
928 A. H. VOL EEL

1, 2, and 5 are not true any more. One can construct
examples which show that an analog to I.ojasiewicz's
lemma does not hold in this case. The reason is that one
cannot draw any conclusion from the symmetric part of
the first derivative of a function on the symmetric part
of its primitive function.

On the other hand, Theorems 3, 4, and 6 as well as
their corollaries remain true under this weakened
assumption.
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The connection between causality and analyticity in scattering theory is formulated in terms of Hilbert-
space concepts. The usual rules of nonrelativistic quantum mechanics are assumed to hold for the "in" and

' "out" states of the scattering system. We show that there is a (physically veriGable) causality condition
which implies that each diagonal S-matrix element S „(E)must be the limit of an analytic function of the
energy 8, regular in ImE&0. The implications for partial-wave amplitudes and for the forward scattering
amplitude in elastic two-body collisions are discussed.

I. INTRODUCTION

NALYTICITV properties of scattering amplitudes
are an essential ingredient of S-matrix theory. It

is important to know which of these properties can be
deduced from causality conditions that are physically
veri6able. This question has been the subject of a
number of publications. ' " Direct proofs of analyticity
from causality are available for nonrelativistic elastic
scattering by spherically symmetric interactions that
vanish beyond a finite radius. "

In attempting to generalize these proofs in the con-
text of formal scattering theory, two types of difficulties
are encountered. First, because scattering states cannot
contain negative-frequency Fourier components, events
in a scattering experiment cannot be localized in time
with arbitrary sharpness. ' However, Screaton4 has
shown that for a simple linear system described by a
(scalar) equation

0(t) = dt'F(& &')I(&'), —

a causality condition can be formulated which implies

' N. G. van Kampen, Phys. Rev. 91, 1267 (1953).' R. J. Eden and P. V. I andshoff, Ann. Phys. (¹Y.) 31, 370
(1965).

s A. Peres, Ann. Phys. (X. Y.) 3'7, 179 (1966).
4 G. R. Screaton, Phys. Rev. 165, 1610 (1968);182, 1415 (1969).' D. Iagolnitzer and H. P. Stapp, Commun. Math. Phys. 14, 15

(1969).' H. M. Nussenzveig, Phys. Rev. 177, 1848 (1969).
A more complete bibliography list is available in Refs. 3, 5,

and 6.

that the Fourier transform of Ii is analytic in a half-
plane, even though 0 and I have only non-negative fre-
quency components. The second difficulty is connected
with the use of monochromatic states ~E,n) of the free
Hamiltonian Hp in de6ning the S matrix. In the
mathematical theory of Hilbert space, the diagonaliza-
tion of a self-adjoint operator is expressed in terms of
projection operators corresponding to

CK p

whose properties can be established under very general
conditions. s The properties of the mapping (E,n~f)
depend on "representation theorems"' which are limited
in scope. Very little can be said about matrix elements
of the form (E,n

~

T ~E',n') if T is an arbitrary Hilbert-
space operator. For example, if we know that (E,n

~
iP) is

continuous in E for any normalizable ~f), we cannot
state that (E,n

~
T ~E',n') is continuous in E, E' unless

we impose strong restrictions on the operator T, e.g., the
condition that T be a compact operator. '~"

N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators
in HiSert Space (Ungar, New York, 1961),Sec. 61.

9X. Dunford and J. T. Schwartz, Linear Operators (Inter-
science, New York, 1963), Sec. XII.3.IReference 9, p. 516."It is worth remarking that in the standard proof (Ref. 12)
of the analyticity of the forward scattering amplitude in potential
scattering, the assumptions about the potential that are intro-
duced are needed to show that the operator T(E) is compact. The
analyticity of the forward scattering amplitude is then obtained
without further assumptions about the potential.

