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Behavior of Commutator Matrix Elements at Small Distances. II. Etlual-Time
Limits of Charge Moments and Time Derivatives
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From general principles of quantum 6eld theory (especially locality and Poincare invariance, but without
use of the spectrum condition), it is shown that the equal-time limits of current-density commutators exist
if the limits for the commutators between one current density and one generalized charge exist. If the
equal-time limits of the current-density commutators containing at least one zeroth component exist, then
the limits of the space-space components exist also. If the equal-time limits between one current density
and the nth time derivative of the generalized charges exist, then also the limits of all time derivatives up
to order n of the density commutators exist. Explicit expressions for the erst time derivative of current-
density commutators in terms of the Gell-Mann Z and meson commutators are derived.

L INTRODVCTION

HE concept of equal-time commutation relations
between electromagnetic and weak hadron cur-

rents j o(x), as well as their charges' ' combines
assumptions on the behavior of current-commutator
matrix elements in small regions of space and time with
algebraic structures related to an underlying symmetry
group. Within the framework of general quantum field
theory the rigorous formulation of the various equal-
time commutation relations is' '

(a) charge-charge relations (CCR):

»m&+ILi-v(~t. »). iss(o l) Pic'&'

=vc-s &el j,o(0»).IC&, (l)

(b) charge-density relations (CDR):

iim&+I 6j '(v.»). jtt"(0) eh I
c')'

=v'c'"&+li."(o).IC'&, (2)

(c) density-density relations (DDR):

iim(+
I Lj-"(v.h).,io"(o)sjl c'&'

for all infinitely often differentiable (C") functions h(x)
and +,C from a certain domain of-state vectors in a
Hilbert space H.

p, is an arbitrary element from the following class
of functions of type' 8:

~ (*')=:(l/) (*'/), (4)

dx'(p(x )=1.

The smeared currents and generalized charges are
dered by7

jo(q „h)=: dsx jo(x) q, (xv)h(x),

jo(q„l)=: d'x jo(x)q, (xv).

(6)

where y(xv) 'is again a C" function with its support
concentrated in the interval

I
—tt, tsar. The equality sign

with the colon means "is by definition. " Furthermore
io(x') is normalized:

T denotes subtraction of the vacuum expectation
value before the limit is performed:

*Present address.
)Supported in part by the Stichting voor Fundamenteel

Onderzoek der Materie (FOM).
~ B.Renner, Cgrrent Algebras and their A pplicutions (Pergamon,

New York, 1968).
2 S. L. Adler and R. F. Dashen, Current Algebras and A pplica-

tioes to Particle Physics (Benjamin, New York, 1968).' B. Schroer and P. Stichel, Commun. 'Math. Phys. 3, 258
(1966).

4 A. H. Volkel, Phys. Rev. D 1, 3377 (1970).' The distribution and use of indices at the currents throughout
this paper are as follows: (i) Upper Greek indices n, v, X, . . .=0, 1,
2, 3 to the left of the argument(s) indicate tensor properties with
respect to the Lorentz group, the corresponding Latin indices k, l,
r, . . .=1, 2, 3 their restriction to the space parts. (ii) Lower Latin
indices u, b, c= V, A to the right of the argument(s) differentiate
between vectors (V) and axial vectors (A). In the commutation

3

relations we have the connection a W b~c = A and u = b~ c = V. (iii) Lower Greek indices 0., P, y to the left of the argu-
ment(s) refer to internal (broken) symmetry groups. The usuaI
summation convention for double indices is used.

6 F. Treves, Topological Vector Spaces, Distributions und
Kernels (Academic, New York, 1967), Sec. 28, especially exer-
cise 28.2.

'In the charge-charge relations (1), the two space integrals
have also to be interpreted as limits of currents integrated with
suitable test functions (Ref. 3). We are not concerned with these
relations in the present article. Since the commutator i4'

~
Lj "(n)

j&(0))(@)rvanishes for nv =no' —xv(0, we can admit arbitrary C
functions h(x) in the commutators.
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= (vc'"Lh"'&+
I j."(o).

I
~&+h"'~"'&+Ij.'(o).

I
C'&j

+h""&""&+I~-.~'"(o).sic&)h(o) (3) g, ll- '( h) '(0))le,)r
=&+I Lj"(v.») j"(o)jlc'&

—&olLI (~„h);I'(0)7lo&. (7)
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2N+m —1 r r i
p p»m&elLj. (&.;f' "-'-i).,j, (0)bglc)'

r=p s=p j=p e~p

t9

h(z) . (11)X
zt jl(r —z —g) I Q(si)iQ(sz) Jcj(sz)~ i

N. Kroll, T. D. Lee, and B. Zumino, Phys. Rev. 157, 1376
(1967).

9C. A. Orzalesi, University of Maryland Technical Report
No. 833, 1968 (unpublished).

'0 Every tempered distribution is a derivative of 6nite degree of
a continuous function. The degree of this derivative is called the
order of the distribution (Ref. 11)."I.M. Gelfand and G. E. Schilow, Verallgemeinerte FNnktionen
(Distribetionen) (Deutscher Verlag der Wissenschaften, Berlin,
1962), Vol. II.

This removes all c-number gradient terms from the
right-hand side of the commutation relations.

Finally A p~" in DDR depends on the specific model
under consideration. The most important cases are the
algebra of fields' with A p"~=0 and the quark model
where A p"~ is again linear in the currents. ' '

Besides the algebraic structures, represented in the
occurrence of the structure constants c"si' of a (broken)
symmetry group, the equal-time commutation relations
contain strong assumptions on the good behavior of the
commutator matrix elements at small distances. The
existence of the limits as well as the occurrence of only
the 8 function in (3) is by no means obvious. Moreover,
even if the charge-density limits (CDR) exist, this may
not be true any longer for the density-density limits
(DDR). The existence of the limits for the special test
function h(x)—= 1 does not imply their existence for all
C" functions h(x).

