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Two-Body Problem in Quantum Field Theory
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We study an approach to the relativistic two-body problem that represents a considerable improvement of
the Bethe-Salpeter equation. The main advantages are the improved properties of the simple ladder approx-
imation. (a) It has the correct static limit and is in this sense equivalent to the sum of all crossed ladders of
the Bethe-Salpeter equation, (b) in the case of massless exchange it is possible to solve analytically and
obtain the wave functions and the T matrix in closed form, (c) the system is closed, that is, the two-particle
T matrix is unitary. (d) The wave functions admit a complete quantum-mechanical interpretation without
compromise of relativistic covariance, the current is conserved, and gauge invariance is respected. (e) The
evaluation of physical amplitudes is greatly simplified, as illustrated by positronium decay and the Lamb
shift. Both are carried out with full relativistic covariance, and the Lamb-shift calculation in particular is
greatly simplified and clarified in comparison with other methods. Most of the results are applicable only
to the case of spin-0 or spin-q particles interacting through the exchange of a single scalar or vector boson.
In particular, the calculations of positronium decay and the Lamb shift are carried out with spinless particles.
It is shown, however, that the introduction of photon spin presents no problem and that the Lamb shift can
be calculated in a fully gauge-invariant manner.

I. INTRODUCTION

A LTHOUGH the relativistic two-body problem has
not been solved in the sense of classical mechanics,

nor in the sense of quantum mechanics, it is often said
to have been treated satisfactorily in quantum field

theory —by means of the Bethe-Salpeter equation. ' Per-
haps it has not been suKciently emphasized that this
situation is quite paradoxical: If classical mechanics is
a limit of quantum mechanics and if quantum mechanics
is a limit of quantum Geld theory, then a really self-

consistent treatment of the problem in quantum field

theory would surely provide the answer on every level.
The resolution of the paradox is, quite simply, that the
Bethe-Salpeter wave function is not susceptible to a
self-consistent interpretation.

Recently a new type of relativistic quantum mechan-
ics has developed out of the frustrations of relativistic
SU(6) and exact saturations of current algebra. The
Grst "infinite-component Geld theory" was proposed by
Majorana' in 1932; the most recent surge of interest
dates back to 1966.3 The motivation sprang from the
need to describe in6nite multiplets of physical states
with nondegenerate mass in a manner consistent vrith

gauge invariance and unitarity. Gauge invariance is

almost tantamount to locality, so it is natural that
these theories are relevant for current algebra. It was

stressed from the beginning, especially by Takabayashi,
that many inGnite-component theories could be inter-

preted as composite systems. Later, it was shown that
one particular theory, initially chosen in an almost ad
hoc manner, had a detailed interpretation in terms of

*On leave of absence from Department of Physics, University
of California, Los Angeles, Calif.

H. A. Bethe and E. E. Salpeter, Phys. Rev. 84, 1232 (1951).' E. Majorana, Nnovo Cinmnto 9, 335 (1932l.

3

two interacting scalar particles. 4 This interpretation
was further developed by Fronsdal and Lundberg, ' who
showed that the complete axiomatic formulation of
ordinary nonrelativistic quantum mechanics has an
exact relativistic parallel in that particular theory.

It is the main purpose of this paper to propose an
alternative to the Bethe-Salpeter equation, with the
same a priori justi6cation as that equation but having
important practical and theoretical advantages. Special-
izing to the case of two scalar particles interacting
through a scalar field, we shall show that the new two-
body equation is identical to that investigated in Ref. 5,
thus demonstrating that the new wave function has a
satisfactory interpretation in the sense of relativistic
quantum mechanics. It is shown elsewhere that the
classical limit is a self-consistent formulation of the
classical relativistic two-body problem. '

To illustrate the method, we calculate the timelike
form factor of a scalar electron (one-photon decay of
positronium), the width of the ground state of posi-
tronium (two-photon decay) and the Lamb shift of
hydrogen. Particle and photon spins are neglected.

IL TWO-BODY EQUATIONS

As long as it is convenient, let the fields pi(x) and
q~(x) be either Klein-Gordon or Dirac fields. The two-
particle Green's function

b= «I I'&,&,&,&, lO) (2.1)

contains all information that is needed. The on-shell

' C. Fronsdal, Phys. Rev. 156, 1665 (1967); Y. Nambu, ibid.
160, 1171 (1967).' C. Fronsdal, Phys. Rev. 1'71, 1810 (1968).

5 C. Fronsdal and L.-. E.Lundberg, Phys. Rev. D 1, 3247 (1970).
6 C. Fronsdal, Phys. Rev. D 3 (to be published).
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T matrix (=i—iS), as well as its off-shell continuation,
is given by the reduction formula

thc intel action Laglanglan

(2.9)
$2 =Art 65's (g +Pl+Ps)+El ~Ps y (2'2)

(2.3)

R1c thc dressed onc-pRI'tlclc Green s functions ol
Feynman propagators.

The Bethe-Salpeter equation for V is

V'= —'h —&&~pj~I ~&- (2.4)

Since the perturbation series for Ay1, hg2, and V' are
known, that for 'll must be considered t.o be dekned by
(2.4). The first two terms are

%1= %1 q
t4= —K2+ZTldri Ars El ) (2 5)

where hp;o are the free one-particle Green's functions
and 'h„ is given for each n by all contributions to T' of
order n that are two-particle irreducible, that is, RH

Feynmanggraphs without two-particle intermediary
states.

Just as (2.4) defines L, so the following equation
determines the perturbation series for 'Vg:

(2.6)

Here Aplkg2 has bccD replaced by Ayky2'. Thc "on-shell
propagator" A1 will be deGned presently; for now it is
s~cient to specify that jt contains R g functjon.

31(pi)=2sIi(pie —mrs)p(pi). (2.7)

To the lowest orders,

%s= —1'g+i9 131hrss 11, (2.8)

and '@ is given for each n by all contributions to E of
order n, except that ~pl~pg is replaced by ~gy6~2

o ln cvcly two part tele segmen
It is clearly possible to write down an inGnite set of

equations like (2.4) or (2.6), all of them correct since
thc potcntlRl ls ln cRch case takcD to bc dcGncd by the
equation itself.