~ N. N. Khuri, Phys. Rev. 107, 1148 {1957).
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In order to discuss the implications of causality in a
general context, it seems necessary to restrict our
attention to those properties of the scattering which can
be expressed in terms of projection operators without
explicit reference to the representation ~E,n). The
diagonal elements S (E) of the S matrix fall into this
category. In Sec. II, using standard theorems about the
spectral representation of operators, we obtain informa-
tion about the functions S (E) which is needed to
apply Screaton's result. 4 In Sec. III we show that there
is a causality condition which implies that each S (E)
is the limit of an analytic function of E, holomorphic in
ImE& 0. Our causality condition is physically verifiable,
at least in an idealized thought experiment. The argu-
ment is quite general in that the rules of quantum
mechanics are assumed to hold only for the asymptotic
states of the system at t=~~. The existence of a
Hamiltonian H which governs the time development of
the system at Quite times (or of an interpolating wave
function 4) is not necessary. In Sec. IV, we discuss the
special problems encountered in the application of this
method to (i) partial-wave amplitudes for a spherically
symmetric interaction and (ii) the forward direction
scattering amplitude, for elastic scattering of two
particles by a spin-independent interaction.

II. DIAGONAL 8-MATRIX ELEMENTS AS
SPECTRAL FUNCTIONS

At the risk of repeating well-known facts, we shall list
a number of assumptions about the scattering system
which are needed for our main result in Sec. III. Be-
cause of assumptions B and C, we are excluding from
consideration the case of multichannel scattering where
rearrangement channels are present.

A. The state of the system is describable asymptoti-
cally as t —& + pp by vectors f in a (separable) Hilbert
space X.

B. There exists a unitary" operator 5 in 3C such that
if the system is in the state f; (t) at t= —pp, then at
t=+ po it will be in the state

f(Ho) = f(E)dP(E) (2.3)

(for certain classes of functions f), and to develop an
operational calculus for these functions, " which pro-
vides a rigorous justification of statements such as

Gp(s) = (s —Hp)-'= i—dt e '~"+'*' Ims) 0. (2.4)

In particular we shall need the following representation
of P(E):

P(E) = — lim dE'[Gp(E'+ip) —Gp(E' —ip) J
2xi '-0+

= —lim de'
2x '

HIpt+iSt —e( t (
7 (2.5)

which is easily established by using standard results"
of the theory. The limiting processes implied by Eqs.
(2.4) and (2.5) are all strong operator limits.

D. There is a finite number of self-adjoint operators
A; in K (i=1, . . . , n) with projectors'~ P, such that.
Ho, Ai, . . . , A„commute and form a complete set of
operators.

The product of these operators will be denoted P,
where n stands for the ordered set n= (nq, . . ., n„) In.
physicists' notation, we have then

(ii) P(0)=0, P(~)=1; for 0&E~&E'(~, P(E)
XP(E') =P(E).

For any EP[0, pp):

(iii) P(E) is strongly continuous in E.
(iv) For each ppEK, (pp, P(E)q) is a non-negative,

nondecreasing continuous function of E.

These projectors make it possible to define functions
of operators

1t.„„(t)=S&;(t). (2 1) P(E)= dE'PiE', n)(E', ni,
C. The states g; (t), f,„~(t) evolve in time according

to a Hamiltonian Ho,
(2.6)

f;„(t)=e ' "P;„(0)
0-p(t)=e ' 'V-~(0),

(2.2)
dE iE,n)(E,nI, .

where Ho is a positive self-adjoint operator" in K having
a continuous spectrum only.

This condition on Ho ensures that there is a resolution
of the identity corresponding to Ho with the following
properties. '

(i) P(E) is a projection operator" (hence bounded
and self-adjoint) which reduces Hp for any EP[0, pp).
"We use these terms as dered in the mathematical literature;

see Ref. 8, Vol. 1, pp. 63, 'j2, and 85.
'4 Ref. 8, Secs. 61, 66, and 68.

Consider now the restriction to the subspace K =P K
of the operators H p and S. From (2.1) and (2.2), H p and
S commute; hence P HO=HOP and P SP also com-
mute. Clearly P Ho is a self-adjoint operator in K .

