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Linear Dependences and the Multiloop Veneziano Amplitude*
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By using the identities of Brower and Weis, several apparent inconsistencies associated with twisting the
Sciuto three-Reggeon vertex are clarified. By using these results, all linear dependences are eliminated from
planar, nonplanar, and overlapping n-loop amplitudes and shown to have only a minor eGect. The Thorn
projection operator is reduced to a hypergeometric function in the number operator and finally to a rational
function. The equivalence of these techniques with the projected propagator of Gross and Schwarz and Ida
is demonstrated.

I. INTRODUCTION

HK unitarization program' for the Veneziano
amplitude has been hampered by the existence of

certain linear dependences' among factorized residues,
which have been interpreted as "spurious" particles
which do not couple to scalar particles. The elimination
of these spurious states has been accomplished by using
Ward identities and the spurious-particle projection
operator of Thorn. ' Because the correction due to the
linear dependences in the single-loop amplitude is
essentially trivial, there has been speculation that if one
naively constructs the n-loop amplitude from three-
Reggeon vertex functions, ~ the correction will again be
minor. By exploiting the powerful identities of Brower
and Weis, ' this conjecture is shown to be valid for
planar, nonplanar, and overlapping n-loop amplitudes.
(In the case of the planar n-loop amplitude, " the correc-
tions are found to occur almost exclusively in the
Jacobian, which generates a factor 1—y for each loop,
where y corresponds to the multiplier of each of the n
Koba-Nielsen projective transformations. )

The recent works of Gross and Schwarz and Ida' in
constructing the projected propagator are certainly
more general than the methods presented here, but it
unnecessarily complicates the evaluation of the traces
over harmonic-oscillator states, since the linear depen-
dence correction is minor.

In Sec. II, the identities of Brower and Weis' are used
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to clarify several inconsistencies concerning the Sciuto
three-Reggeon vertex function. In Sec. III, all correc-
tions due to linear dependences in the planar, nonplanar,
and overlapping n-loop amplitudes are shown to be
minor. And anally, in Sec. IV, the equivalence of these
techniques, at least for a certain class of diagrams, is
shown to be consistent with the methods of Gross and
Schwarz and Ida.

The multiloop amplitudes are constructed by insert-
ing loops into a multiperipheral tree. The spurion
operators placed along the base line of diagram are
easily removed. The spurion operators located in each
loop, however, convert into hypergeometric functions,
which can be reduced 6nally into simple rational
functions. We summarize the linear dependence cor-
rection into two rules:

Rule I: For every planar loop appearing along the
base line, replace the standard beta function situated
between the two Sciuto vertices with

)8—a—1(1 ))-c
1—t(1—x)

where x is the product of all propagator variables in the
upper portion of the loop.

Rule II: For every nonplanar or overlapping loop
con6guration, merely add the c-number expression

(1—s*)(1—s~)-

where x is again the product of all propagator variables
along the upper portion of the loop, and i and j refer to
the propagators adjacent to the position of the two
Sciuto vertices (see Figs. 9 and 10).

II. LINEAR DEPENDENCES AND THREE-
REGGEON VERTEX FUNCTION

The original Sciuto three-Reggeon vertex function
has peculiar inconsistencies associated with it which
may be eliminated by carefully eliminating spurious
states. In particular, the curious (1—s)" factor is shown
to be intimately related to the Ward identities of Chiu,
Matsuda, and Rebbi. '
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where

D
I

1—Pt( —1r)]DI 1—P( )], (2 1)

The convention of using the propagator with spurious
states subtracted out shall be adopted throughout this
paper4:

FIG. 2. Four-Reggeon
vertex function formed by
&l»ing the "b" legs of two
Sciuto vertices.

P(~) =I At( —~)y-,'m'] A(z)
A (z)LA'( —z )+znb']

and

A(z) =z (ag ——,'z)+ Q na„ta„—Q Ln(n+1)]"'a„ta„+g.
n=l n=1

Ilbl I

0
FxG. 3.Vertex function with

a twisted "b" leg.

This prescription is ambiguous when the "b" leg of
the Sciuto vertex (Fig. 1) is examined because the
propagator is not the usual beta function:

D,(k)D b(p) D, '( q) W b, I 0),b,

FrG. 4. Vertex function with
a twisted "u" leg.