In a recent publication, 4 hereafter referred to as V.I,
we have shown the following by means of microcausality
arid temperedness of current matrix elements:

(i) There always exist 6nite positive numbers E(lz,i)
(the order of the commutator matrix elements" ")
and nb& X (with nz =0 if the spectrum condition holds)
such that

»m&'ill(j "(& h) jo"(0)bllc')r=0

for all C" functions h(x) with the property

lime ' —~+'h(bx) =0. (9)
e~0

In other words, the equal-time limits are zero for all
test functions h(x) which vanish more strongly than
Ixl'~+~. This is for instance true for all generalized
charge moments of order r) 2K+nb which are obtained
by the special choice of test functions

h(x) —fi,j,r—i—i(x) (xi)i(x2) j(xb)r-i—i (]0)

(ii) The equal-time limits of the first 2X+nz —1 charge
moments

»m&+
I Lj-'(A,f"-' ')-,jo"(o)bjl C&'

e~p

exist if and only if the limits of the corresponding
density commutators exist and are given by

»m&+ILj-"(~ h).,js"(0)bhlc'&'

This means that the equal-time limit is completely
known

I
for all C" functions h(x)j if it is known for the

generalized charges and their first 2X+zn —1 moments.

By means of these results the Gell-Mann commuta-
tion relations for the current densities (3) are equivalent
to the following finite set of relations for the generalized
charges and their first 2X+nz —1 moments:

= ( "I:~"'&+Ij."(0).I 4')+~""~"'&+Ij.'(0)
I c)j

+s s-&viz. ,b(0).bIC»), (12a)

»m&+ILj-"(. . f"" ' '). jo"(0) llc'&'=0 (12b)
~~0

for all r with 1&r&2N+nz 1.—
The next problem is whether the existence of the

equal-time limits for the charge moments follows
already from their existence for the generalized charges.
Since in the equal-time limit the support of the com-
mutators in the space variables due to microcausality
shrinks to the point x=0, one would expect that the
integration with a power in x neutralizes terms which
can be troublesome in the case of charges. In other
words, it is not quite unrealistic to believe that the
existence of the equal-time limits of all generalized
charge moments already follows from that of the
gener'alized charges.

On the other hand, if the commutator matrix elements
in a neighborhood of the origin behave like

8
=B.s~"5(x)+C.;"i" b(x)8(x'),

Bx

then the limit x' —+0 exists for the generalized charges
but not for their moments:

»m&+
I Lj-"(A») jp"(0)j I

c'&'= &-s""
g~p

lim d'x&+I
I j "(x) jo"(0)hlc'&rp &x')x'

e-+0

=C pi'""(p(0) lim(1/c) = ~ .
g~p

In Sec. II we prove that the last case cannot occur if
Poincare invariance holds. The equal-time commutators
between a density and all moments of generalized
charges, and thereby also those between two densities,
exist if and only if the equal-time commutators between
a density and the generalized charges themselves exist.
In other words, the step from the equal-time commuta-
tors containing one generalized charge to that of two
densities does not involve further existence problems.
The only real sharpening of the assumption lies in the
specification of the structure of the gradient —or so-
called Schwinger —terms; in the case of the Gell-Mann
relations in the assumption of their vanishing.
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Can one go one step further? Is it possible, starting (I) the fmlds j &(f),=fd'x j &(x),f(x), smeared with
from the equal-time limit for the (0-v) components testfunctions f(x) from s4,"areoperators with adense
(containing a proper charge) domain in a Hilbert space H;

(II) local commutativity (microcausality):

to derive the existence of the limit for the (k-v) corn-
ponents (containing the space charges):

In Sec. II we construct a class of counterexarnples,
which demonstrates that this is not possible. Even for the
existence of the equal-time density commutators for
the (0-0) component, we need the existence of the limit
for all four generalized charges —at l.east if the order
X(0,0) of the commutator is larger than or equal to 2.

In connection with the Bjorken (high-energy) limit
of Green's functions, " the time derivatives of equal-
time commutators and their possible ambiguities" have
gained growing interest. In Sec. III we show that the
equal-time limits of all time derivatives up to order e
for the density commutators exist if the hmits of the
commutators between one density and the nth time
derivative of the generalized charges exist. Especially,
we derive an explicit expression for the 6rst time
derivative in terms of the right-hand sides of the
Gell-Mann Z and meson commutators or the time
derivative of the charge-density commutator. This
expression shows that the erst time derivative has
nonzero q-number gradient terms given by the Gell-
Mann relations for the currents themselves.

Moreover, the ambiguities discussed by Brandt and
Sucher'3 can only show up in the time derivative of the
commutator containing a generalized charge, but not
in their moments, if the usual commutation relations
(without ambiguities) hold for the currents themselves.
Of course another possibility is that these ambiguities
occur already in one of the usual generalized charge-
density commutators. In the case of a conserved current,
this is only possible for the (k-v) component containing
a generalized space charge.