'~ M. H. Stone, Linear Transformations in Ir~lbert Space
(American Mathematical Society, New York, 1932), Chap. 6."Reference 9, Theorems X.1.1 and XII.2.3.

'7 If some of the operators A; have continuous spectra, one
should use the corresponding diBerential projectors dE(n;)/dn;.
However, we shall not observe this distinction as it would require
a cumbersome notation and would not in any case alter the
argument.
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5 (E)P dP(E) (2.7)

Assumption D implies that P IIO has a simple (i.e.,
nondegenerate) spectrum. Since 5 is a unitary operator,
it is bounded. Hence I' SI' must also be bounded. We
now invoke a theorem" of Hilbert-space theory which
states that if a bounded operator Q commutes with a
self-adjoint operator 3 which has a simple spectrum,
then Q is a function of A. This theorem gives us the
integral representation

and enables us to write

O(t)= dEe 's—tS (E)I(E). (3.6)

Screaton's theorem is directly applicable to the pair of
equations (3.4) and (3.6). The condition of causality
will be formulated as follows.

E. There exists a number M independent of X,
i/r;„( 0), and t such that

IO(t) I
&M sup I

I(t')
I
. (3.7)

and the following information about 5 (E): (a) S„(E)
is measurable on every compact subset of the interval

L0, ~),19 (b) 5 (E) belongs to I.,'L0, ~) with respect
to the measure 0= (q,P(E)q&) for any q&K„,19 (c)
S (E) is a bounded function on E&LO, ~).18 As a
distribution, 5 (E) therefore belongs to the class' I."
whose test functions are the elements of I.'I 0, tc).

IIL CAUSALITY CONDITION

—oo(tI Q t

In Ref. 4 Screaton shows that if 5 (E) is known to be
a tempered distribution, then condition (3.7) leads to
the following conclusions.

F. There is an analytic function 5 (s) regular in
Ims&0 which approaches S (E) on Eg[0, ~) as
s —+ E+i0 Further. more, 5 (E) is the Fourier trans-
form of a causal tempered distribution

Consider the scattering of states P;„which are in a
particular subspace K . From (2.1) and (2.7) we have

oo

5..(E)= — dt e'~tS..(t),
2'

(3.8)

f; (t) =P,P;„(t),

(3 &)

For the detection process, we select a state X (in the
same subspace 3'. ) which is independent of E and t.
Thus

Qo (3 2)

We dehne

where the support of S (t) is I0, ~). Also, S (E)
satisfies a twice-subtracted dispersion relation.

Since our 5 (E) belongs to I." it is certainly a
tempered distribution. '0 From Screaton's proof and the
uniqueness of distributions, we can conclude'2 that
5,(s) approaches its boundary value pointwise almost
everywhere as s ~E+1'0.

With our choice (3.3), the functions IO(t) I', II(t) I'
are certainly observable quantities according to the
rules of quantum mechanics. In his proof Screaton uses
a specific form of test function I,(E) of very fast de-
crease. It is important to check that any choice of
function I(E) of this class is physically realizable. First
we note that the choice

(3.3) (A-(0),P(E)4'.(0))= dE'I I.(E')
I (3 9)

ec

I(E)= —lim
2m' '+

Equation (2.5) now gives"

dt eiEt eft(I(t)—(3.4) is physically realizable since the quantity on the left-
hand side represents the. (integrated) energy probability
density in the state f;„, which can be chosen at will.
Secondly we are allowed to choose

(X,P(E)P;,(t)) = —lim
2~ '"'+

&«"' '~ "~(X 0 (t+t'))

expL —iargI. (E)jdP(E)ttt;„(0), (3.10)

since this operation is equivalent to a unitary operator
111 X. Wltll this cllolce of X and f; 1t. 1s easy to ve11fy
from (3.5) that our function I(E) will reproduce the
test function I,(E).

xs Reference 8, Sec 71 Theorem 1
'9 Reference 15, Theorems 7.16 and 8.1.
'oE. J. Beltrami and M. R. Wohlers, Distribltions und the

Boundury Vulles of Anulytk FNnc&'ons (Academic, New York,
1966), Sec. 1.1.