II IIc

Ilbll

1 1 I

ds, dzb ds, (i —z,) '(1—zb) '(1—z ) '
0 0 0

Ba—a (k2)—1~ By—a (p2)—1 Bc-cc(q2) 1~~a Sb

X(1—zb) n' ~"' exp(Pat+qbt+Pct

+(at, bt) +(bt,ct)++(ct,at)b]
I 0),b, . (2.2)

Because the propagator on the "b" leg is not the tra-
ditional beta function, the projection operator 1—I'
must be attached to the propagator, away from the
vertex function. Considerable confusion arises when the
four-Reggeon vertex function is created by linking the
"b" legs of two Sciuto vertices together (Fig. 2).

Fortunately, only a minor change is necessary to
correct this situation, since a simple change of variables
will change (1—sb) "~ into (1—s,)"b:

ds dsb ds (1-s )-'(1-sb) '(1-s )-'
0 0 0

M~a Ba a (lg2)—1 Bfb—a (y2)—1 Bc cc (q2) 1Sb 4c

Because the "b"propagator is now a beta function, (2.4)
makes possible a consistent interpretation of the four-
Reggeon vertex function composed of two Sciuto
vertices linked by their "b" legs. Equation (2.4) shall
also be used to demonstrate the equivalence of the
method of Gross and Schwarz and Ida' with the
methods presented here for planar, nonplanar, and
overlapping loops.

The inconsistencies mentioned earlier arise when
attempts are made to perform arbitrary twists on the
legs of the Sciuto vertex. For example, applying the
twist operator of Caneschi, Schwimmer, and Veneziano'
directly to the vertex function successfully reverses the
position of the "dots, "but fails to make the correspond-
ing changes in the propagators:

D,DbD, 'QbW, b, I
0&,b, =D~bD, 'W, b,

'
I 0)~b~

0D.'DbD. Web. 'I 0)abc (2.5)
and

D&bD flowabc I 0)nb D&bD wabc I 0&abc

N D,Db'D, Wob.
'

I 0),b„(2.6)

X(1—zb)" '"'Web.
I o).b.=

1 1

dZa dZb dZC

0 0

where

~ abc ~b~abc I ~ abc ~a~ abc ~

or

~~Z B.— (I')—Z»-~&~') —
Z Bc—~«')—~g —Z»f — (~2)X a b C Q CJ

x(1—z,) '(1—zb) '(1—z,) 'w, b, IO&,b, (2.3)

Lwhere s,(1—sb) =z„sb=(1—z,)zb z =z ]
(2.4)

D~bD. 'w. „I0&.„=D.D,'D,w.„Io&.„.

LEquations (2.5) and (2.6) are represented by Figs. 3
and 4, respectively. ] The apparent inconsistency in
(2.6) is resolved once we know (2.4), which allows us to
flip the position of (1—z)s. Equation (2.5), however,
remains unexplained. To make matters worse, if we now
decide to twist amuy from the vertex function and then
apply the Ward identities, we capture unwanted factors
of S:

FxG. 1. Sciuto three-Reggeon
vertex function.

0
llbll

(1 Pt) bflbtD~bD, 'W.—b. I 0).b,
= (1 Pt) bD~bD—,'~ 'bW~b.

I 0&~b~

0 (1—P")bDa'DbD. w. bc'
I
0).ba, (2.7)

0

c
0

II II
0

I L. Caneschi, A. Schwimmer, and G. Veneziano, Phys. Letters
30B, 356 (1969).
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tlblt FIG. 5. Vertex function
wi.th a twisted "c" leg
(the symmetric vertex of
Caneschi, Schwimmer, and
Veneziano).