Thc next step is to replace L or %" by the Grst few
terms in the perturbation series and solve the resulting
equ3, tloQ cxRctly to obtain nonperturbativc approxima-
tions for K Any calculation that substitutes an approxi-
mation for lL or 'Vg will be called R ladder approxima-
tion~; in particular, the approximations 'lL~'lL1 and
~ —+ W j will be referred to as simple ladder approxima-
tions. The basis for choosing between (2.4) and (2.6),
and for the choice of p(pi), is mainly a question of
optimizing the simple ladder approximation.

At this point it is convenient to specialize and take
particle i to be spinless. Let the interaction be given by

'Diferent ladder approximations are distinguished by the
choice of Green's function and potential. A potential. indicated by
w or g ~th indices implies an equation like (2.6) or (2.12).
I'he meaning of 8' ladder, 8" ladder, etc., is then obvious.

where A is a real scalar Geld with mass p. Particle 2
may be either a Klein-Gordon or R Dirac particle. The
Born approximation for the potential is

ti='+1= —~r=gigsL(pi —pi')' —t 'j-'. (2.l0)

To optimize the ladder approximation we try to
"minimize" W2. This will be done in detail in Sec. III;
the result is that we obtain important cancellations in
%Ps in the static limit mi —+ ~ when we take p(pi) = I
for pie)0. In fact, it may be shown that, if p(pi)=1
for positive pie, then all the corrections %„, n)2,
become practically negligible when m1 —+ ~. In other
words, with this choice of p(P1), the simple ladder
RppI'oximatloD becoITlcs essentially exact ln the static
limit, s This is in marked contrast with the more con-
veQ'tlonRl lRddcI' RppI'oxlnlRtlon bRscd OD thc 3cthc-
Salpeter equation; in order to obtain the correct static
limit, it is necessary to include an inGnitc number of
diagrams in 'll, , which of course is Dot feasible. There is
a close relationship between the sum of RH simple
ladders with W ~'VP1 in Eq. (2.6) and the sum of all
crossed ladders in the Bethe-Salpeter scheme, and the
two become identical in the limit. nsj ~ ~. %e believe
that this represents a strong arguInent. in favor of
supplanting (2.4) with (2.6) in studies of the two-body
problem. The limit of eery targe mi is more important
than any other consideration because this limit is the only
case where we know what we are trying to approximate
it is the only means available for testing the ladder
approximation

Recently it has been shown that the relativistic
eikonal approximation can provide another area of con-
frontation of nonperturbative quantum Geld theory with
experiment. To the extent that this confrontation is
successful, one has another criterion with which to com-
pare the merits of the various equations. As far as the
Bethe-Salpeter equation is concerned, it fails again: The
simple ladder approximation is not a good approxima-
tion to the eikonal approximation. % e plan to investi-
gate our new approach from this point of view; however,
prcllmlDary 1csults RI'c very cncou18glng. First» Rs may
be seen from the work of Tiktopoulos and Treiman, '
the success of the cikonal approximation. depends on
precisely the same type of cancellations as are operative
ln thc static limit. Second lt has been Shown by
Todorov" that equations very much related to ours
agree with the eikonal approximation in thc high-energy
limit.

In this paper the technical advantages of the new
approach will be further demonstrated by calculating
various properties of scalar positronium, as well Rs the

8 Compare the results of F. Gross, Phys. Rev. 186 1448 «,'1969).
G. Tiktopoulos and S.B.Treimans Phys. Re&. D 2s 805 (1970)."I.T.Todorov, Trieste report, 1970 (unpublished) and Ref. 29.
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then (2.6) can be written

T= W+WE2 'T—. (2.12)

The new symbols T and 8" are the same as V and 'N,
except that the notation for matrix products has been
changed. The quantity E2 is either the Klein-Gordon
operator pi' —mi' or the Dirac operator pq y —mq. The
equation for the two-particle wave function is now
derived in the usual manner. First, in analogy with
(2.2), we define the two-particle Green's function G by

iT= Ape '(G —Apg)Dpi '.
From (2.12) it follows immediately that

(2.13)

G=i(E'g —W) ' (2.14)
r
I

Obviously, this is the Green's function for the wave
equation

LQ= 0, L=Ei W, — —(2.15)

where f(Pi,Pi) is defined. on the mass shell of particle 1
only, so that we are free to take"

(pi' —mi')P= 0. (2.16)

' The notation, like that of Ref. 5, is perhaps misleading. To be
more precise, we should introduce a function p'=b(p~ —~&2)p.
This is the wave function that satisfies (2.15) and (2.16), whereas
f is merely irrelevant off shell. Equation (2.16) 'for 1' is nevertheless
not wrong since there is no reason to assume that p is continuous
off shell. Probably the best interpretation of (2.16) is that it
simply defines p&0 in terms of p&'. p&0'=p&'+m&'.

Lamb shift of scalar hydrogen. In both cases the spins
of the particles involved will be neglected, although
there is no great difFiculty in taking into account the
spin of the electron and the spin of the photon. However,
6rst we shall emphasize the theoretical advantages of
the method.

The matrix products in (2.4) include integrations
over momenta, with volume element (2n.) 'd'pi. There
are no limitations on the integration variables except
for the conservation laws; therefore, the complete
off-shell 9" matrix is involved in (2.4). Similarly, the
Bethe-Salpeter wave function is defined for general
values of the two momenta, and this is the origin of the
difIiculties of the interpretation. In (2.6), on the other
hand, the factor hi restricts the integration over pi to
the mass shell and it is therefore possible to restrict
both 9"and '9%7 to the mass shell PP =mP. Of course, it is
still necessary to take pi off shell. The wave function can
also be restricted to the domain pP=mP and it is this
reduction in the number of independent variables that
makes a complete quantum-mechanical and classical
interpretation possible, as will now be shown.

The factor 8i in (2.6) may be combined with the
volume element (2ir) 'd'pi. If we introduce the con-
vention that all matrix products are to be carried out by
integration with thy volume element

Equations (2.15) and (2.16) are identical with the two
equations proposed in Ref. 5, except that the latter
used the volume element

The remaining discrepancy of (2~) ' only means that
the potential V of Ref. 5 is related to 8'& by

Wi= (2n.)'V. (2.19)

The static limit of (2.15) was already shown' to coincide
with the Klein-Gordon or Dirac theories of a particle
in a static Yukawa field in the limit m~~ ao. This
constitutes an independent proof of the result that
S'—8'i=0 in the limit mi~ , except that it was
necessary to establish the relation (2.19) between the
strength of V and the 6eld-theoretic coupling constants
gy and g2.

