(0)=Lm'(P~) —m'(Sp)7F&;, a(0). (4.5)

G, e„(0) is not quite the physical coupling constant";
for pions the correction is expected to be small.

Thus far the indices i, j, and k are only labels with no
group-theoretical signi6cance. However, the normali-
zation has been chosen so that for free nonet 6elds
(o;,p;) in (3,3)+(3,3), for which P„P=d@I,(&,B„a~
—0;8„&&),the form factor F& is unity. The sign is chosen
to conform to the usual convention" PF,o;7= id- .

etc;
If the extrapolation from 5 =0 to m~' is ignored in the

coupling constant, we can use (4.5) to estimate F~(0).
For the m and E, we then find

&0I&."I '(P') (P) )(4 ')'"
P'+P) F —(P'+P) F—7 (49)

The discontinuity of this amplitude is given by

—iI (—P'+P)„1~,—(P'+P)„Imp, 7

= 2(2~)' Z ~(P+P P-)—
&& &0

I ~.,~
I ~)&~ I i-*I~)(2~)"'. (4.10)

The pion contribution is

ImFi~ ——0,
I~2 =~8(t m. ')F.G—... (4.11)

In order to give the Ay contribution, we make the
de6nitions

&~1m~ =g~~~fJ'&" ~P~)

&OI F„,~Id, (P)X))(2')'~'=g~e„(Pa)S;;, (4.12)

where e„ is the spin-one wave function. Now Eq. (4.10)
gives

Impy" =~8(t mg') 2ggg~, ,
—

ImF g" ——n-8 (t—m~') egg�..(m.'—m. ')/2m''. (4.13)

It will be noted that as one goes away from the SU3
&(SV3 limit (m =mls ——0), FP'(0) is much more sensi-
tive to the purely kinematical corrections than is Fz '(0).
The evaluation of F& '(0) is clearly more reliable.

The contribution of e and e' to the Adler sum rule'~
for x-x scattering inay be written as

1= IP -(0) I2+ IP -'(0) I2+". (4 g)

showing that c and e' contribute 0.26 and 0.01 of the
total, respectively, according to this evaluation. This
is somewhat smaller than found in Ref. 27, and could
indicate a broader e, or another scalar.

We now consider the dispersion theory of the form
factors F~ and F2. (This is simple because the ~0 channel
is dominated by m and A&.) This allows one to estimate
Fq(0) —Fq(m ') m terms of parameters of the
meson. In the annihilation channel we write

p IEe(0)—
~Kg&KK

)
m, —ASK

2' g,F; (0)=——
m, 2 —m.2'

(4.6) 1
ggaga~~

Fg(t) =
kg —]

(4.14)

The m. and Ay pole contribution to the form factors is
exhibited by the equations

p ~~(0) =0 52 F ~"(0) =0.08,
pp~(0) =0.43 F,~"(0) =0.20.

"Q is dined as in Eq. (3.2)."M. Gell-Mann, Physics 1, 63 (1964).

(4.7)

and similar relations for e'. We can use the analysis of
Sec. II to evaluate the coupling constants, finding for
the absolute values

gage&~ m —m2 2

F2(t) = + — — . (4.15)
m~' —~ m~' —] 2m&'

One conventionally assumes that F& requires a subtrac-
tion but that Ii2 does not.

In order to agree with PCAC, one also assumes that
the form factor of 8&P„;~, (m 2 —tu 2)p&+tp2=H(t),

» S. Adler, Phys. Rev. 140, B736 (1965).
/
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obeys an unsubtracted dispersion relation dominated
by the pion pole. Requiring that H(~) vanish then
determines F~(~):

F,(m) =
ng 2 —m. 2

(4.16)

Putting this result back into Eq. (4.14) then gives

{4.17)

This allows Ii j and F~ to be written in the form

(4.20)

(4.21)

