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Nonrelativistic and Relativistic Coulomb Amplitude as the Matrix
Element of a Rotation in O(4,2)t
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(Received 23 July 1970)

It is shown that the Coulomb amplitude is the matrix element of the group element e'('+ &~' evaluated in a
continuous basis in SO (4,2).The method is applied to the relativistic Kepler problem without spins, but with
the recoil corrections included. The form of the amplitude for this case is believed to be new.

I. INTRODUCTION

~ 'HERE are a number of recent group-theoretical
studies of the Coulomb amplitude. Zwanziger'

and Biedenharn and Brussard' have used the symmetry
group SO(3,1) of the scattering states to determine the
partial-wave amplitudes. This method does not de-
termine the energy-dependent phase of amplitude. This
phase is very important because it contains the bound-
state poles of the amplitude. Finkelstein and Levy'
formulate the scattering amplitude as a function over
the group space of O(3) (by relating the relative mo-
mentum p to a point g in group space) and then expand
it in terms of the D' functions (harmonic analysis).
Finally, Fronsdal and Lundberg4 calculate the Coulomb
amplitude by using a propagator technique and sum

over a complete set of intermediate states in the direct
channel. Closely related to the group-theoretical meth-
ods is also the work of Schwinger, ' who uses Green's-

functions methods.
The purpose of this paper is to show that the complete

Coulomb amplitude is simply the matrix element of a
rotation

f(k,e)=—(inde'&'+ ' '~in)

in suitably de6ned and suitably normalized (see Sec. II)
O(4,2) "in" states. This method allows a direct evalua-
tion (not via the angular momentum states) of the full

amplitude including energy dependence, entirely with-

out reference to the con6guration in space or mo-

mentum space. This might be expected because the
dynamical group SO(4,2) contains the symmetry group
SO(3,1), for 6xed energy, as a subgroup. We further

generalize the method to the relativistic Kepler problem
without spins, but with recoil corrections included. This
last result is believed to be new.

t Supported in part by the U.S. Air Force Once of Scientific
Research under Grant No. AF-AFSOR-30-67.

' D. Zwanziger, J. Math. Phys. 8, 1858 (1967).
2L. C. Biedenharn and P. J. Brussard tjCoulomb Excitations

(Oxford U. P., Oxford, 1965)j suggest that Coulomb phase shifts
may be obtained by analytic continuation from O(4) Clebsch-
Gordan coefFicients.

' R. Finkelstein, J. Math. Phys. 8, 443 (1967); R. Finkelstein
and D. Levy, ibid. 8, 2147 (1967}.

4 C. Fronsdal and L.-E.Lundberg, Phys. Rev. D 3, 524 (1971).
~ J. Schwinger, J. Math. Phys. 5, 1606 (1964).
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II. SCATTERING STATES AND "I¹'AND
"OUT" STATES IN O(4,2)

Basis States of 0(4,2) Representations

Let, as usual, L,b —— Lb, be—the generators of SO(4,2)
(a, b =1, 2, 3, 4, 5=—0, 6);L;;(i, j= 1, 2, 3) are the angu-
lar momentum operators, L;4——A; the Runge-Lenz
vector, L;~——M; the generators of the Lorentz transfor-
mations (the generators of the Galilean transformations
are given by L;5—L;4), I'„=(L;z,Lqz) is a four-vector
operator, and, 6nally, T=1.4& and S=L46 are a rota-
tional scalar and a Lorentz scalar operator. In this paper
we shall only need the so-called parabolic coordinates
de6ned by the following diagonal operators':

Lie tnin2m) =n ~n~n2m),

L34
~
nin2m) = (n~ —ng)

~
ngnmm),

Li2 ~nqn~m) =m ~ninqm),

n =ng+n2+m+1.

(2.1)

These quantum numbers characterize the states in the
scattering experiment. The ranges of n1, e2, and m for
stationary bound and stationary scattering states are
well known. 7 It will turn out that the in and out states
require values of e&e2m analytically continued from the
stationary scattering states: Let P and it+ be the wave
functions which asymptotically behave as

~ei&z+f (g)e i&r/»—-
p+~ei kz+.f+ (g) ei zr/r

(2.2)

Using the wave functions in parabolic coordinates, we

see that the corresponding parabolic quantum numbers
are (Appendix A)

i/+: ng ———1, e2=e, m=0,
: n~=n —1, n2=0, m=O.

