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on the scalar-meson loop, for which we use the following
relation to split each diagram into two:

k1, (38) €asaran (B D — kD) g =3g€ 0230, (£ ?)?
+38eaasas(k®)?,  (BS)

which is represented diagrammatically in Fig. 15. The
diagrams left can be grouped into triplets of the type
shown in Fig. 16 which are to be matched with the
diagrams of the type B in Fig. 14. With the assign-
ments of particle indices shown by the small numerals,
the parts of Fig. 14(b) and Fig. 16 which appear
differently contribute the following amounts.
For Fig. 14(b),

(—18) (caragask @

= (igz) (eaaalag faaqagk

u2€a4a5a,+€u1a4a5k‘4)pzﬁaaa5ag)
(3)° 4
)uz+€asaxa4easaaa2k( )uz) .

(B6)
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For Fig. 16,

(—ig) 2[%6“1“6%505:!4&2 (k W—kV—k {3)):4:
F3€arasar€azaras (R —k )y,
i emasascasaan(® —E D —k®),,]
=3(1g) (€asaros€asaqerk @ pyF €asararasasar® uy)
—%('ng) (5“5“1“360‘60‘4024_€a5u1a4fa5aza3)k (2)"‘2 ,

(B7)

using the conservation of momentum &® %@ 4-%@
+2®=0 and the identity €sajar€aazasT€xaraz€angar
+€aayai€aazas=0. The term proportional to 2@, in
(B7) can be dropped since it is multiplied into a com-
plete set of trees. It is now obvious that diagrams with a
scalar meson should be assigned a weight factor 2 in
order that (5.2) will hold. This completes the proof of
(5.2).
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Recent contributions on canonical and manifestly covariant realizations of the representations of the
Poincaré group are discussed. A 2(2j-+1)-dimensional operator for arbitrary spin j is constructed, per-
mitting simple interpretations and discussions of similarity transformations currently used in the literature.

I. INTRODUCTION

ECENTLY two papers'? (quoted hereafter as PSP
and PS, respectively) have appeared, which deal
with canonical and manifestly covariant representations
of the Poincaré group P and with the associated de-
scriptions of particles of nonzero rest mass and arbi-
trary spin. The authors show, through the use of the
general Gel’fand equations® and of the corresponding
representations of P, their reducible character and
their interrelation with the general “canonical form”
proposed by Foldy* as well as with the canonical
representations of P. This reduction is performed by
a transformation presented as a generalized Foldy-
Wouthuysen transformation.’

These developments refer to important fields which
have already been explored by many authors during
the last decade. On one hand, let us simply recall,
besides the fundamental paper of Wigner® on unitary

1 G. Parravicini, A. Sparzani, and M. Pauri, Nuovo Cimento
Letters 1, 295 (1969).

2 G, Parravicini and A. Sparzani, University of Milan Report
No. FUM 0/103/FT, 1969 (unpublished).

3 See I. M. Gel’fand, R. A. Minlos, and Z. Ya. Shapiro, Represen-
tations of the Rotation and Lorentz Groups and Their Applications
(Oxford U. P., London, 1963).

4L.L. Foldy, Phys. Rev. 102, 568 (1956).

5L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).

representations of P, the main contributions of Barg-
mann and Wigner,” Shirokov,® Wightman® Joos,?®
Shaw,! Weinberg,? and Moussa and Stora.’®~¢ On the
other hand, let us also mention papers dealing especially
with covariant equations for particles of nonzero rest
mass and arbitrary spin, such as those of Bargmann and
Wigner,” Foldy,* Fronsdal,” Weaver, Hammer, and

¢ E. P. Wigner, Ann. Math. 40, 149 (1939).

7V. Bargmann and E. P. Wigner, Proc. Natl. Acad. Sci. U. S.
34, 211 (1948).

8 Yu. M. Shirokov, Zh. Eksperim. i Teor. Fiz. 33, 861 (1957);
33, 1196 (1957); 33 1208 (1957) [Soviet Phys. ]ETP 6, 664
(1958), 6, 919 (1958), 6, 929 (1958)]. :

9A. S. Wightman, in Dispersion Relations and Elementary
Particles, Les Houches (Hermann, Paris, 1960), p. 159.

10 H. Joos, Fortschr. Physik 10, 65 (1962).

11 R, Shaw, Nuovo Cimento 33, 1074 (1964).

12 S, Weinberg, Phys. Rev. 133, B1318 (1964).

13 P, Moussa and R. Stora, in Boulder Lectures in Theoretical
Physics, edited by W. E. Brittin and A. O. Barut (Colorado U. P.,
Boulder, 1965), Vol. VIIA, p. 37.