"The interchange of limits in this step can be justified by ele-
mentary calculus. Note that from property C (iii), (x,P(8)p; (t) )
must be a continuous function of B."Reference 20, Theorem 3.19.
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If we could show that it is always possible to find a set
of projectors P which simultaneously reduce S and Ho,
then our result could be extended to every S-matrix
element. A general theorem of this nature does not seem
to be available in the mathematical literature. In some
scattering systems, because of the symmetry of the
interaction, this simultaneous diagonalization can be
carried out explicitly. In this case we must have"
~S..(E) ~=1, so that

(E) c2ibz(E)

with a real b (E), and the conclusion F applies to every
S-matrix element.

The above discussion does not apply to rearrange-
ment collisions because they violate'4 conditions 8 and
C. However, with minor modifications the argument can
be extended to inelastic scattering in systems having
conventional channels, '4 i.e., corresponding to a 6nite
number of excitational levels for each particle. Opera-
tors P, projecting onto the channel subspaces would
have to be added to the set P, Conclusion F could then
be established for matrix elements S. .. (E) corre-
sponding to the same initial and final chanriels.

IV. PARTIAL-WAVE AMPLITUDES AND
FORWARD SCATTERING AMPLITUDE

and the usual stationary phase argument it is clear that,
at large negative f, P;„will have an incoming peak at
r= —2ket of amplitude c(ke)e" "and an unobservable
image peak at r= 2ket. At large positive t, f,„,will have
an image peak in r &0 and an observable outgoing peak
at r=2k//f —8'(k) of amplitude c(ke)S/(k/I)e "z/ Th. us
we can make the identi6cation Si(k) = e'@'&2~.

In order to realize a given test function I,(E) in the
application of Screaton's theorem, one can simply
choose

x(&,r) = dk /2*(k)r"'J 1+1/2(kr) (4.5)

and set -'2ta(k)//kj2 equal to I,(E). The argument of
Sec. III is thus directly applicable to this case and leads
to conclusion F for the function Si(k).

For the case of elastic scattering of two particles by a
spin-independent interaction, the method yields a proof
of analyticity for the scattering amplitude in the for-
ward direction. We choose

k=ko. From the asymptotic behavior of J,
/'2~»2 1,

&1/2J (k&) ( )
[&ikz iiz—/2 &

—ikz+1/z/2J= Ek)
(4.4)

We consider erst the case of elastic scattering of two
particles by a spherically symmetric interaction. The
S-matrix is diagonalized as usual by decomposition into
partial waves. Equation (3.1) reads (with E=k')

P.„,(l,r, /!) = dk kr"'J/+1/2(kr)S1(k)

P; (r, t) = dk a(k) e"*
(22r)"' e

x(r) = — dk b(k)e'"*
(2~) 1/2

(4 6)

(4.7)

X «' «'"'Ji+1/2(kr')p/~(l, r', &), (4 1)

where J is the standard Bessel function. It is not
evident at first glance that this S~ agrees with the
partial-wave S-matrix element e""which is customarily
defined through the asymptotic behavior of the function
4'/+& (l,k,r). According to the Hankel transform theorem,
we can state that if

4.- (r,&) =4 -(r,&)+
4m'

1
d'k —A (lr, kz) e'"'

k

d&~ // i/zz'1I/ (r& f) (4 g)— .

We make the following choice for the functions I(/)
and 0(/):

Then, in accordance with the usual three-dimensional
formalism, we have"

P;„(l,r, f) = Jii- / (k )e
—'"", (4.

dh &*(r)f; (r, /) = dk b*(k)12(k)e—*"'i, (4.9)

O(f) =(XA".z(/) —4' (f))

$«&(l,r, f) = dk S/(k)a(k)r1/2J/i. 1/2(kr)e ' ". (4.3)

Suppose that /2(k) is a real function with a single peak at

=27ri
00

dk —A(kz, kz)b*(k)a(k)e '2". (4.1O)
k

» Reference 8, Sec. 74.
' M. L. Goldberger and K. M. Watson, Collision Theory

(Wiley, New York, 1964), Chap. 5."Functions which are equal amost everywhere are considered
to be equivalent.