S»-'=—(1—s»)-"»

A resolution of the difhculties in twisting toward 3,'nd

away from the vertex function lies in a study of linear
dcpcndcnccs. KspcclRlly useful Rl c thc ldclltltlcs of
Brower and Weis, 6 which mill be referred to throughout
the paper:

(A,+A»" E,+,'(f') —V,», i
0)-,», =0,

(A»+A, ' z.y—,'f ') v-.», ~o)...=o,

(A.+A t —E»+x2p')V, »io), ,»=0,

(2.8)

(2.9)

(2.1o)

where

V,»,=exp(p(—)t+qbt+kct+(at, bt) +(bt,ct) +(ct,at) j

(A.+A,t —A,t)W.» ~O)...=O, (2.11)

(—8,+2b'+A-»+8, —-', g')iv, », i 0)».=0, (2.12)

(A.& —z,y-,'p —A.)w„„~o).„=o. (2.13)

V,y, is the symmetric vertex given in Fig. 5. One set can
be derived from thc other by multiplying by Q,.

With these identities, we can now state the rule for
twisting the legs of the vertex function'. Always twist
umuy from the vertex, apply the Ward identity, and
then use the formulas of Brower and Keis to eliminate
all S's. (Since the twist operator was derived from its
action upon scalar trees, we expect trouble when it is
allowed to act indiscriminately on three-Reggeon
functions. The motivation for twisting away from the
vertex function is that scalar trees presumably are then
being twisted. )

The proper way in which to twist on each of the
various legs is as follows:

(1 Pt)»Q»tD D»D, 'W»—, io)»,
—(1 Pt)»D~L)»D~'(1 s»)

—&c+~(a )

X (1—s»)"' (")iv.»'~ 0).».
= (1—Pt)»D, 'D»D, S',».

'
i 0)», . (2.14)

(1—Pt), (1—Pt)»(1 —Pt),Q "D~»D.'lv». ~0),»,
= (1 Pt), (1 Pt)»(1 Pt),Dj7—»D, 'S»t(—S,t) '—

X lv-» "IO).»
=(1—Pt), (1—Pt)»(1 —P)t, DDD».W»."io),», .

(2.15)
We have used (2.11) and (2.4).

The last step in the identity is possible because the
spurion operator A can pass through a modified propa-
gator until it annihilates on 1 P—. [See (3.1) for an
example of this. j
(1—Pt),(1—Pt),Q,tD~»D. 'W»,

~
0),»,

—(1 Pt) (1 Pt) I) D 'D (1 s )Ast+kwa»

X(1—s.) "+'""V.», (0&.».
=(1—Pt).(1—Pt),D.D,D.V.„iO).... (2.16)

We have used (2.4) and (2.10).
In thc ollglnRl papcl by Cancschl Rnd Schwimmcr

the troublesome (1—s)" factor disappears through a
commutation past 0:
« —P)44(1—s») ~' lV.». l 0)~»~

= (1—P),(1—s»)"'t+'* 'Q,W, »,
~
0&,»,

= (1—P).Q,W». i 0).», .
In this case, twisting toward. the vertex is allowed
because the three-Reggeon vertex function, looking
from the "u" or "c"legs, is actually a tree in disguise.
Confusion arises, however, if one tries to twist toward
the symmetric vertex to recover the Sciuto vertex; the
vertex itself reappears, but the (1—s)" does not. This
difhculty is resolved if we twist away from the sym-
metric vertex:

(1-P ).n. D.D,D,V.„(0&.„
= (1—Pt),D.D»D, (1—s,) s» (&') (1—s,) "t &"'

Xlv.»,
~
0).».

=(1—Pt) D~»D, 'W, », ~0),», . (2.17)

We have used (2.4) and (2.13).
The previous calculations reveal that the (1—s)"

factor is necessary to absorb all gauge terms (1—s)"
RI'lslng fI'olTl the Ward ldcntl. tlcs which Rrc tI'Rnsformed

by the Brower-Weis identities.

III. LINEAR DEPENDENCES AND
N-LOOP AMPLITUDE

The elimination of all linear dependences from n-loop
diagrams requires that the identities presented earlier
be generalized to include the commutation of A past
propagators which are no longer simple beta functions:

(A.+-',m&) N ...
~
O&.„

=[(1 s») A,t s»A—»tjN, »—.i 0).»„(3.1)

(A,+,'m')N. »,
~
0-).».=[(1 s»)A.tjN—.».