4 We apologize to the authors of the many papers not cited
here. We refer for example to the recent review papers of Winter-
nitz (Ref. 15) and Balachandran (Ref. 16) for further develop-
ments and references.

15 P, Winternitz, Rutherford Laboratory Report No. RPP/T/3,
1969 (unpublished).

16 A, P. Balachandran, Syracuse University Report No. NYO-
3399-272, SU-7206-272, 1969 (unpublished).

7 C. Fronsdal Phys. Rev. 113, 1367 (1959).
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Good,*® Piirsey,” and Tung.?: Therefore, the PSP-PS
contributions should be reinterpreted in order to take
account of the above-mentioned works.

The aim of the present note is twofold. Firstly, we
want to construct a 2(2j-+1)-dimensional? transforma-
tion for arbitrary spin j with a view to interpreting
different similarity transformations currently used in
the literature. This is based on group-theoretical
methods and especially on the works of Wigner,®
Shaw,! and Weinberg.? Secondly, we want to draw
attention to a set of papers dealing directly with mani-
festly covariant equations and their characteristic
operators (signs of the energy, position operators,
etc.), i.e., the contributions of Chakrabarti,22 Sesma,?
De Azcarraga and Boya,? and De Azcarraga and
Oliver.2s The combination of both points of view will
show the origin and the physical meaning of the PSP
transformation and its connection with other similarity
transformations.

The main results contained in Shaw’s paper! as well
as some relations of Weinberg!? are collected in Sec. II.
The 2(27+1)-dimensional transformation is constructed
in Sec. III, and Sec. IV is devoted to the discussion of
our transformation in connection with the Chakrabarti
and PSP operators.

Our units are such that c=1, =1, and our metric is
g =0 (uv;n,»=0,1, 2, 3), g0=—g¥=1 (i=1,2, 3).
Throughout this paper we limit ourselves to the case of
nonzero-rest-mass particles with timelike momenta.

II. RESULTS OF SHAW AND WEINBERG

The so-called [m,7]-irreducible unitary representa-
tions of P corresponding to the case of spin j and
nonzero-rest-mass particles and of timelike momenta
have been studied by Shaw.!* He proposed a realization
of these representations which, like the Bargmann-
Wigner one,” has simple transformation properties and,
furthermore, has no superfluous spin components. In
fact, the Shaw realization, which allows one to show
the equivalences

[m,()]@D(J'vO)N[m,j]N [m,()]@D(O,i)’ (21)

is characterized [for the first part of (2.1)] by the
transformation law

LU (a,A) X35 ](p) =€ %Qper G0 (A) X0 (A1p) .

These representations are then unitary with respect to

(2.2)

18D. L. Weaver, C. L. Hammer, and R. H. Good, Jr., Phys.
Rev. 135, B241 (1964).

¥ D, L. Piirsey, Ann. Phys. (N.Y.) 32, 157 (1965).

2 W. K. Tung, Phys. Rev. 156, 1385 (1967).

21 This is relative to a theory free of redundant components.

22 A, Chakrabarti, J. Math. Phys. 4, 1215 (1963).

% J, Sesma, J. Math. Phys. 7, 1300 (1966).
(1;46%) A. De Azcarraga and L. J. Boya, J. Math. Phys. 9, 1689
(1;‘ ]9 ) A. De Azcarraga and L. Oliver, J. Math. Phys. 10, 1869

69). )
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the inner product
dp
(X(l)»x(z))=/‘*ox“)(P)T[Lp(j’n)]_2x(2)(ﬁ), (2.3)
?

where L,9 (for arbitrary 7) are the matrices
LU9=L6o(p)=L00(~p)  (24)
=exp A\p(p-S), (2.5)

with \,=arctanh(|p|/#?), P being the unit vector in the
direction of p, and S the usual (2j41)X(27+1) spin
matrices. The L, can also be written as polynomials
of degree 27 in (p-S) and are of great interest in many
respects. Let us remember here that the corresponding
[L,9 72 occurring in Eq. (2.3) are directly related to
the = matrices of Weinberg,'*° generalized by Piirsey®
and Tung.? In particular, for j=% (S=1e), we have

L,/20 = m,
[2m(p*+m) ]2 2.6)
[L,a20T1= PAm—po ,
q [2m(p°+m) ]2
an
AT Ay @7)
m

Beside the equivalences (2.1), Shaw has estab-
lished the reducible character of the representations
[m,()]@D(j,j’) :

i+
[m,0] DG~ Y

s=|j—7'|

@ |m,s| (2.8)

so that their analysis reduces effectively to (2.1).
Furthermore, if we recall that the canonical representa-
tions® are characterized by the transformation law

LU(a,0)¢ 15 (p) =€ Do D[R (p,A) Jbjor (A7'p)  (2.9)

and are unitary with respect to the scalar product

dp
(@1(8) 2()) = f “HOH, 10

the connection between Wigner’s (¢) and Shaw’s (X)
realizations is simply!