From these equations one can construct a direct proof
that A (kz,kz) must satisfy condition F.

"The amplitude A has the standard normalization d0/gQ= (A (k,h') (2 (Ref. 24, Chap. 6).
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V. DISCUSSI'ON

Consider a system governed by a Hamiltonian
H= Hs+H'. Let 4(+) (t) be the state which develops in
time in accordance with II and which approaches
&P; (t) as i~ —eo. Most previous formulations of
causality in nonrelativistic quantum mechanics' ' in-
volved a comparison between 4'(+) (t) and &P;,(i). It was
always necessary to assume that the interaction vanishes
beyond a 6nite radius. These formulations of causality
were not decisive in that similar analyticity properties
could also be deduced from an assumption of conserva-
tion of probability, ' or of the completeness of the states
of H outside the interaction region. '~

A similar situation may be observed if we replace
the function 0(t) in (3.7) by U(t) = (X,+(+)(t)).4'(+)(i)
and f~„(f) are related as follows".

4(+)(&)=P;.(&)+ d~'G+(t t')H—'y;„(&'), (5.2)

4' i(&) =4 -(t) -i Jt~e iHO(t —v)HIP— (]&),

dr"e-' «'-')

XH'G(t' —P)H'g;. (t"), (5.3)

The same qualitative conclusion may be obtained
from the time-dependent perturbation expansion which,
subject to convergence, yields the following integral
representations for @(+)(t) and (P, t(/)'s:

—ie—'~' /p0

0, «0. (5.4)

where

dt'e's"y;„(t'), (5.1)

G+(E) = lim fE H+ieg-
e~0+

From a causality cond1t1on of th18 type oIle could, at
best, deduce the analyticity in Ims&0 of matrix ele-
ments (q r,G(s)H'q s) for any q i, ((s&3C. From the point
of view of Hi1bert-space theory, the analyticity of the
resolvent G(s)= (s—H) ' is a very weak condition.
Either one of the following conditions is sufhcient to
ensure that G(s) is a bounded analytic operator in
Ims/0: (i) H is a self-adjoint operator in 3C, or (ii) H is
Hermitian and there exists a resolution of the identity
corresponding to H."However, unless the interaction
has zero range, there is no possibility of deducing the
analyticity of scattering amplitudes from this informa-
tion. Thus the imposition of a causality condition
betweeil 4(+)(t) aild f (t) is not likely to lead to
analyticity properties which are not already guaranteed
by other very basic assumptions of the theory.

' I. Saavedra, Nucl. Phys. 29, 137 (1962).
~SR. G. Newton, ScuNering Theory of 8'aves and Parti'cles

(McGraw-Hill, New York, 1966), Chap. 6.
'9 Reference 8, Sec. 65, Appendix I.8.

The kernel is a priors causal in Eq. (5.2) but not in
Eq. (5.3).

It may be objected that, unlike
~
D'(t) ~, the function

~
0(t)

~
cannot be measured in the laboratory. We would

like to show that for a scattering system which has
Mf&11er wave operators 0(+), the quantity

~
0(t)

~
can in

fact be measured during the course of a scattering ex-
periment. Since'8 5= Q& &~0&+), we have

+(+)(])—g(+)g, . (i)

p,„t(t)=0( )t%'(+)(i). (5.5)

%e introduce a modihed detector state =Q'—&X and
use the fact that

(~@(+)(t)) (g(—)x g(+)p, (t))
= (~A;..(t))=0()'). (5.6)

Since the probability
~ ( P(+)(t)) ~' can be measured

during the course of the experiment, it is thus possible
in principle to make a direct comparison between
[0(&)

~

and ~I(t) ~.»

's The time dependence of (0 ( cannot of course be obtained by
consecutive measurements on the same system. It must be inter-
preted as the result of measurements at diferent times on a set of
identical systems which evolve from the same state P;&.