Having thus demonstrated the identity of (2.15) with
the quantum mechanics of Ref. 5, it sures to refer to
that paper for a complete discussion of solutions and
the interpretation of the equation. In the following we
have relegated all calculations that make use of the
results of that paper to Appendix A.

A well-known disadvantage of proposing a soluble
equation is that defects cannot be overlooked. However,
theoretical defects of the ladder approximation —e.g.,
the existence of spacelike solutions of Eq. (2.15)—
are irrelevant as long as it is remembered that the
ladders give a erst approximation in a scheme that
allows higher corrections to be controlled and calculated.
On the other hand, it must also be kept in mind that
every approximation has a limited domain of validity,
and the new ladder approximation must not be used in
the neighborhood of (pi+pi)'= (mi —mi)' or below. "
The same remarks apply to the asymmetrical treatment
of the two particles; note, however, that the ladder
approximation for T is symmetrical on the mass shell

, in the case p=0."
III. FINE STRUCTURE AND RECOIL

CORRECTIONS

In preparation for atomic-structure calculations, it is
convenient to introduce the dimensionless coupling

"By the same token, there is no justification for applying the
Bethe-Salpeter ladder approximation in that region."A proof may be found at the end of the appendix of Ref. 5.

(2.17)

in place of (2.11). The factor e(pi) was included in
(2.17) because it gave the computational advantage of
making (2.12) and (2.15) exactly soluble in the im-
portant special case when p, the mass of the 6eld that
transmits the interaction, is zero. Having already
noticed that p(pi) = 1 for pro) 0 gives the most accurate
ladder approximation, we now adopt the choice

(2.18)



FIG. j.. The 6rst two diagrams are Feynman graphs that con-
tribute to Tg and hence to —8'g'. The third diagram, in which
one of the internal lines is marked with a cross to indicate that
nri is replaced by 2 bs(pp —m 1}1(ep&},is the contribution
8"»E2»W» to IV2'. The three terms cancel in the limit ns» -+.

TL,———8'j+lVgE2 'TI. ,

Wt = 4etesmtmsL (q—q')' —ti']—', (3.3)

and carry out the necessary corrections in two stages.
Let Tr,' be the "improved ladder approximation" (or
W'-ladder approximationr) that consists of all con-
ventional ladder graphs, twisted or not, including
photon self-energy insertions. The equation for TJ.' is

where lV' is given in perturbation theory by a rule that
is similar to that given above for 8': It consists of all
conventional ladder graphs, twisted or not, including
photon self-energy insertions, but with bpydp2 re-
placed by d~~kg2 —Djh~20 in every two-particle segment.
This improvement of our ladder approximation does
not yet include the main part of the Lamb shift, but
since a simple evaluation of the Lamb shift depends
crucially on being above to cope with Tl.', we investigate
this in some detail.

First, to justify the statements made in Sec. II, we
calculate the lowest orders of 8".Let

W'= Wi'+ Ws'+ (3.5)

where the suffix is the number of dressed photoN times

Thus 8'~' includes 8"I and photon self-energy correc-
tions to 8'~. For the moment let us set aside all self-
energy corrections to I/I/" and evaluate the remaining
contributions to 8'2'. The contributing diagrams are
shown in Fig. 1, and the explicit formula is

WR~ =4mtmsele2 0 (k)d ( k7)2r{ZC(k p) ml +ie]

+iL(k+pi —ps') '—mrs+is]-'

—2~bL(p —k) —mt']e(p —k)}, (3.6)

constants

gi/2mi=ei =—Z(41m)'" g,/2ms=es= (41m)'I' (3..1)

The static limit is defined by mI —+ Oo, with e~, e2, and
ms 6xed. Corrections to the ladder approximation (in
our sense) will be classi6ed according to the ord.er in
which they contribute to the atomic energy levels.

We begin with the S'~-ladder approximationv to T,
being the exact solution T~ of the equation

o(k)=((p, k)s „s]-1L(p,~ k)s „s]-t
XEk'—m'+i ] '. (3.7)

To lowest order in 1/mi, we can approximate in (3.6)
as follows (for ps&0):

L(k —P)'—mt'+ is] —+ —2mi(kp —Pss —ie),
L(k+ pi —ps')' —mt'+is] ~ 2mt(ko p—so+is),

2sbL(P —k)'—m s]e(P—k) -+ (1r/m )h{ko—P o)

=(i/2mt)p(ks —ps+is) '—(ks p—s ie—) '] (.3.8)

Thus we see that, because of the choice made for the
factor p(pt) [Eq. (2.18)] the three terms in (3.6) cancel
to lowest order in 1/mi, so that Ws'/Wt vanishes in
the static limit. "

The above calculation, which so far ignores all photon
self-energy corrections, can easily be extended to all
orders, with the result that W'=Wi+(corrections of
order 1/mi)+(photon self-energy corrections). Since
this is fairly well known, ' we leave out the details and
turn instead to the problem of the vacuum-polarization
graphs. The exact expression for Wt' is given by {3.3)
after the replacement of the bare propagator
((q—q')' —p,'j ' by the dressed photon propagator.
Similarly, the exact expression for H/'2 is obtained from
(3.6) by replacing the two photon propagators in o (k)
by the dressed propagators. Since this does not alter
the convergence properties of the integral (3.6), our
approximations (3.8) remain valid and lead to the same
conclusion. That is, to lowest order in 1/mi, W' (in-
cluding all photon self-energy corrections) is equal to
8'~'. In particular, the contributions of all the diagrams
of Fig. 2 (an infinite number) are taken into account to
lowest order in»/mt by evaluating the matrix ele-
ments of the single term of Fig. 2(a) between the exact
wave functions of the S'j.-ladder approximation. This
is very useful for evaluating the Lamb shift.

Let us imagine that Eqs. (3.2) and (3.4) have been
solved exactly, "and let Gl. and GL,

' be the correspond-
ing Green's functions:

Gz, =i(Es Wi ie) ', Gr,—'=i(X—,—W' —ic)-'. (3.9)

To determine the remaining corrections, including the
main part of the I.amb shift, we define a new potential
8'" by postulating the following equation for the exact

(&) (b)

FIG. 2. Photon self-energy insertions.

'4 Note that, as es» -+~, fdp»j —+ d'p»/{2m)'{2m»), so that the
static limit potentials are K»/2m» and 5'g'/2m».