¢fa(P) =[Lp<j’o)]—lxivr(?) (2-11)

for the first part of the equivalences (2.1). Let us
remember that in (2.9) R(p,A) is the Wigner rotation
L7Y(p)AL(A'p) Dbelonging to the little group of
p@=(m,0,0,0), so that DP[R(p,A)] is nothing but
the familiar (254-1)-dimensional unitary matrix repre-
sentation of the rotation group, L(p) being the “boost”
which takes the particle of mass 7 from rest to a state
of momentum p [L(p)p®=p= (4°p) ].

Now, from Weinberg’s developments,® let us pick
out the construction of 2(2541)-component fields trans-
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forming according to the (4,0)® (0,7) representation.
After Weinberg, if we denote the (2j-+1)-dimensional
matrices representing a finite Lorentz transformation
A by D@(A) and D@ (A) in the (4,0) and (0,7) repre-
sentations, respectively, we can unite these two matrices
into a single 2(2j+1)-dimensional one

D@ (A) 0
g)(j)(A):( _ ), (2.12)
0 DW(A)
the D@ and D@ being characterized as usual by
JoJ9, K= —iJO for (j0)
and (2.13)
J—=J9, K—=+4iJ9 for (0,5,

where J and K generate rotations and boosts, respec-
tively. This construction will be quoted hereafter as
“Weinberg’s doubling.” Finally, let us note that the
transformation law of the corresponding 2(2j4-1)-
component field has been discussed in great detail by
Weinberg and led to the “Weinberg equations” (which
reduce to the Dirac equations in the case of spin %).

III. TRANSFORMATION MATRIX
FOR ARBITRARY j

There is an evident correspondence between Shaw’s
notations L,@9 (L,9) and Weinberg’s D@ (A)
(D@(A)) when A is the boost L(p), so that we can
directly construct the 2(2j-+1)-dimensional matrix

L, 0

0 Lp(o,j)) @-1)
and its inverse [L,® 71
For simplicity, let us consider the =% case (on the
basis of Shaw’s results,?® the generalization for arbi-
trary 7 is straightforward). For the (%,0) representation,
Eq. (2.11) becomes, with (2.6),

DL J=L,05=(

p'+m—o-p

X14(p) (3.2)

b1.(p) = m

and for the (0,3) case, we have
$10(p) =[LEO(—p) T Xy30(p)

_ pPtmtaep
[2m(p+m)JH2

Following Weinberg’s dbubling, we construct the four-
component fields

P10 X3o
<I>§,=<_ > and X%,=<_ >
b3 Xio

3o

Ga(p).  (33)

3.4)

26 See especially the first Appendix of Ref. 11.
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and we obtain, in the (%,0)® (0,3) representation,

P40 (p) =[Lr®* "Xy (p), 3.5)

where
[L @.%]—1=m (,[=<(r 0) (3.6)
’ [2m(p*+m) /2’ 0 —a/

As follows from Weinberg’s discussion, the fields X3
and ®) satisfy not only the Klein-Gordon equation
but also the (expected) Dirac equation. At this stage,
it is thus important to take into account the sign of
the energy? e=p%|p°|, as also in the generalized
Wigner-Shaw developments. In fact, it is easy to show
that in correspondence with the Shaw representations
[m,0]1.® D9 and [m,0].®@ D7, we have
pP'+m—eo-p
[2m(p"+m) ]2
p'+m-eo-p
[2m(p*+m) ]2
p'+m—ea-p
[2m(p*-+m) ]2

For arbitrary spin j, the generalization of Eq. (3.5),
ie.,

[Ly, 0] = (3.7)

and

[Lp, OVt = (3.8)

so that

[L, &4 '= (3.9)

q)fm(?ye)=[LP-€®J]—1XJ',V(P!E) ’ (3'10)

gives the connection between canonical and manifestly
covariant realizations of P, the latter being always re-
duced finally to 2(2j41) components (as in Dirac
theory or, through subsidiary conditions, as in Gel’fand
or Bargmann-Wigner equations, for example).