(2.3)

6 For other bases and further details see, e.g. , the review papers
by A. O. Barut, in Lect@resin Theoretical Physics, edited by W. E.
Brittin et al. (Gordon and Breach, New York, 1968), Vol. X B,
p. 377 and in Springer Tracts in Modern Physics (Springer, New
York, 1969), Vol. 50.

7A. Sommerfeld, Atombau und Spektrallinien (F. Vierveg R
Sohn, Braunschweig, West Germany, 1960), Vol. II; H. A. Bethe
and E. E. Salpeter, Encyclopedia of Physics (Springer, New York,
1957), Vol. 35.
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In contrast, for the stationary scattering states we have

n, = —,'(—m+1) —', i—(n'+Z), n= —in'

ns ————,
' (m+1) —-,'i(n' —X), X =real.

Thus, aside from a phase the amplitude is simply the
matrix element of a 6nite rotation. In Appendix 3 we
evaluate this rotation matrix element. The final result
is given in Kq. (37). Furthermore, from (3.5) we have

The following relation exists between the p and p+
states asymptotically (Appendix A):

(2.5)
+nln2m

nr!(ns+
I ml)! ns!(nr+ I mI )!

-'nJ, *!(n, + I
m

I
)*!ns*!(nr+

I
m

I
)*!

where R(s.) is a rotation about the y axis by s under
which s —+ —z.

Furthermore, two waves whose asymptotic plane-
wave parts are along the s direction, and along a direc-
tion 8 with respect to the 2 axis, respectively, are related
by

4e =R(8)4*, (2 6)

where R(8) is a rotation by the scattering angle 8 in the
xs plane.

III. AMPLITUDE

The scattering amplitude is given by

(3.1)

where i and f refer to the initial and iinal states. Using
ftrst (2.6) and then (2.5), we get

~=&fr.. IR'(8) l~k'..+&

=&8'r, +&*IR'(8+~) lo', +) (3 2)

r(1+n)
for nr= —1, ns n, m——=0. (3.7)

r(1—n)

Hence the amplitude is

r(1+n)
M = sin '(-'8) expL —n In sin'(-'8)]. (3 8)

r(1—n)

Up to here, the states were normalized in the ei, e2, m

basis:

(n 'n 'm' ln n m)
=8;,8;,b ~ (discrete case)
=5(nr' —nr) 8 (ns' —ns)h~ (continuous case) . (3.9)

A more suitable basis, looking at Eq. (2.4), is where
n=nr+ns+m+1, A=i(nr —ns), and m are diagonal.
The absolute value of the Jacobian of the transforma-
tion is —,'. We then pass from this n scale to the k scale:

In the 0(4,2) formulation, the states f+, characterized
by the quantum numbers (2.3), are the so-called
states,

n= —in'/k, dn= (inI5/k')dk,

Inrnsm), =Ke —"z Inrnsm),

tilted

where n is the 6ne-structure constant and p, is the re-
duced mass. We 6nally have

where lnrnsm& are normalized "parabolic" group states,
8 is the tilting angle, and X is a normalization constant
chosen such that, &nrnsm

I (re —r4) lnrnsm), =1.In terms
of the boson operators, the "parabolic" group states for
ns&0 are given by

ln,n,m) =E„„u,™&~r5,™brt"~+"ks'"5I0), (3.4)

where
cV„,„,„=Lnr! (nr+m)!ns! (ns+m)!j ' '. (3.5)

r(1+n) irrp . ( inp,
M= expl + ln sin'(-'8)

I
(3.10)

r(1—n) 2k' sin'(-,'8) k k

or, in terms of momentum transfer and energy,

(3.11)

where
For the relevant values (2.3) of the quantum numbers,
the factor E„, 2 is a complex quantity. Taking into
account the complex conjugation in (3.2), we have to
write

and
LP =4k' sin'(s8)

u(k)=in@/k, n=e' (3.12)

5nln2~
,&nrnsm I (r,—r5)e'«+' "

I nrnsm&5 ~

is indeed the Regge-trajectory function.

IV. RELATIVISTIC CASE

+nln2ns
&n,n, ml e'«+.»

I
n,n, m&,

$„,„2

to be evaluated at the values (2.3).

(3 6)

Inserting a complete intermediate set of group states,
using the normalization in (3.3), and the fact that
[L45 Jsg= 0, we obtain

In this section we treat the relativistic Coulomb scat-
tering problem of two spinless particles, masses m~ and
m2. The recoil sects are included; in this sense the
problem is more general than the Klein-Gordon equa-
tion with 1/r potential. This problem has been formu-
lated in terms of the in6nite-component wave equation,

5 A. O. Barnt and A. Baiqnni, Phys. Rev. 184, 1342 (1969).
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and later by quasipotential and eikonal methods. ' "The where

O(4, 2) wave equation is i2 (q) = irimkm2/gas.