~
0).». , (3.2)

(A»+'-, m')N, ». i0)».
(E,—(k')) jN. , i 0). „(3.3)

where
1 1 1

N.»,
~
0),»,

—= ds. ds» ds,s.~.—("'—'
0 0 0

@» ~(P ) )s )»e-&(c»)-)(1—s ))»c-&(e»)

Xiv.»c ~ 0)s».(1 s.) '(1 s—») '(1 s—)-~-. —
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(It is understood that all s's occur inside the integrals. )
The plan for removing all spurious states from n-loop
diagrams is surprising simple: First, notice that pro-
jection operators occurring along the base line of Fig. 6
are removed by (3.1) and (3.2), much like in the case of
a multiperipheral tree; second, notice that projection
operators left remaining in each loop do not vanish
because all spurion operators A and At get converted
into R's by (3.3); third, because the projection operator
is a hypergeometric function in A and A~, ' we expect
hypergeometric functions in R to accumulate along the
base line of Fig. 6; and lastly, these hypergeometric
functions reduce to trivial rational functions of R. The
only critical step in the whole procedure is to verify
that hypergeometric functions of R do, in fact, appear
along the base line.

Toward this goal, we erst present the projected vertex
function as a hypergeometric function".

(A'+-,'m') V(A+-', m')
V=(1 P)V(1 I—' t) = V+—

(A t+—,'m') (A t+-',m'+1) V(A+ q m'+1) (A+ q m')

We have used the following fact:

d
Bc a(pq)(1—

& ))4—a(qq) —c+17

=(—z~(R.—q V')+LR~ —u(P')7(1 —s~))

XI z(,& ac(nq) &(I—s~)&c a(qq) c7 (3 7)

In general, we find that

(A (,+~qm'+n) (A b+ q'm'+n —1) (A (,+'m')—

XMa) c~ 0)a(c=&b"+'(R. u+n)—
X(R.—n+n —1) (R.—u)M (,.~0) („. (3.8)

FIG. 6. F-loop amplitude formed by inserting Sciuto vertices
to a multiperipheral tree.

and

c(c+1)2! +' ' '

r
(A+n)(A+n —1) (A+1)A g (V„D„')

m=1

where

D n+1-
m xa "+"(1—x) 'dx.

r
= g (V D a+')(A+n)(A+n —1) (A+1)A,

m= 1

(3.4) Consider the planar n-loop amplitude (Fig. 6). The
original projected vertex situated somewhere along the
upper portion of each loop decomposes by sending A' s
to the left and right. These A' s, in turn, collect on the
"b" legs of Sciuto vertices, which in turn converts them
into R's. The two Qalves of the projected vertex are
finally reunited; instead of a hypergeometric function in

(3 5) A and At, it is now a hypergeometric function in R
(Fig. 7). It is not hard to reduce this function, which
lies next to the original beta function situated between
Sciuto vertices:

We see that in much the same way as A picks up a
factor of x by commuting past vertices and propagators,
(A+n) A picks up a factor of x"+' (where x is the
product of all propagator variables). Immediately we
see that a projected vertex placed anywhere along the
upper section of each loop in Fig. 7 decomposes because
of (3.5) until all A's accumulate on the "b" legs of the
Sciuto vertices. It is now a simple matter to generalize
(3.3), in much the same way as (3.5) is a generalization
of A VD' = VD'A. As in the derivation of (3.3) itself, we
require that extraneous terms vanish because of certain
total derivatives:

I'(1—c)r (R—n)
(R—n)D= (R—n)

r(1 c+R n)— —
—cI'(—c)I'(R —u+1)

I'(1—c+R—u)

( cP—
&'- -'(1—t)-

i
dh. (3.9)

2b

Ib

M.(„(0).(„
1

Rc—a(yq) —1(1 & ))4—a(qq) —cIV ~0)
0

6a 5a 20 la

It follows that

(A(,+ ',m')M, (,c
~
-0),(,c = (sbLRa —u(k') 7—s,(R,——',q')

+(1—»)ER~ —n(P')7)M-~ Io) ~

=zbPRa n(k')7Ma(, c~—0)abc. (3.6)
Fzo. 7. Decomposing and recombination of the hypergeometric

function into a modified propagator.
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In general

2Fl(R n&
—R n; —c; x)D

o o

tR—a—l(1 t)
—c

R —n+s —1t f xt )"
x (—1)"

) (1 ti—
1 ( 1 t qR—a

tB—a-1(1 t)
—

c!
(1—t(1—x)i

(3.10)

where x; is the product of all propagator variables in
the upper part of the ith loop, and t; is the propagator
variable of the lower loop.