'~ The exact solution of Kq. (3.2)—for vanishing photon mass-
was obtained in Ref. 5. The exact wave functions of the IV»
ladder approximation were also given.
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T matrix:

Let us expand

I Wll sWIIG I(T P I) (3.10)

I P II++ II+ . (3.11)

where T„"is the amplitude corresponding to all those
Feynman diagrams from which exactly e internal
photon lines must be removed in order to obtain a
diagram that is included in TI,'. We expand W' in
similar fashion,

W"=Wr"+Ws"+
and solve "order by order":

pr //
Z

//

Ws"= —Ts"+sW r"Gz'W r",
(3.13)

(3.14)

Pro, 3.Typical contributions to 8'1".
j~ The @rave functions of the Ã~' ladder approximation can be

obtained, in closed form, but this is hardly useful since the evalua-
tion of the main contribution to the Lamb shift probably cannot be
carried to the same degree of accuracy.

and so on.
For the applications it is very important that the

improved W'-ladder approximation~ agrees with the
analyticably tractable 8'~-ladder approximation" to a
very high order of accuracy. The largest difference be-
tween the two ladder approximations is due to the
potentials 8"q'—lV~ and H/2'. The latter has already
been shown to go to zero like I/mr as mr~ oo, in
addition it can easily be shown that (Ws') o-.(Zn)' inZn
for small Ze, regardless of the values of the masses.
Thus 8'2 contributes to the Lamb shift if mg is finite,
but its effect on the wave functions may be neglected
in the evaluation of 8'y",' this is true if tug is large Or

Zn is small, or both. The effect of 8'~' —8'~ is not so
easily disposed of since this does not vanish as m~ —+ ~.
However, for small Zn (Wr' —Wr) ~ (Zo.)'n (see
Sec. V)."

In the approximation in which 8' is replaced by lV~
it is easy to evaluate S'~".It consists of all conventional
ladder graphs to which have been added a single
internal photon line that begins and ends on the same
particl" —either particle j. or particle 2. These diagrams
are illustrated in Fig. 3. The challenge presented by the
evaluation of the Lamb shift is to obtain a good ap-
proximation to the sum of all these diagrams. It will
now be shown that our method resolves this problem
in the same way as the usual static approximation. In
view of the applications, we shall ignore the proton
(particle 1) fluctuation diagrams.

Fro. 4. Contributions to the particle-2 (electron) current.
The three graphs are interrelated in the same way as those of
Fig, j. and cancel as m~-+~.

Con'sider the first two graphs of Fig. 4. These are not
the only diagrams of this order, but the following
argument goes through in the same way for all. These
two graphs difTer from the 6rst two graphs of Fig. 1 by
having an external photon attached to the internal
electron line. We now argue in the same way as before,
making the approximations (3.8) for the proton
propagator, that the sum of the 6rst two graphs of
Fig. 4 is equal to the third graph to lowest order in
I/mr. Clearly this argument applies to graphs of all
orders and allows the conclusion that, to lowest order
in I/mr, the insertion of an external photon line with
momentum k„ is accomplished by the same rule as for
a free electron:

Thus) 'to lowest order 111 1/Blr~

d4k
Wr" =gss(2s )-' —Gz(P —k) .

k2
(3.17)

Besides the case of large m~, there is another circum-
stance in which (3.17) is a good approximation, namely,
when Zo, is small, in which case the relative error is of
order Zo, . The main part of the Lamb shift is the ex-
pectation value ef this quantity between the wave func-
tions of the H/'~-ladder approximation. The calculation
is carried out in Sec. V.

It may be useful to comment on the extension of the
rule (3.15) to the case of the full gauge-invariant treat-
ment of the photon. The position coordinate that is
conjugate to the total momentum p is xs.' Hence (3.15)
means that the photon couples locally to the electron.
Minimal coupling in the sense p„-+p„—eA„ thus means
minimal coupling to the electron. The rule (3.15) is
replaced by

Gz(p) ~ iGz(p)esl„(p, p —k)Gz(p —k), (3.18)

wheles
I.(P P') = (P+P' 2v). (3 19—)

is the canonical conserved current operator. The fact

Gz(P) ~ sGz(p)gsGz(p I ) —(3 15)

Next, consider the eGect of inserting a virtual photon
line, emitted and absorbed by the electron. Obviously
the rule, to lowest order in 1/mr, is

de
Gz(P) ~ sos'(2~)—' G~(p)Gz(P &)Gz(p) (3—16)

k'
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FIG. 5. Graph of the potentials
lV 1 and 8', q that are responsible
for one- and two-photon decay of
posltronlUI.

that I„is exactly conserved means that the evaluation
of the Lamb shift for the case of vector photons can be
carried through in explicitly gauge-invariant fashion.

To order g' the T matrix is just the Born approxima-
tton Tt= —Wt. The potenttal F t was gtven by (2.10)i
except that we now introduce an additional term
representing the annihilation of particles i and 2 into a
scalar photon. For future convenience the masses will
not be taken equal until the end. The new term in 8'l is

8'.t=g'(p' p+s—i )e' (4.1)

This potential has constant matrix elements in q space
and is a relativistic version of the ordinary three-
dimensional 8-function potential. In 6rst-order perturba-
tion theory it is sufhcient to evaluate the expectation
value:

the wave equation. when the effect of binding is
neglected. These formulas are valid on shell, with

p'=mts+mss+L4mtsmss —(gs/8sS)'jtls. (4.7)

The decay from a scattering state, which is just the
electron form factor in the timelike region, is also cal-
culated in Appendix A;

At= (2s.) 'gl" (1—v)(2 ~q~/m)". (4.8)

Here m is an arbitrary function of p' with dimension
of mass that enters through the treatment of the
infrared divergence, v is the principal quantum number
for the scattering state,

v=i(g'/8%)L(P' —m ')(P'—m+s)$ '~s (4.9)

and g is the c.m. momentum, and m~=—ml&m2.
For future reference let us note that Eqs. (4.1),

(4.4), and (4.6) give, to lowest order in q,

(E}=bgsgs2
—»s 4s spa '(p' —mts+mss)/

(P'—mts —mss) (4.10)

where E is the operator whose matrix elements E«. in
momentum space are all equal to unity.

For two-photon decay the relevant potential is that
illustrated by Fig. 5 {we now take mt= ms ——m):

(~..)=- Cdqj~, *{)2{.-q.)L~..~()j, {4.2)

Here p=pt+ps, q=pt, and physical normalization is
implied:

X((k' —ps+is) (k"—ps+is) [(q—k) '—ms+is)

)&f(q' —k)' —m'+iej}—'. (4.11)

LdRlt. *(p)2(Po —qo)&e(p) .