IV. CONNECTIONS WITH CHAKRABARTI
AND PSP OPERATORS

Let us now consider the contributions of Chakra-
barti,” Sesma,® and De Azcarraga and Boya.?* Essen-
tially, they give a similarity transformation—the
Chakrabarti transformation—leading to a canonical
form which is to be compared with that of Foldy.*
Chakrabarti has particularly studied the spin- case.
Sesma has formally extended the Chakrabarti trans-
formation to the cases of spins 0 and 1 through Hamil-
tonian formulations, and De Azcarraga and Boya have
considered the case of arbitrary spin through the
Bargmann-Wigner equations. Let us also remark that
consequently, through these results, different authors?2s
have been led to establish comparisons between the
Chakrabarti and Foldy-Wouthuysen operators and also
between the corresponding usual observables.

If we limit ourselves to the case of spin 3, the Chakra-
barti operator is

Qop = [70(7 : P) +MJ[2M (PO’I‘M)]—I/? )

% See, for example, the very clear Sec. III of Ref. 19.

(4.1)
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where the matrices y* (u=0, 1, 2, 3) are such that

()=, (v)'=—+*

(i=1,2,3) (42)

THyY v =2g",

and
M=M=ec(p’p,)'?, e=p%/|p°| =£1. (4.3)

Since, when the similarity transformation (4.1) has
been applied, the Dirac equation in momentum space
takes the form

(VM —m)¥ =0 (4.4)

(m being the rest mass), therefore its solutions belong
to the eigenvalues of v° according as e. So, separating
the cases of positive and negative energies, the canonical
form proposed by Chakrabarti is finally

L(pn)*—m ¥ =0. (4.5)

We can thus compare the Chakrabarti operator (4.1)
with our transformation matrix (3.9). It follows directly

that
(L@ ] '=€Qop (4.6)

and, therefore, Eq. (3.5) shows clearly the physical
meaning of these operators on group-theoretical
grounds. Furthermore, the connection of these oper-
ators with the Foldy-Wouthuysen transformation
can be directly obtained through the Chakrabarti
development.28

Now, the PSP-PS contributions?® can be directly
inserted in this context. As already mentioned, the
realizations discussed by PSP are precisely the canonical
and the manifestly covariant ones, since if the former
are those discussed by Wigner of the type (2.9) and
(2.10), the latter are essentially those of Shaw, (2.2) and
(2.3), expressed on the rotation group basis, the two
signs of the energy being obviously always considered.
Let us recall that for each sign of the energy, the Shaw
representations correspond iz general to the reducible
case (2.8) so that their analysis reduces effectively to
(2.1). Then it is very natural to make the correspond-
ences of PSP’s equations [for example, their Egs. (2.3)
and (2.8)] with ours [correspondingly, Egs. (3.7) and
(3.6)] and evidently with the Chakrabarti ones. With
their notation, we have exactly

DLL(p) ]=[Lp, @1

in the spin-3 case.

Following Egs. (4.6) and (4.7) in the Dirac case, we
can compare the generalizations of the Chakrabarti
operator proposed by Sesma? and De Azcarraga and
Boya, with the applications considered in PSP. The

4.7)

28 We refer to Appendix B of Ref. 22 where some features of
the Chakrabarti transformation are compared with the corre-
sponding ones of the Foldy-Wouthuvsen transformation.
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three examples of PSP correspond to the Chakrabarti
and Sesma cases and reduce to 2(2j-+1)-component
relations as when Bargmann-Wigner equations are
used by De Azcarraga and Boya.

Thus, apart from the fact that PSP deals with
Gel’fand equations as manifestly covariant descriptions,
their transformation is essentially of the Chakrabarti
type for arbitrary spin. The construction given above
(Sec. III) explains how the transformation works when
the descriptions become free of redundant components.

Let us also note that in PS (§7), special emphasis on
position operators is given while other well-known
papers®® of Chakrabarti already contain the corre-
sponding discussion (which has also been extended by
Sesma® and by De Azcarraga and Oliver?). More pre-
cisely, PS defines a position operator q which, in the
momentum representation, is®

R )

* =|1— — .

H NPT

After the application of their similarity transformation,
the corresponding operator of PS should be compared
with the Chakrabarti one [cf. Eq. (2.21) of Ref. 30]
(if, for example, the spin-} case is considered). For
arbitrary spin, we refer to the Sesma® and De Azcar-
raga-Oliver® contributions. The only modifications
arise from the e factor whose presence is made clear by
Egs. (4.6) and (4.7).

As a last conclusion in connection with related works,
let us point out that the comparisons between the
Lorentz and Foldy-Wouthuysen transformations estab-
lished by Bollini and Giambiagi®** and Good and
Rose,®* as also their relationship given by Jehle
and Parke® find here a group-theoretical explana-
tion. Furthermore, the 2(2j+41)-component Lorentz-
covariant description proposed by Weaver, Hammer,
and Good!® ¢s thus a generalized Shaw realization.
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