IL EQUAL-TIME COMMUTATORS
OF CHARGE MOMENTS

Ke begin this section with the specification of the
assumptions we need. Ke consider the currents j & to
be members of a polynomial algebra of lelds which
satisfy the usual postulates of Wightman fields, with
the possible exception of the spectrum condition. '4 '~

In detail we require
'~ J. D. Sjorken, Phys. Rev. l48, 1467 (1966).
"R, A. Srandt and J. Sucher, Phys. Rev. 177, 2218 (1969).
'4 R. F. Streater and A. S. Wightman, I'CT, Spin und Sta-

tistics und A/l That (Senjamin, Nevr York, 1964).
~~ L. Ga,rding and A. S. Wightman, Arkiv Fysik 28, 129 (1964).
'6 R Jost The General Theory of QuunAsed Fields (AmerIcan

Mathematical Society, Providence, 1965).
~7 K. Hepp, in Axiomatic Field Theory und I'article Symmetries

(Gordon and Sreach, Neer York, 1965},Vol. 1.

(III) Poincare invariance: (i) existence of a unitary
representation U(A.,a) of the Poincare group in H,
(ii) the currents are covariant under U{h.,a),

with fp,.(x) =:f(A-'(x —a)).
Beyond these general assumptions we need some

further assumptions on the equal-time commutators
containing a generalized charge. We assume'

(b) lim&elLj (y„l)„jn (0)gglc)r exists.

Both limits are assumed to exist for all O', C from a
domain D in H which is stable under Poincare
transformations.

This additional assumption is equivalent to the
following one:

limR ~"(4 4) =0 for all 4 4 QD

Implicitly this last formulation of equal-time limits is
always understood in the following considerations. Re-
writing all our following relations for the limits into
this second form, the critical reader can convince
himself that nowhere have we interchanged. Poincare
transformations and equal-time limits.

The key to all our results besides Poincare invariance
is the following lemma by k,ojasiewicz" on the existence
of the primitive function for limits of distributions.

I..ensmg I. If T(x) is a distribution for which

11m8pT((p ) = —hm dx T(x ) p (x )e~0 e~0 dx'

"We assume that the limits exist independent of the 8 sequences
from the class specified in the Introduction. Then the statement
"existence" in all our results also means independent of the 8
sequence. The results of Sec. II and the first part of Sec. III are
independent of the right-hand side of (A.I). Only the existence of
the limits independent of the 8 sequence is necessary. Possibly
most of our results remain valid if we admit from the beginning a
dependence of the limits on the 5 sequences.' S. k.ojasiewicz, Stldiu Muthemuticu T. XVII, 1 (1958),
Sections 4.3-4.5.
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exists, then also lim, o T(oo,) exists for every e, speci6ed
in Eqs. (4) and (5).

We give here a "handwaving" proof of this lemma.
The rigorous proof can be found in the paper of
k,ojasiewicz. "From the existence of

Theorem l. Under the assumption (A.I) (the existence
of commutators containing one generalized charge), the
equal-time commutators between one density and all
charge-moments,

»m&+
I Lj-"(o.f"' ").je"(o) «5I C'&',

e~0

lim dx'T(x') cp, (x')
e~0 dXO

with
fb, l, m(x) —(xl) b(xo) l (xo)m

it follows that

T(") l,,(xo) =O
e~0 kdxo )

lim dx xoT(x ) &p, (x ) exists,
e~0 chO

since in both cases the multiplication by x0 means
smoothing of the distribution in the limiting point.
Equation (18) means

lirn dx'T(xo) y, (xo)+ dxoxoT(xo) s,.(xo) =O.
e~0 dh0

Since the limit of the-second term exists, our lemma is
proved.

Let us consider in6nitesimal pure Lorentz trans-
formations

A".=&"v+oo".,
with

cov„= —~„», cv"« ——0 (no rotations).

From (14) we get, with

fb(x) =f(x) a)o«M«o f(-x),

exist.
Proof. We prove this theorem by complete induction.

From Eq. (21) taken for h(x) =f"'(x)= 1and—assump-
tion (A.I), it follows that

1~m&+
I Lj-"(M'o(o.,&)).,je"(o) 5I C&'

= —lim d4x(+I j.v(x) j,"(0),
I
c»r

e~0 BXO

X (p, (x')x" (22)

exists for all V,C +D. Therefore by k,ojasiewicz's
Lemma I, the equal-time limits of all Grst moments
exist. Now assuming that the equal-time limits for the
charge moments of order n,

I h(x) =f« '" ' '(x), k, l=O, . . ,n7, .

exist, it follows in the same way as in the first step from
(21) and Lemma I that the equal-time limits for all
charge moments of order n+1 exist. This proves our
theorem.

Combining Theorem 1 with the results of V.I, we
immediately obtain our main result.

Theorem' Z. If the equal-time commutators between
one current density and one generalized charge

8 8
M' = x' —+x'-

g&0 g&r

for the transformation law of the currents

(19) »m(+ILj-"(o»)o jo"(o)«5lc')'

exist for V,C from a certain domain DgH stable under
the Lorentz group, then the equal-time limits of two
current densities also exist and are given by

&(A)i."(f)&(A) '=j -"(f)
~' LZ-"(M'of)+g"'i -«(f) gvi'-'(f)5 (2o—)

and furthermore, for the commutator sandwiched be-
tween the states (4';4)=U(h. ) '(4;C') with O', C

arbitrary from D,

&+ILj-"(~.,h); j (o)5I@&

=&~ILj-"(~.,I); je (o)5lc&'
—~o,{&eILj.(M«, (b „h));je (o)5IC&~

+g"&~l L~. (',h), ~i(o)7I~&.
+g"'&+ It j-"(o.,h), ie'(o)5I c&'
—~"«&eILj-o(o.,h) qo (o)7I c'&~

—g b&elLj:(o„h),j,o(o)5lc& ). (21)

From this relation it is very easy to prove our 6rst
result.