The internal coordinate q„ is written as a suffix, as in
Ref. 5. Equation (4.2) may be written

(W,t)=At(ps —p'+is) 'At,

(I W, )=—2 ' ' dQ (( .k)-'( ' k)-'). (4.12)

(4.4)
We exploit the fact that the factor (q k)

—' can be
written5

with

(43) Following the procedure of Tavkhelidze, "we evaluate
the expectation value of the imaginary part, setting
p, =0,

~t—=g L~q]fs(p),

&t=—g LdqJ4e*(p)2(ps —qs)

(4.5a)
(q k)-t= lim m(ks)-'Isi'4-'(q k)-'

km~0

=litn s.(ks) "si'4 Q,(k, i),

The amplitude Aq describes the coupling of the bound
state p, (p) to a state of one off-shell photon, and 8 t is
the (physical) adjoint of A t.

The numerical value of A l is obtained in Appendix A
for the case @=0.The result, for a bound state with
quantum numbers e, l, and m, is

gt=g42 »ng sP —
swiss

—s&s(Ps —mts ——mss)
—t&s$, {46a)

A. t= pp '(p' —mts+mss)A t. (4.6b)

The k1nematical factor ln Al, ls obtained trivially from

with

(IrnS'. s) = —2 rg' dQ&s(k)As(k), (4.14)

As(k) = lim(ks) —'StPt(k 1)iP(P) (2s) ' (4.15a)

Js(k) = litn(ks) '~'iPt(P) 2(Ps—qs)lP(k, 1)(2n) ', (4.15b)

"See the lectures&given by A. N. Tavkhelidze at the Tata In-
stitute, Bombay, ' 1963 (unpublished).

where fe(k, 1) is the off-shell ground-state wave function
with total momentum k. Thus
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which shows that the two-photon state is represented by
the ground-state wave function (off shell) in the limit
k' —+ 0. Consider now the decay of the ground state,
P(p) =P(p, 1); then Pt(k, 1)P(p, 1) is the (off-shell)
scalar form factor of the ground state,

ijV(k(1)lP(p, 1)=2[1+2mk p/(k')'"P] '
&C [2pp(p' —2m')/(2~)'P] —'~', (4.16)

where P= [(p'—m ')(m '—pp)]'Ip We insert this into
(4.15a) and use momentum conservation, 2k P=PP,
to get

the corresponding electron contributions upon multipli-
cation by Z' and interchange of the two masses. Then,
by using Eq. (1.14) we find that the Lamb shift is
given, within a relative error of order (Zn)', by

~= (1/2mp)(W~p+Wf)=AE p+AEr, (5.1)

where W p and Wf are the (electron) vacuum-polariza-
tion and fluctuation contributions from g»' and t/t/'»",

respectively.
The Feynman diagram for vacuum polarization gives

A p= g'/2u "s.a™P'"(P' 2m—')' ' . (4.17) W„,(q,q') =igig 'p[( q q'—)']'-d'k(2pr) —'
To lowest order in g, we may replace the factor 2(pp —qp)
in (4.15b) by 2m, to get Ap=2mAp, and P by 2m in
(4.17). This gives

(Imw, p) =g"/2"prPm'. (4.18)

To determine the shift of an energy level in terms of
the perturbing potential is not quite so simple as in
the Schrodinger theory, but for the case @=0 the exact
formula is (see Appendix A)

hE= (1/2E)(ImW, p)(p'+mi' —mP)/
(p' —miP —mpP) . (4 19)

Thus, when m» ——m2 ——m, and to lowest order in g,
we get

I'=
~

AE
~

=-',m(g'/16prm')' (4.20)

for the width of the ground state of scalar positronium.
Except for the special group-theoretical techniques
that distinguish our evaluation of the expectation value,
the method used is closely related to that of
Tavkhelidze. »~

The wave functions fall off sufficiently rapidly for large
momenta that we may neglect all but the first term
in Eq. (5.3) with a relative error of order (Zpp)P. Thus
we write

W p
———(4Zn'mi/15m p) E, (5.4)

where E is the operator introduced in Eq. (4.10), with

(E)=mi'mpp(Zn)'bz, p/2prippm+ (5.5)

for the present case to relative order (Zn)'. Inserting
these results into Eq. (5.1), we obtain

&&(k'—mp'+ip) '[(q —q' —k)' —mp'+ip] ' (5.2)

minus mass and wave-function renormalization terms.
The evaluation of the integral is straightforward and an
expansion in (q—q')'/m' yields the convenient form"

W p(q, q') = —(4''mi/15m p)

&([1+(q q')'/'lm p—'+ ]. (5.3)

V. LAMB SHIFT
n(Zn)'mpfmi)'

AE„=—
15prpp' (m~)

(5.6)

We wish to calculate the Lamb shift to lowest order
in n and Zo. without making an expansion in the mass
ratio mp/mi. To this order in n there are two types of
contributions: vacuum-polarization diagrams contain-
ing a single electron bubble (such as in Fig. 2) which are
part of W, and fluctuation diagrams in which a
photon line is attached at both ends to an electron line
(as illustrated in Fig. 3, for example) and which are part
of H/'»". As discussed in Sec. III, we may approximate
8"by 8'»' alone for small Zn, which here means ignoring
all vacuum-polarization diagrams except that of Fig.
2(a). This approximation introduces an error of order
n(Zn)P 1n(Zn) in the Lamb shift, coming from the
single-bubble self-energy corrections of 8'2'. For the
fluctuation diagrams we will use Eq. (3.17). This
approximation again introduces an error of order n(Zn)'
)(lnZn, i.e., a relative error of order Zo. . In addition, we
will not consider further the vacuum-polarization con-
tribution due to nuclear pair creation, or the fluctuation
contribution due to photon emission and reabsorption
by the nucleus, since these may be easily obtained from

The fluctuation diagram gives the operator

Wr —gp dpk(2pr) (k'+ip) iGz, (P —k) . (5.7)

»

de D -2 (5.8)

"J.D. Bjorken and S. Drell, Relativistic Quantum Mechanics
(McGraw-Hill, New York, 1965), pp. 153-158.

"G. W. Erickson and D. R. Yennie, Ann. Phys. (N. Y.) 35,
271 (1965).