To illustrate the entire procedure, we shall eliminate
linear dependences from the single planar loop of I'ig.
7. %e will use the following definitions:

W.b.'= exp[Plat+(at, bt)„)
Xexp[Pla+(a, b ) ]exp(Psb ),

W.s.=—exp[ —Plat+(at, b) ]
Xexp[ Pla+(a—,b)+j exp(Psb) .

Now we begin:

A=(0!,svl (1—Pt) Dl Vs D2 'W, '(31—P)a
XDs [Dl'vl'Ds'(1 —&) 'Vs'Ds'Vs'D4']W. s.

XD4"Vs.Ds.V, IO&.» (3»)
The "u" operators represent the base line and the "b"

FIG. 8. Single-loop amplitude with a twist.

This is one of the main results of this paper: The
effect of eliminating all linear dependences from a
planar n'-loop amplitude is essentially a trivial one. The
prescription is merely to modify the original beta func-
tion situated between a pair of Sciuto vertices by a
factor of

qa a—
(1—t,(1—x;))

operators the loop. Using (3.4), we 6nd

OQ

A = Q (o!as VlaD1 vs Dsa'Wca'DscDl'
"=o

t'A st+-', ms+a —1q
X! !xs"Vl'Ds'Vs'Ds'Vs'

i
t'A, +-,'ms+n —ly

!xs"D4'W.s.D4"Vs Ds Vs !0).3

Using (3.8), we 6nd

fc+e—1)
xl ! (3»)

e

A=+ (0!43vlcD1 Vs D, WaSa'Dsc
n=o

t'R. —n+I —1y „
X! !Dl xl x2 Vl D2 V2 D3 Vs

e i

x' — '(1—x)-c

—Ra-a

X
1 x(1 xlxsx3x4)-

dx. (3.14)

Similarly, linear dependences can be eliminated from
amplitudes like that of Fig. 8.

The generalization to nonplanar and overlapping
loops proceeds as before, except that the correction
factor is even simpler than the planar case.

Consider the nonplanar and overlapping loop ampli-
tudes of Fig. 9 or any combination. Projection operators
along the base line disappear because of (3.1) and (3.2),
while projection operators remaining in each loop de-
compose as before via (3.5) and (3.8). In contrast to the
planar case, however, the two halves of the operator
expressions in the nonplanar and overlapping case fail
to combine. Nevertheless, we can re-express the oper-
ators appearing in each half as c-number expressions by
extracting polynomials in the propagator variables.
These c-number expressions do recombine, yielding a
simple rational c-number expression as the correction
term due to linear dependence.

R.—n+"—1)
xs"x4"D4'W...D4"v,.D,.V,

I 0).3
t'c+m —1q-'

x! I i
Finally, using (3.10), we get

A = (0!csvlaD1 Vs Ds 'Wcsa'Ds"'(Dl'Vl'Ds'Vs'
XD3'Vs'D4 )W,s,D4"Vs'Ds'Vs'!0), s,

where
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~ (c+c-1) cscsc&c c c&

-o 4 e (1-«o)(1—«o)

S3S5$$$2$3$4
(3.1'l)

(1—«o)(1—«o)

Quite simply, the linear dependence factor for non-
planar loop amplitudes is a c number. Since the order in
which the Sciuto vertices occur along the base line is
gever speci6ed, this procedure works equally. well for
arbitrary mixtures of nonplanar, planar, and over-
lapping amplitudes. %e can generalize all the results in
this section into two simple rules, which apply for
con6gurations like that of Fig. 9.

ogle I: For every planar loop appearing along the
base line, replace the standard beta function situated
between the two Sciuto vertices with

(z-a-1(1 ])—c

1-~(1-x)

-8—e

dh, (3.18)

whele s ls the product of all propagRtor valiables ln the .

upper portion of the loop.
Euler II: For every nonplanar or overlapping loop

con6guration, merely add the c-number expression

L1—«;«x/(1 —«;)(1—«)] ' (3.19)

where x is again the product of all pmpagator variables
along the upper portion of the loop, andi and j refer to
the propagators adjacent to the position of the two
Sciuto vertices (see Fig. 10).