8
h(z)i!j!(n—i—j)!B(s')'8(s') &8(s')" z=o

(23)

for all C" functions h(x) and some 6xed m&E. If in
addition the spectrum condition holds, then ns is equal
to zero.

As already mentioned in the Introduction, X=X(p,v)
in Eq. (23) is the (always 6nite) order of the commutator
matrix elements (before the limit is performed).

From the proof of Theorem 1 it is obvious that the
existence of the equal-time limits of the moments with

i~(el Lj-"(A,h).,je (o),5l c&~

QN+m —1 n n—i
2 Z»m(+I I:j-"( of""=').,jo"(o)«5!c'&'

n 0 i 0 j=0 e-+0
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degree N~&2 for every commutator component (p,v)
depends on the limits of the commutators for all four
generalized charges. Only the first moment of the (0-0)
component is independent of the space-space com-
ponents of one charge and one density. Since we
furthermore know from V.I that the equal-time limits
of the commutators between one density and all charge
moments of degree n) 21V+m vanish, we arrive at the
corollary to Theorem 2.

Corollary Z.l. If the spectrum condition holds (rr«=0),
if the order E(0,0) is at most 1, and if the equal-time
limits

»m(+1[j-'(o.,1).,je (O),]l e&r=ic e (Vl jv"(0).IC»

and

lrm(+
I Lj '(o '1) je'(0) «] I

c'&

exist, then the equal-time limit of the (0,0) component
of the density commutator exists and is given by

»m(+I [g-'(o.»)- je'(0) «] I
4'&'=oc"8'I j '(o)

I
C'&

g~o

Furthermore, we assume the mass spectrum of possible
intermediate states in the commutator to be symmetric.
That means that if m is the lowest intermediate mass,
then in the rest frame of p=-,'(p&+po), Pv(q) vanishes
for p' —(rr«'+q')'~'& q'& —p'+(m'+q')'I'. As a conse-
quence of this assumption, we may represent the
commutator matrix elements by a generalized Jost-
Lehmann representation containing locality, the spec-
trum condition, and current conservation. "The case of
an unsymmetric spectrum as well as the matrix ele-
ments of two conserved or unconserved currents can be
discussed in the same way by means of the correspond-
ing Dyson representations. ""

For a given commutator matrix element Pv(q) of a
conserved current there exists a unique set of tempered
distributions

Z'(u, s), f"(u,s), E(u,s)

with the following properties.

(a) The support of all of them is contained in

I ul &p', s&~so(l ul) =max(0, m —[(p')' —I
ul']"'}

3 8
+.P»m(@l [Q «(&) j o(0)«]lc,)r is(z) (24) (b) Z"(u,s), f"(u,s) are vectors and E(u, s) is a scalar

with respect to rotations,

for all C" functions h(z) and Q,«defined by

Q "(oo,),=: d'xj '(x),x«&p, (x').

(c) E(u,s) is the extension in the sense of Schwartz"
of a distribution on the regular surface s+(u —4)'=0
such that in the rest frame of p, Pv(q) is given by

At a erst glance the results obtained up to now seem
to be unsatisfactory, since we have to assume the
existence of the limits for the commutators between all
four generalized charges j "(oo„l), and one density.
The question is, can one go one step further and prove
the existence of the space parts

llm(el [j (y„l),je (0)]l4», k=1,2,3

from that of the zeroth components This would mean
for instance that the equal-time density commutators
containing one conserved density always exist.

We are going to construct a class of counterexamples
which show that this cannot be done. Our assumptions
(A.I) are really minimal for the existence of the density
limits.

For simplicity we restrict ourselves to the commu-
tator of a conserved current j o(x) and a Lorentz scalar
A(y) taken between states of sharp momenta p&, po and
equal mass M:

(p&MI [j"(x),A(0)]IMpo) =e'~*Fv(x), (25)

Fo(q) o(qo)qo duds h((qo)n (q u)o s)

X &(s+(u —a)')E(u, )+(q—a) g(u, )

2 8——Z(u,s), (27)
s+(u —cL)' Bs

F~(q) = o(qo) duds 5((qo) o—(q —u)' —s)

8 '

X q'P'(u, s) —2—Z'(u, s)
Bs

2(q+5 —2N)' 8—(q —L)—Z(u, s)
S+(11—4)o BS

—(q+A —2o«)"h(s+(u —4)')E(u, s) . (28)

~ =xo(p~ —po),

d"x e'o'Fv(x).Pv(q) =
(2x)« Io

(26)

~0 A. H. Volkel, Commun. Math. Phys. 5, 57 (1967).
~'Uta Volkel and A. H. Volkel, Commun. Math. Phys. 7, 261

(1968).
~ Uta Volkel and A. H. Volkel, Nuovo Cimento 63A, 203 (1.969).
+ L. Schwartg, Theoric des distribgtioes I/II (Hermann, Paris,

1957/59).
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Next we derive the analog of Theorem 1 and (V.I)
Theorem I for the time derivatives of current
commutators.

Theorem 4. Under the assumptions (A.I),'« the equal-
time limits of the time derivatives

rim(eI [a,-q.~(„, f«&'-«-i). j, (O) «]I C»& 0&&,f&r
g~0

exist for all r&n, and furthermore

lim(NIP«"j (q, ,f" ' ')„je"(0)«]IC) =0 (34)
a~0

for all r& 2(1V+n)+rn [n« fixed, 0&n«& 1V, and n« =0 if
the spectrum condition holds].

This theorem states that if the equal-time commu-
tators between generalized charges and a density exist,
then the equal-time limits of the nth time derivative of
commutators between all charge moments of degree
higher than n —1 and one density exist also. If the
degree of the charge moments is higher than
2($+n)+n«, then the limits vanish.