In the Green's function Gz(p) =i[L(p)+i p] ' and the
Lagrangian operator L (p) =Ep Wi= (p —q)' —mp'—
—S'», we explicitly indicate the dependence upon the
total momentum p of the atom. For the preliminary
treatment of Eq. (5.7), we apply the methods of Erick-
son and Yennie. iP Since L(P—k) =L(P)+kP —2k(P —q)
for the present P-independent t/t/'», we combine the
denominators by use of the familiar Feynman integra-
tion trick
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p pandwhe«P2=

)L(p) s2g, +i e(k,p,) s m'+s« —'
For later conv

'
wvenience wwe also dehne

2

(5.9a)

be shown to be of orderbe ond the 6rst m y
ro ed. Similarly,

an expansio»n
then reduces

D12 Dp'

1 1 1 BD), 1

2P Dy D), BX -+D),

—s (Z-'k —sp, ) —. .11

s 1—s)L(p) —s Wi+ (5.9b)Do=k' —s'm22+s( —s

00= ' ' s,1—s)L(p)+i&,Doo=k' —s'ms +s
(5.9d)=k' —s'm22+ i e

nt wl ].and, with a no a
'an, ' t tion consisten

D —= (k —Xsp2) —'2 s2m22

5.9e)+s(1—s

ift by w ici y h'ch D& and BpWe treat the -ink-integration shi, y 'c

differ, by writing

2XdX I)„(5.10)
o ~~ Dx' 0

1 2"
3Do Dooo ooo

2

W,+ . (5.15)
DooDoeo

+ ~i+
Dpo oop

term on
'

— side is removed by massterm on the nght-hand si e i
d the second by wavalization an e

e ond the t irrenormaliza ion .
in the t ir

the relative error in oingsince

io seen to occur inThe sd de integra io
only two forms:

1

ds d4k s'Dooo 'J1=—3im
—'

0

But since''—' —')= — .—(~- ~")
1 2

Bk„Dg Di
2 2

+(k~ )sp&~) —p» ——

and
2 p

ds s'(s'm2') '=—

1
—3 —1ds d k s D'ppp DppJ2=i7r 2

(5.16)

00

2 2 2 —3k'dk's'(k'+s m2to zero undere
' '

and integrates to
J'd4k, this may be use
commutator k' m — — I. —ieP'. (5.17)k' 'm '—s(1—s)I.(p —~e

ing e
' '

n variable from k2 toan ing the integration v

y=—(k'+s'm22 s (5.18)
(5 12) and defining

(5.19)Z =ym22 L(p) i e, — —
we obtain

ys(1 —s) —s'

y&(1 —s) V.s/ (1—')

—s2~«'+» ys(1 —s) —s

y'(1 —s)'20

J
m2 0

m2 2

f(y)
dy -- —,

e
(5.20)

6m22

[Wi,q

1I
D000 Doo

where

(5.21)' '+23 —2(1+y)»(1+y)j.
rom . .8 and (5.10), we see t aFrom Eqs. (5.8) and

written

g„+ . (5.14)g„

of twonotation = to denote0
expressions w (5.22)5'y = 8'yy+ 8'y2,

2sI ——Ps., —
s' 1 11

9p& p
~

may be reapplied to writeThis same method may e r
'

write

(5.13)I)= o=I + dt's Ig, —
0

to ive no contribu-
2r l

n be shown to give
I order lower than ( ntionnstohEo or

ln E
h Doo='Dooon 5"1 and notep

ave function, o oupon a wav
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whereWrtandWfscomefromtheDs'termandtheI" calculation. The expansion of f(2k'/ms) around
term, respectively, in Eq. (5.10). Combining Eq. (5.16) k'=0 is
with the surviving third term in Eq. (5.15), we obtain f(2k'/ms) =1 —k'/ms+ . (5.27)

g» —o,m, 2~-~W,J,TV,

= —(n/2nms') WtWr.

From Eqs. (5.20) and (5.14), we obtain

(5.23)

g g2
——i(ym2 m

1

d4k dX 2XI)
0

A 1
Wz. = —— f(y)dy q~ [W„q —]+Cq",W,J q&—

6m

1 1
f(y)dy q" C&,q"3+—Cq', ~l q"—

6x

1
f(y)dy 2q.q" q. q",~— —

6x

Elm

3Ã {j

1
yf(y)dy q" q"— (5.25)

since 2='ym2 when acting upon a wave function.
It is worthwhile to digress at this point to compare the

static limit of Eq. (5.25) with the conventional evalua-
tion of the Lamb shift. As mt ~ ", qs=mr —q'/2mt,
so that the A =0 and A =4 terms almost cancel each
other.

,
The limit of L(p) is 2ms(E —H). Thus upon

multiplication by 1/2ms [cf. Eq. (5.1)g, we obtain the
limit

=nmss~ '(q.-js[Wt, q"g+[q",Wt jAq" } (5 24)

In Eq. (5.24) we have extended the index summation
range from p =0, 1, 2, 3 to A =0, 1, 2, 3, 4 by defining the
(c-number) operator q4= —q'—=mt because the resulting
relation q'iq& ——0 simplifies the further development
of 8'f~. Then

f(y)= 1+g(y), -
and using the identity

(5.29)

pm2'
=qx

L(p)
qA (5.30)

Therefore, for photon energies that are small compared
with m2, the usual result is obtained. For large k', the
conventional expression diverges and it is necessary
to devise an elaborate procedure to obtain a finite
valuess: The integration in Eq. (5.26) is cut o6 at a
value X, that is large compared to the binding energy
but small compared to m2. This gives an energy shift
E& that depends logarithmically upon P,. For photon
energies larger than X„one ignores the eGect of binding
and evaluates an energy shift E& by standard field-
theoretic perturbation theory. Here one encounters an
infrared divergence and the integral over the virtual
photon mass is cut off below X,. Thus E& also depends
logarithmically on X„while this dependence is canceled
out in E&+E&. This procedure is not only complicated
and unaesthetic, it also requires careful justification,
since X, is a photon energy in E& and a photon mass in
E&. Our result, Eq. (5.26), on the other hand, is based on
relativistic kinematics from the start. The Green's
function i/L(p) reduces to i/2m, (E—H) in the non-
relativistic limit and to i(Pss —mss) ' in the high-energy
limit, where the potential is of less importance. Hence
Eq. (5.26) interpolates between the two limiting
approximations used to calculate E& and E&, and since

f(2k'/ms) =3ms/2k' for k'))ms, (5.28)

the integral is convergent for high as well as low values
of k'.