( o, 1

I

r„— z„+ z„r,)z
2m2 2m2

5$2' —511'
+ F4—0.'

282$

m22+m22
f=0 (4..1)

The mass spectrum obtained is"

m'= (m22+m22) +2mkm2L1 —c22/(n2+a2)]'t2 (4.2)

For small is or—neglecting the term (u/2m2)P„ in (4.1)—we have

APPENDIX A: PARABOLIC QUANTUM NUMBERS
OF IN AND OUT STATES

The general wave function in the parabolic coordi-
natest $= r+z, tt= r—z is (in units with reduced mass t2,

it=1, C=1, is=e2)
(~~ l

i .)&2+ &Z, ,l

En i kn )
(A1)

In the nonrelativistic limit we recover back precisely
Eq. (3.11).

(1 2/ 2) ] /2 (4 3)
The asymptotic form of (A 1) is

(It is actually this last case that has been formulated by
quasipotential and eikonal methods. ')

Equation (4.1) still possesses O(4) symmetry, as seen

by (4.2), and we can use the same parabolic states as
before. It differs in this sense also from the Klein-
Gordon equation. Thus the same formula (3.6) for the
scattering amplitude applies. The only change is the
connection between the principal quantum number e
and the magnitude of momentum k, where we must use
relativistic kinematics. Because the poles of the S
matrix must give back the mass formula (4.3) when n is
discrete, we find

n = —kimkm2/gas.

Equation (3.10) can be written as

(4.4)

1 dn I'(1—n)
M= ——sin'( —'0)gsin2( —'0)j " (4 5)

2 dk I'(1+n)

In the relativistic case, we use for k the magnitude of
the c.m. momenta q. Then

P ~ ago ikr+ado —ikz+booik—z+.bdoikr

(—ikt)"'

r(n, +1)

( 2ktt) "2—

r(n, +I)

(ikp)-w. z—2

b=
7

I'(—n2)

(ik )
—nl—1

r(—n,)

(A2)

( iktt)" — n(iktt) " '
lt,+~ ~ikz ~skr

I'(1+n) I'(1—n)
(A3)

(2k')-- n( —ikp).-'
&ikz+ &

ikr-
r(1—n) I'(I+n)

In order to verify Eq. (2.5) it suKces to notice that
under Jt.(tr), s ~ —s, g ~ tt, and that n is pure imagi-

nary, n = intk/k—

Comparing (A2) with (2.2), we obtain the assignments

in Eq. (2.3). Then

dn 2i2m~m2 s'"Ls —(m~'+m2') j
dq g2 s2 (m 2 m22)2

(4.6)
APPENDIX B: EVALUATION OF

MATRIX ELEMENT

Thus, identifying

t = —4q2(sin2 (-'0)j
we can bring 3II into the same form as Eq. (3.11):

4nmtm sos —(m22+m22)]
M= —i

s'" s' —(mt2 —m2')'
This holds for the discrete spectrum. The operator J; in
this representation is

In terms of the boson operators, the parabolic states
are given by'

(4» ~n,n2m)=E a t"'+"a2t"'b t"'+"b2t"2~0), m)0
akt 2a t~&+I Ib t~zb t~2+I I ~0)tsI'ogvs 1

m(0. (B1)

'"I'(I —~(V))x-i— (4.8)
4q' I'(I+~(V))

9 C. Itzykson, V. G. Kadyshevsky, and I. T. Todorov, Phys.
Rev. D 1, 2823 (1970); E. Brezin, C. Itzykson, and J. Zinn-
Justin, ibad. 1, 2349 (1970).

"C. Pronsdal and L.-E. Lundberg )Phys. Rev. D 1, 3247
(1970)j have also calculated the relativistic amplitude but by a
quasipotential approach.

"A. 0. Barut and A. Baiquni, Phys. Letters 30A, 352 (1969).