Proof. The proof of the first part is again done by
complete induction with respect to the order n of the
time derivative.

(a) n =1:From Theorem 1 and Eq. (21) we know. that

»m(+I [8«g~l'(&p, f"' ' « ') je"(0)«]IC)r
a~0

exists for all r&1.
(b) Assume that our lemma is correct for the first n

derivatives, that is,

l' (+I [~o"j-"(v. f"'-" '). je"(0) ]IC')'
a~0

exists for all r&n; 0&0, l&r.
Taking

dn

y, (x ) = ———j,(x') and h(x) =f"' ~~'(x),
d(x')"

with p, a sequence of type b and r&n, we deduce
from (21) that the equal-time limit

lim(eIPg (M '(a "P f"'"-"-')) je"(0)«]IC)r
&~0

=lim d4x (—1)"+i(4'I [8,"+'j &(x)„je"(0)«]Ic)x'f«' ~" '(x)
gmQ

8
+(—1) (@I[g«" ij.~(x).-,je"(0)«]I C)r f« ' '-"-'(x)

Bx
8

+(-1)-"(~I[~.-j. (x).,je (0)«)l~)' f"-"-'(x) ~ (") (35)
8$

exists for all r~&n and i=1,2,3. However, the second
term of Eq. (35) exists for all r~&n due to the induction
assumption. The third term exists according to Lemma
II. Therefore also the first term of (35) in which the
occurring charge moment is of degree r+1 exists. This
proves the erst part of the theorem.

The second part of Theorem 4 follows immediately
from Theorem I of (V.I) since the nth derivative of a
distribution of order E is of the order 1!r+n.

Furthermore, from Eqs. (21) and (35) and Lemma I,
it follows in exactly the same way as in the proof of
Theorem 1 (induction with respect to the degree of the

moments) that the existence of the equal-time commu-
tators between the nth derivative of the generalized
charges and one density implies the existence of the
equal-time limits for all the higher moments. Combining
this fact with Theorem II of (V.I), we arrive at the
following generalization of Theorem 2.

Theorem 5. If the equal-time limits

»m(+
I
9o"j-"(A'1).je"(o)«] I

c')'

exist for some n, then the equal-time limits of all time
derivatives up to order n of the density commutators
exist and are given by

»m(+I [~o"j "(«&).ze"(0)«] I@')'
g~0

2(N+n')+m —1 r r—s 1 8
Q Q hm(+I [8o"jN"(& 'f"" ' ')~~je"(0)«]IC')r — ——h(z)

r=0 i~0 j=0 &~0 «!j!(r—i—j)!8 (s')'B(s') '8(z')
(36)

for all n with 0&n&n and all C" functions h(x). quantum field theory these limits will possibly exist for
Of course the assumption in this theorem may turn at most the first few time derivatives (n&2). For the

out to be a very critical one. In nontrivial cases of first derivatives of the (o,r) and (p,o) components as
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well as for the second derivative of the (0,0) component,
the existence follows from that of the Z commutator" "
and the meson commutator, respectively, as we show
below. Even more, in these cases one can derive explicit
expressions for these limits in terms of the Gell-Mann
Z and meson commutation relations.

For this we sharpen our assumptions. YVe assume
with Gell-Mann that the equal-time limits for the
commutators between one density and the charge
moments of degree 1(r(2K+m —1 vanish (no
gradient terms)":

(A.ii) hm&+I[~. (~.,f"- ') ja"{0).llC&'=0

for 1&r&2X+m —1; k,»0; 0&&+«» (37)

the sake of clarity we formulate our results again as a
theorem.

Theorem 6. Under the assumptions (A.I) and (A.II)
[or equivalently (GM)$, it follows for all C" functions
h(x) and 4=1,2,3 that

lim d4x v.(x')x%(x)&+ I Psj '(x). ja"(0)sg'I C'&~
gmP

={eIA a'"(0),sIC»h(0), (41)

d;,,{*&*h(.)&~I[~.j.{*).,ja {0) jl~&'

=(eI A a"'(0).sI C')h(0), (42)

Together with (A.I) this is equivalent to the Gell-Mann .-o
commutation relations for the densities:

={'a [g"&+Ij;{0).IC&+g'"&+Ij."(0) IC'&~

+T"'(«pb'7~) &+ I jv'(0). I
C')

—T""(;Pl;v )&+ I j.'(o).
I
4'&)li(0) (43)

{GM) 1 &~ll j. (~„l).,ja{0) 7IC»'

={@IA as"(0)., I C&h(0) (38)

for all C" functions h(x). Furthermore, the space-time
compone

(44)

lim d4x q, {x")x"h(x){+I[B„j."(x).,jp"(0)sJI C&r =0
A.,o (0).,=A., o(0).,=i.-a j, (0), . {39)

The space-space components A a"'(0), are model
dependent. %e assume here that they are linear in the
currents:

A p"(x) a=T";{na,Pb,yc) j„"(x),. (40)

This ansatz covers the most important models such as

(a) algebra, of fields' T"s =0
(b) quark model" '.