We proceed with the evaluation of Eq. (5.25) by
separating f(y) into two parts:

1
- t/t/'f2 —+-

2m2

n " /2k')

3~mss . &msi

k'
xq I,kk' —E+H

The second term in the parentheses is what remains from
the near cancellation of the A =0 and A =4 terms of
Eq. (5.25) and the new integration variable is k'—=—,'ymr.
Except for a factor of —,

' (due to the distinction between
vector and scalar photons), the only difference between
this expression and the conventional expression" is the
appearance of the factor f(2k'/mr) de6ned by Eq
(5.21), provided that the integration variable k' is
identified with the photon energy in the nonrelativistic

"R.W. Huff, Phys. Rev. 186, 1367 (1969}.

in the part of Wrs which involves g(y)":

n
9 fg= lim-

F~oo 3

-ym ' L(p)-,
dy q. +g(y) q' (5 31)

Inserting the relations'4

qA=mlF4 FA Wl — 2(ZQ)mlm F4

and (Wf)=(n, L~I'4Wf]m, L) into Eqs. (5.23) and (5.31),

"This criticism does not apply to the treatment of Ref. 19.
~'The special treatment of the integration limit is necessary

because the integrals resulting from the two parts of f(y} are not
separately convergent.

"These I'g are the familiar SO(4,2} generators which are dis-
cussed more fully in Refs. 3 and 21. Note that ere are using a
different expectation value from that of Eq. (4.2). Both are valid
for the discrete states and we have chosen the most convenient
form for the present context.
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n(Zn)'mP
&,Llp- I,I&, (5.32)

2a(Ze) 'm, (mg
d«rs = »m —

l

— (F2+&8), (5.43)3~' km,

dy (N, LI 1'~9~2'+g(y)1'4 'L-J
cv,=—&(~,Lll r.+r,—«,y l~,L)), (5.44a)

X —r&le, L), (5.33)

2s 0

Z'—=ytng21'4 —I, (5.34)

X,=F4 'L(p) = —P~F~+2(Zn)mgm2, (5.35)

g(y)dy((N, L
l r~

1'0+1'4—«0

&& (I'0—e) 1'"
l N, L)), (5.44b)

~s(~)

and I'~ is given by Eq. (A1}.The states
l N,L&, labeled

by the principal quantum number and angular mo-
mentum, have the form"

lN, L)=male, L}}, (5.36)

where the le,L&} are the orthonormal eigenvectors of
I 0 Rnd RngulR1 moIIlcntuIQ Rnd thc X ls R norIHallza-
tion factor determined by &e,L ll'4lN, L)=1.'4 R is the
SO(4,2) rotation which (for bound states) diagonalizes
L and is heremost conveniently written in the form
E=E E, whclc

~"Lp»„j~"=(p2)~~21„(5.»a)
FL2m, (p')'~'1', —(P'+e,'—~,')r.3Z'=Pr „(5.31b)

~=-(~"~ )'"=L(p'-~-')( '-P') j'"
=2(Zn)mges2/e (5.38}.

ajar= —L2(Zn)mgmg/ej(ro —n), (5.39a)

gF4R= Ln(p')"'/mg(Zn) j(1'0+1'4—«0), (5.39b)

2(Zn)'mgmg'

n'(p') "'L2mg(p') '"+p'+mP —m221

(Za) 'ns2'
(5.40)

2N'm+'

From Kq. (5.39b) and the fact that the diagonal matrix
elements of F4 in the

l N,L)) basis vanish, the normaliza-
tion factor is found to be

%'= (Za)rw2/e'{p') "~(Zn)m2/n'm+. (5.41)

With these results, Kqs. (5.32) and (5.33) become, to

'6 The notation for the states and eigenvectors folio&vs that of
Ref. 2I, in @which a more complete discussion may be fomd.

F

ydy«. ,LI1. ---~-'I,L)&
4P g Ap(e)

~/0

ydy«e, I.
l rg—r"

l N, L})
Ag(e)

P—={Ze)'mg/(p')"' (Zn)'mg/m+,

(5.44c)

(5.45)

X,(.)—=y(r, +r,—«,)+2P(r.—I)/N2, (5.46)

with Eq. (5.46) including A~(c) as a special case."Note
that all Zo. dependences are now explicit, with none
being hidden within wave functions. This is the principal
advantage gained in actually carrying out the rota-
t1on E.

Let 3f,o be the value of M; when we set P=e=o
within the matrix elements (but not in the integration
»mlt ln M3) and write

(5.47)

%e will drop the kV; terms, since they are clearly of
higher order in Za. However, unhke our previous
approximations made in evaluating Eq. (5.7), which
gave relative errors of order (Zo.)', this neglect of the
Wf; may introduce relative errors of order as love as
Zo.. For example,

bkf z= e((N,L l (F011'4) T0(70+74—«0) l e,L». {5.48)

AMIough BMj ~0 Rs e ~ 0, e AMER Goes Hot exist in
the limit e —+ 0 for I=0.

We apply Eq. (C6) of Ref. 21 to obtain

2do~= &&& LI(1'~+1'4) 'l»L&&=2(2L+1) ' (549)

Thc cvaluRtlon of thc rcIna1nIng Inatrlccs ncccl.cd fo1
&20 and &go is carried out in Appendix B. %ith

"The thoro expressions for M3 are related by the change of
integration variable y —+ Py.
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M20= ——
2'0 0

g(y)
dy ((n Llr~

y rp+r4

Eqs. (B6a) and (B7), we find APPENDIX A: EVALUATION OF EXPECTATION
VALUES FOR POSITRONIUM DECAY

Evaluation of (4.5)

Let Q, P, and X be the "6ve-vectors"'

g(y)
&y ~I., o

= (-', —lnI') bz, p.