As an illustration of this technique, linear depen-
dences will be eliminated from the amplitude pictured
ln Flg. 10:

2 = (Oi, ovg (1—Et)'Dg Vo Do 'W o,
'

XDo'(1 I') cV—4'D4'Vocaoc Lag
'Vg'(I —I' t) '

Xa, V, a, V, D,ojW, a V;a;V;)0).„
(3.15)

o+I—11 «o«5$1ÃoÃoÃ4

n 2 (1—«o)(1—«o)

X(01.ovr'D~'Vo Do"W.o 'ao'V4 D4

XVo Do (Dx'Vx'Do'Vo'Do'Vo'D4')

&&W,o,ao"Vg D7 Vo iO).o. (3.16)

FIG. $0. Nonplanar diagram discussed in test.

IV. LINEAR DEPENDENCES AND PROJECTED
PROPAGATOR OF GRO88 AND

8CHWARZ AND IDA

Since the projected propagator of Gross and Schwarz
and Ida expresses the twisted pmpagator with all
spurious states subtracted out, it is independent of the
con6guration and hence more general than the rules
presented here. To establish an equivalence between
the two, we shall remove linear dependences from
planar, nonplanar, and overlapping loop amplitudes
(constructed as before) via the projected. propagator and
rederive Rules I and II.

The rederivation of Rules I and II shall be performed
as follows: Two symmetric vertex functions are joined
together (as in Fig. 11) with projected propagators
sandvriched in between; the twist operators contained
in the projected propagators are used to reverse the
position of the dots until they agree with Fig. 14; then
a transformation of variables is made to achieve agree-
ment with Rules I and II.

%e shall use the form of the projected pmpagator
expressed in terms of one twist operator:

D=—(1—st)ao(1 —r) =as-~a.

(The variable contained in S is, as usual, understood to
lie beneath the intergral contained in D.)

Since the manipulations involve repeated use of Kqs.
(2.8)—(2.10), the procedure shall fu'st be explained
before any equations are presented. At each step, the
twist operator contained in the projected propagator
successively reverses the positions of the dots until they

Da

C

of Dl

FLo. 9. Arbitrary planar, nonplanar, and
overlapping e-loop diagram.

Pxo. 1j..Twist operator contained in DI' reverses
the position of the dot.
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D R I

So DQR0
s I

d o
Dc

I

Dd Rd(s d)
' oc

-b
Ds

FIG. f2. Gauge term (S1') ' contained in D1' converts to E1
and S1b (which annihilates on D3b)—the twist operator in Dp
reverses the dot.

agree with the configuration composed of two Sciuto
vertices (Figs. 11—14). (Traditionally when the twist
operator 0, acts on a three-Reggeon vertex, the "b"and
"c"legs are reversed in the figure, while the "u" leg is
kept constant. Since this convention leads to consider-
able geometric complications when performing several
twists, we shall adopt the equivalent custom of reversing
only the dot on the "a" leg in the figure whenever 0,
acts on the vertex, contrary to tradition. )

First, the twist operator contained in Dj reverses the
position of one dot (thereby creating a Sciuto vertex);
the gauge term contained in D~ [via (2.8)j splits into a
gauge term near Db (which annihilates upon the pro-
jection operator) and a term E~ (1—x{)"situat——ed near
D2,' see Fig. 12.

Second, the twist operator contained in D~ reverses
the dot on the other vertex function; the gauge term in
Db [via (2.8)] again splits into a gauge term (which
annihilates on the projection operator contained in
Db) and Eb(1—xb)" situated near D4 [see Fig. 13;
D4= D4(1 P)j. — —

Third, the twist operator in Db makes the last dot
change; two gauge terms (Sb ' near D4 and Sb near D2)
are then created via (2.11). The gauge term near D4
commutes past R2 and annihilates on the projection
operator contained in the adjacent loop function; the
gauge term near D2 commutes past E&D2, and finally
converts into rational functions of R via (2.12). Notice
now that the dot configuration is identical to the one
studied previously; all that remains is to verify that all

O,OR,'

c-number expressions are identical once the transforma-
tion of variables is known (Fig. 14).