T"'(nB PB yV) = if a&g"'—
Ttak(nB ~ pB ~ +A) —sdaayerss

8=A V

~as(nB ~ pg. ~A) — ifasygrl

Trss{nB.p+. ~p) idmprerss—
B&E 8=A V E=A V-

All the remaining T"'" are zero.
From the additional assumptions (37)—(40) on the

structure of the current commutators, we now derive
the following result on the existence and strlctlre of
their erst time derivative on the submanifold of C"
functions h(x) which vanish linearly in the origin. 'r For
"M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960).
2' This structure assumption is made for simplicity. If gradient,

terms occur in the Gell-Mann relations one can perform the same
considerations with similar results."Equation (44) of Theorem 5 as well as Kq. (58) for the struc-
ture of the unitary spin antisymmetric part of the Z commuta-
tor have been derived formally first by Kuo and Sugawara LT. K.
Kuo aud M. Sugawara, Phys. Rev. 163, 1716 (19671$.However,
we do not agree with the general results of these authors. Neither
their connection between Schwinger terms of the Gell-Mann
algebra and gradient terms of the corresponding X commutator
nor their proof of the symmetry of the Schwinger term seems to

Moreover, if the equal-time limit between a diver-
gence of a current and a (proper) charge jas(y. ;1)s
exists and is a scalar with respect to pure Lorentz
transformations, then one can establish a result similar
to (44) also for the meson commutator (equal-time
commutator between two current divergences).

Corollary 6.1. If in addition to (A.I) and (A.II) the
limit

»m&+I [~.j-"(0).; ja'(~. '1) jl 4)'

exists and is a scalar with respect to proper Lorentz
transformations, then we have for all C" functions h(x)

lim d4x q, (x')x'h(x)&%
I [B„js(x).,el„jp"(0)s] I

C)r =0.
a~0

(45)

Before we prove Theorem 6 and Corollary 6.1, let us
insert here several comments concerning the results.

(1) Theorem 6 states that if the Gell-Mann commu-
tation relations for the current densities hold, then the
equal-time limits of their erst time derivatives exists

us to be correct. Their results are in contradiction to the equal-
time commutator between one total charge and one density (2),
which fixes the "scaling of the Schwinger terms. " With the
proper scaling, a 6rst-order Schwinger term in the Gell-Mann
relations induces e first- and second-order gradient term in the Z
commutator if and only if the Schwinger term is antisymmetric
in the unitary spin variables. This follows along the same lines as
applied in Sec. III of the present article. The "proof" of the sym-
metry by the criticized authors is based on the implicit assumption
that no second-order gradient term occurs in the Z commutator.
However, then by Lorentz invariance also no first-order term can
occur'.
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for the subclass of all C" functions which vanish at
least linearly in the origin. For this subclass of smearing
functions in the space variables x, the limits are inde-
pendent of the b sequence. For instance, all generalized
charge moments belong to this subclass, but not the
generalized charges themselves.

In order to extend the limit to all C" functions Iz(x)
(in the customary language this means the existence of
the limit for the densities), we have to make sure that
the limits of the corresponding charges,

»m(+ I [~oj-"(v.;1).,j z "(o)~] I
C')',

From the equal-time commutator between a conserved
charge and a divergence of a current, the existence of
(47) for h(x) =—1 and. Eq. (49) easily follow by means of
translation invariance and Eq. (44). Moreover it is easy
to show that the part of the Z commutator Z s'(0), z,

which is antisymmetric in (n, a) ~ (P,b) always exists.
Since the Gell-Mann relations hold for all C" func-

tions h(x), they are also true for the translated ones:

h, (x)=:h(y+x) .

If we take for %,4 the translated states

{44) =U(1 y)-'{+C)
exist. This does not follow from the Gell-Mann relations
and the general principles alone. On the other hand,
this offers the possibility for the occurrence of am-
biguities, or the dependence of the limits on the 8

sequences in the first time derivative, as discussed by
Brandt and Sucher" in connection with finite electro-
magnetic mass shifts, without disturbing the Gell-Mann
relations for the current commutators themselves.

However, introducing the relation

with +,C arbitrary states from D, then we get by means
of translational invariance from (38)

d'*9
I [j-"(*).j "(y) ]I@)' .( '—y')h( )

a~0

=(+
I
~-~""(y).

I
c)I (y) (»)

h(0) = —
J x"h(x)]

Bx

into (41)—(44), we see that in any case, with or without
the above ambiguities, the equal-time limits of the first
time derivative have, in general, finite first-order
gradient (Schwinger) terms, explicitly given by the
right-hand . side of the Gell-Mann commutation rela-
tions. These gradient terms do not contain any am-
biguities if the Gell-Mann relations hold for the
currents themselves.

(2) The second part of Theorem 6 and Corollary 6.1
states that the Z and meson commutators do not have
any gradient terms if the commutation relations for the
currents themselves have the structure proposed by
Gell-Mann. In other words, if these equal-time commu-
tators exist at all, then they have the form"

Here we have introduced on the left-hand side the
notation

«(~' —3')N(y')I (x)a(3 ) (52)

Taking zz =v =0 and N(xo) =Bzl(x )/Bxo with z1 arbitrary
from Sz, it follows from (51) by partial integration that

lim&%'I [B„j (y, ; Iz).,jp"(0)b]I C)

=(e
I
z., (0).bI c»h(0), (47)

Restricting h(x) to the class Ozr, that is, to C" functions
growing at most like a polynomial at infinity, we can
multiply this equation with an arbitrary function f(y)

(46) from S4,""""and integrate over y. For our purposes
it is enough to take the products f(y)=zz(y')g(y).
Equation (50) then reads

lim(+I [B„j "(p,;Iz)„B.jp"(0) p]I I)
=&+

I ~-p(0). I
C')&(0) (48)

for all C" functions h(x).
For the existence of these limits, we must again assure

their existence for Iz(x)—= 1 only. If jzz" is a conserved
current, then of course the zeroth component of the
Z commutator exists with

=ic & &4
I B„j,"(zz;hg). I I) (53).