From this we learn that

Fg(m, ')/F g(0) =mg'/(m~' ns, ') =2. —

Further, X(t)—=F~(t)/F~(/) explicitly obeys X(0)=—m '
/m '=0 and X(ns. ') =1+m '/m&'=1. If we use
Weinberg's second sum rule" g~ =g, =vs, '/y, (y, '
/4~=2) and neglect m compared with te, we get
(Grrw~ =2grrs w')

g~ ———8y,g F /ei, '. (4.22)

Applying (4.22) to the e(700), we obtain g~, 2/4~ =10,
and the width

(4.23)

'8 S. VVeinberg, Phys. Rev. Letters 18, 507 (1967).

in agreement with "operator" PCAC used in deriving
(4.5), apart from the difference of G, (0) from G,

The form factors (4.14) and (4.15) au/omatically
satisfy the soft-x theorem

Fg(m. ') =F2(m. '), (4.18)

which follows in the usual way by extrapolating p ~ 0.
The matrix element {s.~P„~O) vanishes in this limit,
leaving (4.18). Equations (4.14)-(4.16) combine to give
Fz(ns. ') —Fg(m. ') =gaga. ,(m. '/2m''), which vanishes
as m —+ 0 and is in any case numerically small.

We now investigate the hypothesis that Fq(~)
vanish, i.e., that the A~ dominate the form factor Fj
completely. In the case of the isovector current the
analogous assumption leads to universal p coupling.
In the present case we do not have a conserved current
but we can still make predictions. The 6rst prediction is
a relation between the axe and Aox coupling constants:

gggg. =2m''F. G.../{m.'-m. ') .

is 30 MeV, using the ar7r coupling of Eq. {2.10). This
value seems to be a reasonable fraction of the total
width (80 MeV).

Conversely, if the experimental value of r~, , is 30
MeV, the Ag pole contribution to Fj agrees with the
PCAC determination, which would support our con-
jecture that F~(~) =0. A similar observation has been
made by Nieh with regard to the nucleon form factor."
It is tempting to assume the generality of the principle
of m, A~ dominance of the axial-vector current (un-
subtracted) form factors of a/1 particles. The PCAC
condition will then lead to "universa1" predictions of
2 q couplings.

It is interesting to compare the result (4.22) with the
"hard-pion" prediction of Golowich, "

gee~ = 8geww/~A ~ (4.24)

Numerically this formula gives g~, '/4m =9.3, in close
agreement with the prediction of Eq. (4.22). Consistency
of (4.22) and (4.24) gives the relation

F =m, '/Vpmg. (4.25)

Numerically, Eq. (4.25) predicts F =91 MeV, in
surprisingly good agreement with experiment. In the
approximation m, =m„mg =42m„Eq. (4.25) reduces
to the KSRF relation. "'0 The foregoing should not be
regarded as a derivation of that relation but rather an
indication of the consistency of the prediction (4.22)
with hard-pion approximations.

"H. T. Nieh, Phys, Rev. 154, 1780 (19&8}.
30 E. Golowich (private communication).

V. SUMMARY AND DISCUSSION

The main conclusions of the preceding sections are
as follows. (1) The fragmentary data on scalar mesons
(decaying into pseudoscalars) are consistent with a
mixed nonet (8=23') and SU~-invariant couplings
provided the ~ mass is around 1 GeV. (2) The validity
of the mass formula (3.5) for the baryon octet predicts
the d/f ratio for the coupling constants of the unmixed
scalar octet to baryons, providing a test of the basic
assumptions of approximate scale invariance. (3) The
universal constant Ii

8 is much less than F „provided
that 0.0 and 08 couple to baryons with comparable
strength. Ii„ is comparable to P„suggesting a similar
origin for the two constants. (4) PCAC relations show
that G, is very sensitive to the dilaton mass and that
the assumption of scalar dominance of the 8"„disper-
sion relation is wrong for the pseudoscalar octet unless
there is yet another scalar meson. Other parameters,
like Ii, I', g», etc., may be close to their physical
values in the scale-invariant limit. (5) As an incidental
result we are able to predict the A ~em coupling constant.