J,= —,
' (ato;a+ bto;b) . (B2)

Since the a's and b's commute, the matrix element (3.6)
is simply a product of the rotation matrices on the c's
and b's separately. Taking the case of m&0, we rewrite

(B1) as

I n2n2m) =N, (y,M)a~t &+Makt t
I 0)

~g ~k(~,~')b,t~~'bkt~"'~0), (B3)
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where we can immediately identify from (31)

s =-', (ni+ ns+ns) =-', (n —1),
(B4)

M=-s'(ns —nt+ns), cV'=-,'(nt —ns+ns)

or, in our case, with m=0,

or, in terms of the hypergeometric functions,

D=F( y ——M, 1+q —M, 1, sin'L-', (fl+rr)])
XF(—p+M, 1+y+M, 1, sin'P —',(0+rr)]). (&6)

y=-,'(n —1),
M= M—'= ', (n-s n—t) .

Then the matrix element in (3.6) is given by

Finally, we continue this expression to our continuum

(Il4~) values,
q = jet(n —1),

M =-,'(n+ 1),
D=(ntns0~ e "~+'&~'~ ntns0)

=(f,iV(e'-+ * [&m)g(f iV[—e'-+'"if —m).
Now each factor is a rotation matrix element with
"spin" q. Hence

D=D~, sr (&+rr)D sr, sr"—(if+—&)

and obtain

D=F( n, 0, 1,—sin'(-', 8+-'ss.))
&&F(1, 1+n, 1, sin'(-,'ll+-', s))

=f1—sin'(-'g+-'s-)] ' ~= [coss(-'8+-'rr)] ~ '

Pins (rg)]—m—t (li 7)
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Scalar Mesons, Hadron Masses, and Approximate Scale Invariance*
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The possible role of a scalar-meson nonet in determining hadron masses by means of generalized Gold-
berger-Treiman formulas is studied. Existing data on scalar-pseudoscalar meson couplings are analyzed,
assuming SUB-invariant-couplings for the unmixed mesons. The d/f ratio for the coupling of octet scalars
to the baryon octet is predicted to be the same as in the Gell-Mann-Okubo mass formula. The strength of
the transition vacuum —+ scalar meson (induced by the energy-momentum tensor 8„„)is measured by the
constant F,. Denoting the SU3 singlet scalar meson by o.p and the octet g-like scalar by os, we 6nd F p to
be much larger than F 8, provided that the 0 pBB coupling is not considerably smaller than the 08BB cou-
pling. Then F„is comparable to the usual pion decay constant F . The pseudoscalar octet dispersion rela-
tion is not scalar dominated. This result is also suggested by analysis of partial conservation of axial-vector
current for the scalar-pseudoscalar system, and consideration of the relation to the underlying scale-invariant
limit. Implications for the underlying dynamics are discussed.

I. INTRODUCTlOÃ

HE existence and properties of scalar mesons have
been the subject' of much theoretical specu-

lation. "The difhculty of obtaining unequivocal ex-
perimental information has prevented a decisive clari-
fication of the situation. It is also possible that some of
the resonances in question are too broad to be described
as particles. However, it seems reasonable to assume
the existence of a nonet (with average mass around 1
GeV) of 0+ mesons. Recent studies' ' of broken scale

*Supported in part by the National Science Foundation.
'H. Harari, in Proceedings of the Fourteenth International

Conference on High-Energy Physics, Uienna, l96S, edited by
J. Prentki and J. Steinberger (CERN, Geneva, 1968), reviews
meson spectroscopy from the point of view of the quark model.
Some further references are listed in this paper.' B. Dutta-Roy and I. Lapidus, Phys. Rev. 169, 1357 (1968).
These authors discuss many phenomena in which scalar mesons
seem to be required to give a theoretical interpretation of the data.

~ M. Gell-Mann, lectures at the Summer School of Theoretical

invariance have attributed a more fundamental signi6-
cance to the scalar mesons, i.e., that they should
dominate matrix elements of the trace of the energy-
momentum tensor 8„„and thereby determine the
masses of the hadrons. Variants of this idea have been
expressed previously. 7 ' This paper is primarily con-
cerned with this question.

In Sec. II the couplings of the scalar and pseudo-
scalar nonets are analyzed, assuming that SU3 sym-
metry is maintained in the vertices except for mixing
sects. This view is not universally maintained; for

Physics, University of Hawaii, 1969 PCaltech Report No. CALT-
68-244 Iunpublishedl g.

4 P. Carruthers, Phys. Rev. D 2, 2265 (1970).' S. P. de Alwis and P. J. O'Donnell, Phys. Rev. D 2, 1023
(1970).' G. Mack, Nucl. Phys. 85, 499 (1968).

M. Gell-Mann, Phys. Rev. 125, 1067 (1962).
P. G. O. Freund and Y. Nambu, Phys. Rev. 174, 1741 (1968).

9 G. 3. West, Phys. Rev. 183, 1496 (1969).