Since the right-hand side of this equation is independent
of q „we can restrict ourselves without loss of generality
to symmetric sequences p, .

The space-time translated version of (44) reads,
in analogy to (51),

Z p'(0). icv z'&B„j „I'(0),
2 The index v in Z" does not describe a vector with respect to

Lorentz transformations. It simply counts the four possible
components. Applying an infinitesimal Lorentz transformation to

(49)»m d'~d4y&+
I P.j-"(*).ja"(y) ~] I

@)'

X p, (~' —y')~(y')(~ —y) "a(x)g(y) =0. (54)
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this equation, we obtain at once in the standard way-

llm d4xd'y(4'I[a„j "(x)„jp'(y)f'jIC)r

X(x'—y') w, (x —y')N(y')h(x)g(y) =0. (55)

symmetric part of the zeroth component of the Z
commutator always exists and we have

ic s&a„j~&(0), if js" is conserved
~-s'(0).~=, 'a.j. (0),yz s(o),&

From the last two equations it follows that with
if js" is not conserved, (59)

&+I Cj-'(v „h)-a. js"(~,g) ~jI c&'
&+I —La.js"(~.; h)~ j-'(~ g)-jl c'&'

yr, -s(4; 4).b,

with

z.,(o).,=i,.(0) .. (60)

(3) If we abandon in Corollary 6.1, the assumption

(56) that Z', or equivalently Z, is a scalar with respect to
proper Lorentz transformations, we get instead of (45)

limr Ns(4' C),~=0.
g~p

(57)

If we insert (S6) into (53) and drop the smearing over y,
we get

»m(&+
I La.j-"(v.' h)- js'(0) ~j I

4&'—I:(~,o) ~ (P,f )7)

=k-s~&4I a„j (o) I c»h(0). (ss)

This relation holds for all O~ functions h(x). However,
owing to microcausality, the left-hand side is inde-
pendent of the asymptotic behavior of h(x). Therefore
it is true for all C" functions. In other words, the anti-

lim d'x&0
I La„j.&(x).,a,jp"(0) t,]I 4)~

Xx"x'h(x) A(x') =0. (61)

In this case the meson commutator can have a finite
first-order gradient term which is forbidden if Z is a
(pseudo-) scalar.

After these remarks on the content of Theorem 6
and Corollary 6.1, we come back to their proofs.

Proof of Theorem 6. Inserting Eqs. (20) and (21) into
the Gell-Mann commutation relations (39) and (40),
we obtain the following equation:

»m&&el I j-"Pr"o(~.»)). js (o),jl c'&

+g"&~ll j."«„».,j, &0).~l~& +g"&~ILj. (.„».,j, (0).~l~&

—g""&+
I Lj-'(~ »). is"(0) ~jl@'&'—g""&+

I I:j-"(~.»). in'(o) ~jl C'&')

=~~"&+I &g"'g"'i "(o). (g'"g""+g"'g—"')i '(o) ) I
c'&

+g"'g"'(T""(«,Pb,v~)&+I z,"(0).
I C& 2'"'( «Pf—,v~)&+I i.'(o)

I
c'&) (62)

f a a )
ax' ax"2

In the last four terms on the right-hand side of Eq. (62) we can use the Gell-Mann commutation relations (39)
once more. Equations (41)—(44) of Theorem 6 then follow by means of Lemma II in a straightforward. way.

Proof of Coro/lary 6.1. The additional assumption of Corollary 6.1 is, according to our discussion above,
equivalent to

with

l', &+Isa.j-"(~.»).j~'( g) llc'&'=&+I~-s'(0). I~&

&(A)~-~'(f).~&(A)-'=~-~'(f.)-~,

fg(x) =:f(A 'x)

(63)

(64)

Applying a Lorentz transformation in (63), we obtain the condition

»m &+Isa.j."(v.»)- jp'(I g)~jl c'&'

8
+ d'xd'y&%'I a j "(x), -gs'(y) & I

C» (x—y) ~q, (x' —y')N(y')h(x)g(y) =0. (65)
p&p
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Onthe other hand, we get from (54) by the special choice of test functions Bg(x)/Bx" with g(x)253

—=hm &+IL~.i-"(~,@).it "(~,g) ~ll c&'+ d'~d'x &+II ~.J-"(~).—is'(y) ~ II
c'&'

e~Q gyQ

—&+l(~»i "(~).~ is"b) ) I@'&' ( —x)'v.(*'—y') (y')&( )g(7) =o (66)

From the combination of the last two equations, the validity of Corollary 6.1 follows for all 0~ functions h(x).
Since, owing to microcausality, Eq. (45) is independent of the asymptotic behavior of h(x), it is true for all C
functions h(x).

If the equal-time commutator between the time derivative of a charge and a current density, and «rthermore
the Z and meson commutators are given, then it is very easy to write down the complete equal-time limits for
the erst time derivatives of all current commutators and the second time derivative of their (0,0) components.
From the Gell-Mann commutation relations (38)—(40), the Z and meson commutators (47) and (48), »d Poincare
invariance, we get by lengthy but straightforward calculations the following corollary.