One last identity is needed before the proof is pre-
sented: Ke must know the commutation relation be-
tween (1—s)" and xa. This is accomplished by using an
operator identity presented in an earlier paper'.

~
—sZt{—m) (] s)At {—m') (1 z)

—R(1 s) $w~ (4 2)

Therefore,

yB~—zAf ~
—zy AfyB

-y(1 s)- R-1 sy- -', wb

yB(] s) At (1 sy) At

1—zp — 1—s'—

The proofs of Rules I and II are now straightforward:

(X, l(»IDb D2'Dt'V b, IO) b,
X{b,Xb

X(0l.b~V.b."D4"Il.&I»&, (4.3)
where

D4"=D4"(1 P) ', — —
V.b, 'I 0),b,—=exp[trbat+tr2bt+trbct

X(&t bt) +(bt at) +(at ct) gl0)

(oI b~V b~"—= (oI b«xp[ —xba —~bd+~4f

+(b,d) +(d,a) +(a,b) ].
We now use (2.8) and (4.1):

A, = P (x.l(x ID 'D 'D '(1— )"8'. ,'
X{b,){,b

x Io).b.(0l.b'av. bd"fl.t(1—xb)"

Xl&.&l»&(1—»)—:"'"'(1—»)—:"'.(4.4)

FIG. j.4. Gauge term (Sgb) ' contained in Dgb converts to Ss and
{S3") '~—they commute past R2" and D& R1~, respectively.

0 R Oc
We shall now make use of (2.11) and (4.1):

A,g
——Q (X I(kblDbbDg'Sb'D2 (1—xg)~

&& W,b,
'

I 0).b, (0I.b&W, bp(Sb
—')"(1—x2)~'

&&D,"IZ.) lab)(1 —*,)—:"—:-*(1—*,)-:. :"'. (4.5)FIG. 13.Gauge term (Sp) ' contained in Dp converts to Rs"and
Sqb {which annihilates on D3b)—the twist operator in Dg re-
verses the next dot. At this point in the calculation, we shall make extensive
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use of (4.2):
S2'D2c(1 x1)—" ~ (1—x2)".x2".(1—x1)"

(1—xI)(1—x2)x2 s
f1—x2x5(1 —x1)7"

1-xax2(1-x1)
1—x2x5(1 —xI) &"

(S2
—') "(1—x2) s'= (1—x5)-""(1—x2) s'

1 X2 1 X2X2

(1—x2x2)'".
&1—x,x, 1—x,

(4.6)
We now put everything together:

s' x2(1 —xI) (1—x2)1 1

dx1 CX2 dg2 dg4 p (}(cl
(}(5l

() (& () I.,» 1—x2x2(1 —x1) 1—x2x2(1 —xI)

x4(1—x2)
X{x5f1—x2x2(1 —xI)7)~5W.5,'l 0).5,(0 l.5'.5g (1—8)"

l
X.) l X5)

— I-g2g3—

X(1 X )
—c(1 X )

—c(1 g )
—c(1 X )-ch —a(c)2)—Ig —a(c22}—IX —a(c52)—IX —n(n42) —I

1-X2X2) * 1-x2x5(1-x1) *"
X(1—X2X2)i"'

l (1—xI) -'"'(1—x1) '"'(1—X2)-l" l ". (4.7)i-x, ) 1-x5

We can now simply read oG the transformation of variables:

Now compare this to the expression that we desire fnote that we make use of (2.4) so that the joining of two "f)"
legs is well-(lefined7:

I 1 1 1 s5(1—s2)
A,g= dsI ds2 dz2 cs4 P (x.l(}(5lsP z2s. (1—sI)~.