The foregoing results have important bearing on the
structure of the energy density with regard to scale and
chiral transformations. An important question is
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whether the limit of SV3)(SUB svmmetry coincides
with that of scale invariance. Thus far it has been
dificult to give model-independent judgments on this
problem. We follow Gell-Mann' in writing Hpo=0po

+6+I, where 000 is chiral and scale invariant, 8 violates
scale invariance but is SU3&(SV3 invariant, and u breaks
scale invariance end chiral symmetry. If 8 vanishes, not
only m -+ 0 as I -+ 0, but also the dilatoo mass van-
ishes so that 6 —& 0 in this limit. This would make the
success of soft-meson theorems dificult to understand
and violate the popular belief that the SU3&&SU~ world
is "nearby" the real world. '4"" (However, we can
have approximate SU2XSU2 symmetry and m /0
with 8 =0.) That b must have a c-number part follows'~

from the models of Refs. 21, 31, and 32 in which I is
assumed to have the form uo+cNS, where the I; are
scalar components in (3,3)+(3,3) and c= —1.25. From
this work, one concludes that the vacuum is approxi-
mately SU3 invariant and that (uo)WO, (Ns)—0. Since
(8"„) vanishes, (8) cannot vanish except for the (non-
scale-invariance-breaking) dimension t„=—4. Other
evidence bearing on the existence of b was discussed
in Refs. 3 and 4.

In effective Lagrangian models4" it is easy to
understand why SV3 symmetry is good for masses and
vertices (apart from mixing corrections) provided that
the operator 8 exists. In purely mesonic models, the
scale-invariance-breaking operator 8 occurs naturally
as a trilinear coupling (of canonical dimension —3)

8 = —g detM+H. c., (5.1)

where 3/I=a++ is the usual sum of nonet matrices.
SU3 &(SU 3 symmetry is broken by a linear term
fo(ao+ea8) = —u. The interaction (5.1) leads to in-

stability of the normal vacuum and to a new ground
state with (oo). WO, (ao)/(as)))1, so that SUI symmetry
results. The masses characterizing 0. , are of order 1
GeV. Thus corrections due to ti are of order u/8 and are
small.

The details of the foregoing model are unreliable but
the dimensional argument is general; in this view there
are two dimensional parameters, one of which fixes the
scale. The small parameter I/O gives the breaking of
SV3 symmetry. It is not presently clear whether I and
8 are independent.
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A =A(+) =

8=0.

2glNNg4%'K

(A1)

The contributions to the partial-wave amplitudes are
found to be'4 (j=l&x2)

gexxgeww ( mm.

f~+= — I, E(&+~)Qib)
4s-m 42k'W —(~—~)a+ (&))

where 8" is the total center-of-mass energy, E is the
nucleon energy, and k is the center-of-mass momentum;
y is 1+m,2/2k'. At reasonably low energies this depends
on /, not j. Comparison with the numerical results of
Hamilton and collaborators"' for /=1 gives g,~~g, /
(4mm )= 12. Since g„'/4am '=10, we expect g,~~'/4'
=g, '/(4am ') =10. This value is entirely compatible
with results from nucleon-nucleon single-particle-
exchange models.

APPENDIX B: BARYON DECUPLET
AND CONSTANTS E,,

In Sec. III we used information on the baryon octet,
supplemented by quark-model considerations, to esti-
mate the ratio F„/F„.A similar analysis of the baryon
decuplet gives an independent estimate of this important
ratio. The decuplet masses may be written in a form'
analogous to (3.6),

~~ =F;go'+F.,gs',

My, ——F,go',

F.,go'-F.,gs',

Mg =Fy go —2F/8gs

The equal-spacing rule is evident in (B1).Numerically
one has Fogo' ——1385 MeV, Fsgp = 149 MeV. Again,
the naive quark model with canonical mixing predicts
g, qq ——0, or gs'/go' ———1/v2, which gives

F.,/F„=0.15.

This result is in reasonable agreement with the value
0.19 obtained from the baryon octet.
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APPENDIX A

The ~em. coupling constant also enters into xiV scattering
in a signiacant way. De6ning the effective ed%
coupling by Z,~~ ——g,~~eXE, the contribution of e

exchange to the standard invariant xE amplitude is