Corollary 6.Z. If the Gell-Mann relations hold and if the limits

1~~&+
I L&.i-"(0).,is"(~.,1)~HI C&'= &+ I &-s"(0).~l 4'&,

hm&e
I I:a,q.~(&„1).,J, (0),jl C&r

are given, then we have for all C" functions h(x) and all 4,4+D
8

»m&+
I I &0j.'(~.,a).,i;(o),jl c'&r =&e I z.;(0)., I C'&n(o)+ &e I a.,-(0)., I

c'& a(x) (67)

8
= ((+ I &.s'(0).~ I

c'&+&+ I ~.~-~'"(0).~ I C'&) @(0)+&+I ~-n'&0). ~ I
c'&

8x'
&~m(+

I
L~oi-'(~. '1). is'(0) ~j I

@&'

=lim&e
I LaoJ-'(v. ;1).,i~ (0),jI e&ra(O)+ &i~-&~[a& &eI j, (O). l

C'&+'g"'&+
Ij~'&0) I

4'&j
+I'"'(~o;0b;v~)8'Ii ~'(0).

I 4& T"'(oo 0l—' v~)(+ I
i'7'(0).

I +'&) @(x&
Bx

If in addition the meson commutator is given, then it follows furthermore that

hm(eI I aPJ.o(&,;a).,~,0(0),]I
C»~

= &&+I a.z-s"(0).~I c&—&+I'-s(O) ~I c'&)h(o)
8

+&&+ I ~.~-s'"(0).~I C'&+&+I V-~"(0).~+(«)~ (Bf)ll C')) P(x)
Bx

x Q

(68)

a2

+(+ I
A. p"(0),g I C» h(x) . (70)

Bx."Bx z

IV. FINAL REMA.RK

Finally we want to make a remark. on the dependence
of our results on the class of admitted 8 sequences. It is
essential for k.ojasiewicz's Lemma I, and thereby for
Theorems 1, 2 and 5, that assumption (A.I) hold for
the whole class of sequences specified in the Introduc-

tion. "If we weaken our assumption (A.I) and admit
only the subclass of symmetric sequences &p, (x)
= g, (—x), then Lemma I and therefore also Theorems

» Or equivalently, assumptions on the structure of the equal-
time commutators between one density and a 6nite number of
generalized charge moments.
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1, 2, and 5 are not true any more. One can construct
examples which show that an analog to I.ojasiewicz's
lemma does not hold in this case. The reason is that one
cannot draw any conclusion from the symmetric part of
the first derivative of a function on the symmetric part
of its primitive function.

On the other hand, Theorems 3, 4, and 6 as well as
their corollaries remain true under this weakened
assumption.
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The connection between causality and analyticity in scattering theory is formulated in terms of Hilbert-
space concepts. The usual rules of nonrelativistic quantum mechanics are assumed to hold for the "in" and

' "out" states of the scattering system. We show that there is a (physically veriGable) causality condition
which implies that each diagonal S-matrix element S „(E)must be the limit of an analytic function of the
energy 8, regular in ImE&0. The implications for partial-wave amplitudes and for the forward scattering
amplitude in elastic two-body collisions are discussed.

I. INTRODUCTION

NALYTICITV properties of scattering amplitudes
are an essential ingredient of S-matrix theory. It

is important to know which of these properties can be
deduced from causality conditions that are physically
veri6able. This question has been the subject of a
number of publications. ' " Direct proofs of analyticity
from causality are available for nonrelativistic elastic
scattering by spherically symmetric interactions that
vanish beyond a finite radius. "

In attempting to generalize these proofs in the con-
text of formal scattering theory, two types of difficulties
are encountered. First, because scattering states cannot
contain negative-frequency Fourier components, events
in a scattering experiment cannot be localized in time
with arbitrary sharpness. ' However, Screaton4 has
shown that for a simple linear system described by a
(scalar) equation

0(t) = dt'F(& &')I(&'), —

a causality condition can be formulated which implies

' N. G. van Kampen, Phys. Rev. 91, 1267 (1953).' R. J. Eden and P. V. I andshoff, Ann. Phys. (¹Y.) 31, 370
(1965).

s A. Peres, Ann. Phys. (X. Y.) 3'7, 179 (1966).
4 G. R. Screaton, Phys. Rev. 165, 1610 (1968);182, 1415 (1969).' D. Iagolnitzer and H. P. Stapp, Commun. Math. Phys. 14, 15

(1969).' H. M. Nussenzveig, Phys. Rev. 177, 1848 (1969).
A more complete bibliography list is available in Refs. 3, 5,

and 6.

that the Fourier transform of Ii is analytic in a half-
plane, even though 0 and I have only non-negative fre-
quency components. The second difficulty is connected
with the use of monochromatic states ~E,n) of the free
Hamiltonian Hp in de6ning the S matrix. In the
mathematical theory of Hilbert space, the diagonaliza-
tion of a self-adjoint operator is expressed in terms of
projection operators corresponding to

CK p

whose properties can be established under very general
conditions. s The properties of the mapping (E,n~f)
depend on "representation theorems"' which are limited
in scope. Very little can be said about matrix elements
of the form (E,n

~

T ~E',n') if T is an arbitrary Hilbert-
space operator. For example, if we know that (E,n

~
iP) is

continuous in E for any normalizable ~f), we cannot
state that (E,n

~
T ~E',n') is continuous in E, E' unless

we impose strong restrictions on the operator T, e.g., the
condition that T be a compact operator. '~"

N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators
in HiSert Space (Ungar, New York, 1961),Sec. 61.

9X. Dunford and J. T. Schwartz, Linear Operators (Inter-
science, New York, 1963), Sec. XII.3.IReference 9, p. 516."It is worth remarking that in the standard proof (Ref. 12)
of the analyticity of the forward scattering amplitude in potential
scattering, the assumptions about the potential that are intro-
duced are needed to show that the operator T(E) is compact. The
analyticity of the forward scattering amplitude is then obtained
without further assumptions about the potential.

~ N. N. Khuri, Phys. Rev. 107, 1148 {1957).