0 0 0
'

0 1—s2f1 —s2(1 —s1)7

XW', 5, lo),5,(ol,5$W, 5gs4""(1 s2)sc(1 —I'—) lX,)lh5)(1 —sI) '(1—s2) '(1—s2) '(1—s4) '

(1 s2)
X(1 S )-a(c22)S n(cc2} —I- (1:S )-n(c42)S —a(c42)-IS —n(c&2}—IS —a(c22}-I (4 g)

1—s,fi —«,(1—.,)7

s, =x,fi —x,x,(1—x,)7 ',
s2(1—sI) =x2(1—xI)(1—x5) f1—x2x5(1—x1)7 ',

s,(1—s,){1—s,f1—s,(1—sI)7) '=x5fi —x,x2(1—x1)7,

s4(1—s2) =x4(1—x2)(1—x2x2) '.
(4.9)

Verifying the equivalence of the c-number expressions is straightforward but tedious.
The case with nonplanar and overlapping loops proceeds just like before, except that an arbitrary number of

ordinary or Sciuto vertices are allowed to sit within the loop. The one critical step which' diBers from the previous
derivation is the last. S5c splits into rational functions of R, an(l R5 via (2.12) except that the function of E5 does
not combine with D3 '.

~..= 2 (}.I(} l(II D,'V,')D 'D 'D 'V. .'10). .«I. .V..."I}"I&.) I»)
X(s, )l. f} s=5

1 1 1 -Be
dx1 ch2 dx5 ch4 dx5 p (}(.l(}(5l V55(g D V,')

0 0 0 0 1—X2x5(1 —xI)

x2(1—x1)(1—x5) s x4(1—x2)
X W.5.'l0).5.(0l.wW. 5g {x2f1—x5x2(1—XI)7}I)5

1—x5X2(i —x1) 1—x2x5

X (1—y) ~h IIc
l
y ) l

}( )g -n(a~2) —Ig -n (n22}—Ig —n (cc2}-Ih —n(c42)-I

(1—xI)(1—x5) l ' (1—x2) * 4

Xx5—a(»—(1—xI) '(1—x2) '(1—x2)-'(1 —x4) '(1—x5)-'
-1 X5X2(1 XI)- -1 X2X2-

Xf1—x5x2(1 —XI)7
— ' f1—x5x2(1 —XI)7 l "(1—x2x5) *'"'(1—x5)- '(1—xI) *"'(1—xc)
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If our rules are correct, then this should equal

1 1

dS1 F2 dS3
0 0 0 Xg, ) y i 6

Xss~'W y, '~O) 5.&O(,ggW, //san'(1 —s2)~'sP (X,) ~X$)

M~1
—a(~1m)—1 —a(~g&)—I —a(x.a&)—1 —a(~p) —1 —.a(x4&)—1ff ~ 5—cl'g ~

'1—cfj ~ X—c
SQ Z8 35

X(1—s4)
—~(1—ss)—.'(1—s])—~~~'&(1 —sm)

—~&~ '& 1—
sssss2(1 —si)

The last term is the correction factor. We can now

simply read oG the transformation of variables:

sg —xg(1 x5xg(1 —xq)j
sm(1 —sg) =x2(1—xg)(1 —x~) I 1—xgxm(1 —xg)j ',

sg =xg/1 —xgx~(1 —xg) 7,
(1—sg)s4=x4(1 —x2)(1—x2xs) ',

85 —X5 ~

Proving the equivalence of all c-number expressions
is again a straightforward but tedious process.

The objection may be raised that linear dependences
have not been removed for an arbitrary con6guration.
The dual properties of the three-Reggeon vertex func-
tion, however, allow us to pass from the configuration
studied here to an arbitrary one. Several previous
authors have elegantly proved the dual properties of
the vertex function by expressing it in a symmetric
four-Reggeon vertex function. Moreover, we have
checked the dual properties of the Sciuto three-Reggeon
vertex function directly by explicitly showing the
equivalence between two four-Reggeon vertex functions

composed out of unsymmetric vertex functions. The
demonstration that the unsymmetric four-Reggeon
vertex function is dual is straightforward but rather
long and tedious, and hence will not be presented here.
In addition, the fact that a scalar vertex may "pass"
through a symmetric three-Reggeon vertex has also
been shown directly. The major consequence of these
two calculations is to prove the periodicity properties
of planar and nonplanar multiloop amplitudes, even
before actual traces are performed. In a previous paper
on the nonplanar loop amplitude, ' for example, the
periodicity of the imaginary part was proven alge-
braically. But because the operators themselves have
dual properties built in, the periodicity may be seen
before the calculation is actually performed. In passing,
we note that both calculations depend critically on the
presence of 1—I' on at least one leg.
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