X(r,—n) r"
~
n, i.))r.+r,

Qz = fq„,mi}, pz = (2mip„, p'+mr' m—p'}, (A1)

~A. = pA/p

with P= (P')'~' and let fp(p, nlm) denote the off-shell
wave function for a discrete state. In the limit p„—+ 0,

(5 50) llmpr p(p, 1)=lim(hr)f(p, 1)=11m/(p, 1)
= mipr

—' lim P Q)
—'= —(m,pr)

—'. (A2)
Equation (B10) may now be used to express Mpp in
terms of the familiar Bethe logarithm y(n, L): Thus, with neglect of a phase

Moo= br. , o ln(Y/P) —y(n, L) . (5.51)
d(rl) fp(p, nlm) =mipr lim d(q) pp*(p, 1)rppp(p, nlm)

When these results are inserted into Eqs. (5.42) and
(5.43), and Eq. (5.6) is included, we obtain the complete
Lamb shift to lowest order in n and (Zn),

=mipr limit(p, 1)f(p, nlm) .

Now, with physical normalization for $(p,nlm),

(A3)

2n(Zn)'mp mi) p m+
AE= -', —,', +ln bi, o

3prno m+) (Zn) 'mi

35'+—y(n, L)—,(5.52)
(2L+1)mi

where the term —
yp is the vacuum-polarization con-

tribution. Although terms of higher order in Zo. have
been neglected, this result gives the exact mass de-
pendence of (Zn)P term. We have nowhere assumed
m2«my. This also agrees with the mass dependence of
the Lamb shift for real hydrogen, " but with the
magnetic moment term replacing the last term of
Eq. (5.52).
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Ai ——(2pr) 'gmipr(2n" P/2 mp i)p
XL2nPo(P' —mi' —mp')/(2pr)'P] "'bip) (A5)

which reduces to (4.6a) on the mass shell P=g'/8prn.
When Pp(p) is a continuum state, we have instead

Ai=g(2pr) 'mipr limit(p', 1)I (p) 'f(p, q). (A6)

The matrix element is the amplitude for photodis-
sociation from the ground state. Using the method that
was used in Ref. 5 to obtain the Coulomb and brems-
strahlung amplitudes, we easily obtain

tl'(p', 1)&(p) V(p,q) =v "!(—)!»'m Z 0'(p', 1)

Xf'(p, vlmg/(p, vlm)tf(p, q) . (A7)

In the limit p' ~ 0 we have, as above,

p" (p', 1)p'(p, l )v~mv"'P(mp) 'biob o.

Also,
(A8)

0'(p, 00)'4 (p,q)
—2-&/p(~/prmvi)p'(p v)&z "A~i@'~ . . . p'~ (A9)

= (2/v)'"(y/m v')
I
V

I

" 'F'
oo(X V)

where m is an arbitrary normalizer with the dimension
of mass that comes in through the infrared divergence,

' This appendix relies heavily upon the results of Ref. 5.

Pt (P', 1)tP(P, nlm)
= —2n"'f (—1—XX') "L1—(u.')']ti"—'~}

X[2nPo(P' mi' m—)/(2 —)PpPr] '~ohio (A4)

The limit of the curly brackets as p„' ~ 0, with neglect
of a phase, is P/2mip. Thus, finally
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[(P—q)' —mo' —Wg —(W')]f=0. (A11)

This is solvable exactly if the mass p of the meson ex-
change potential 8'~ vanishes; for a state with principal
quantum number e,

kim~p' (p'—+mP —mo' —(W'))'= const. (A12)

Thus, in the c.m. system,

E9E
d,E= — (W')

&(W') w -o

(W') P'+mrs —moo

2P P' —mP —moo
(A13)

APPENDIX B: EVALUATION OF SPECIAL
MATRICES FOR LAMB SHIFT

We wish to evaluate matrices of the form

SK[f(Fo)]=—Fg(ro+F ) 'f(I'o)(F +I' ) 'F, (31)
where f(e) is any function which is well defined for the
positive integers. Since the ratio of any two F& com-
mutes with any other such ratio,

SK[f(r,)]=r, (r,+r,)-
XOK[I'p 'f(Fp)](I'p+r ) Vp, (32)

where

Vz=m 'Qz, and, in the c.m. system,

I
VI~'I' ppO' V)=pr '2 ''I VI ~' sinv(p/sin(p

=or '2 'Io(2IqI jm)~'. (A10)

Combining (A6)—(A10), we obtain Eq. (4.8).
The relationship between the energy shift and the

expectation value of a potential in erst order of per-
turbation is found as follows. Replace the perturbative
potential by its expectation value (W') in the wave
equation:

n=0 is not contained in the spectrum of Fo. The
coefircient (Fp—1)' of f(Fp 1—) usually ensures that
this restriction is satisied automatically, but for func-
tions for which lim„p [e f(m)]&0 special attention is
needed. Thus, although the second difference operator
applied to any linear function yields zero, we obtain

SK[Fp ']=0 SK[Fp ']=-,'8q,r„(35)
where the operator Kronecker 5 is just the projection
operator for the state I1,0)). For SK[f(Fp)] these two
special cases become

r, (r,+r,)-'r, (r,+r,)-'r~= 0

rg(rp+F ) 'F"=—Fp(Fp+F ) 'I1,0))
X ((1)OI (Fp+F4) 'I'p. (36b)

Applying Eq. (C6) of Ref. 21, and noting that Fp+F4
is diagonal in I, we obtain the matrix elements

((+ L IFA(r +F ) 'r" I'a,L))= 2(me')'~'b, obI, ', o. (3/)
A comparison with Eq. (C15) of Ref. 21 shows that
F~(ro+F4) 'rz is a representation of the coordinate-
space 5-function operator.

The familiar Bethe logarithm may be expressed in a
more convenient form for our purposes by combining
Eqs. (2.8), (2.9), (2.11), (2.13), and (2.17) of Ref. 21
and Eq. (34) above:

y(e, L) =lim br, p lnX—
g ~oo

„nv

1
x((e,L I

R 'r~= --F"E-I m,L)), (38)
Fg—p

where v '=k+n ', and R is an SO(4,2) rotation oper-
ator satisfying

SK[f(r,)]—=r,y(ro)r . (B3)

Equation (A17) of Ref. 21 may be rewritten to give

OK[f(ro)] = ro'f(ro) —;g (rp+ 1)of(ro+ 1)
=-,'ops. g(0)+v.

Carrying out this rotation in Eq. (38), we obtain

(39)

r of(r,)]
in terms of the second-diGerence operator 5. ln applying
Eq. (34), however, it must be remembered that the
term (Fp—1)'f(Fp—1) is not present when applied to
the eigenvector

I 1,0)). This is obvious, since the value

X

y(m, L) =lim 8r, ,p lnX —— kdk
g-moo

x((N, L
I
Fg r"

I ~)) . (310)
A, (O)


