3 LOCAL LAGRANGIAN QUANTUM FIELD THEORY:---

in the combinations ¢,%6%’¢,,> and ¢,%¢**q,,® which are
invariant under rotations in the two-dimensional charge
space, so the Feynman diagrams individually manifest
chiral invariance discussed previously.t If all charge
vectors are parallel, then only the §%° term contributes
to the photon propagator and ordinary electrodynamics
in a particular gauge is recovered.

The infinite series of Feynman diagrams representing
the .S operator (7.1) is not useful for practical calcula-
tions because of the large magnetic coupling constant
g*/4r~ (137)n implied by the charge-quantization
condition, but its formal properties may be of interest.
For example, one might hope to deduce from it the
behavior of the scattering amplitude under Lorentz
transformation. However, even this would not be
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simple, for the group property is not satisfied order by
order [as is obvious from the transformation law
(6.17)7], and when the charge quantization condition
holds, the same power of the charge appears in an
infinite number of diagrams of different order. (By
“order” one means here the number of vertices in a
Feynman diagram.) We hope to return to the trans-
formation law of Green’s functions on another occasion.
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We present a general method for including abnormal couplings in multiparticle dual amplitudes. We con-
struct amplitudes from a sum of terms having kinematic superstructure and dual substructure; and we show
how a tensorial analysis of the kinematic superstructure in various channels determines the normality of the
trajectories involved. As an illustration, we give a specific solution for abnormal couplings in the 8-r ampli-
tude in which the above analysis is carried out in detail, and is compared with previous 6-r amplitudes and

four-point amplitudes for spin-1-spin-0 scattering.

I. INTRODUCTION

NALYSES of the structure of the N-scalar-particle
dual amplitude by Chan ef al.! and by Koba and
Nielsen? have shown that it predicts normal coupling at
all three-point vertices. [A coupling is normal or ab-
normal if the product of the normalities of the three
particles is +1 or —1. A particle is normal, n=41, if
it has parity (—1)7 or abnormal, n= —1, if it has
parity —(—1)7.] The existence of abnormal vertices is
essentially a complication due to spin; any vertex with
two spinless particles conserves normality. The problem
of choosing the normality of an internal trajectory thus
first arises in the four-point functions in reactions like
pr — prr; the problem already occurs in the 3-7 trajec-
tories of the 6-r amplitude. We reexamine the previous
analyses of four-point3>~7 and six-point®® amplitudes
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AFOSR Grant No. EOOAR-68-0010, through the European Office
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which are concerned with prescribing the normalities
of internal trajectories. From this analysis we are able
to propose a procedure for writing amplitudes for N-n’s
with defined leading normality on internal trajectories.
In particular we concern ourselves with having the
w-4, trajectory in certain 3-m channels of the 8-x
amplitude.

For four-point amplitudes with external spinning
particles, one usually writes the invariant Lorentz ten-
sors contracted against helicities and makes use of the
analysis of Gell-Mann ef al.1° to determine the normali-
ties of the invariant amplitudes associated with them.
This method is clearly impractical when we come to
analyze processes involving high spins. This is especially
true since invariant amplitudes tend to give normal
couplings. The method we adopt involves the use of
“noninvariant” amplitudes, whose use has been de-
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| Fi16. 1. Trajectory a(3j) in -
the N-point amplitude.

scribed by Canning.!! By this we mean that we write an
amplitude in the following form:

A=3 Ko(P:)Bn*(aji), ¢y
where ‘
ap=o%+a' (Pjr)?,

The function By?% which we call the dual substructure,
is a function only of the internal trajectories and is of
the form

By®(asx) =Zb fo*(aji) By (o —mip®?) , (2)

Pp=Pi+Pija+t---+PratPs.

By being the usual N-point Veneziano function, ;% ?
small non-negative integers, and f;* a simple poly-
nomial in the s used essentially for ghost-eliminating
purposes. K,(P;), which we call the kinematic super-
structure, is a Lorentz scalar for all spinless external
particles or a Lorentz tensor of appropriate rank to be
contracted against the “wave function” of the external
spinning particles. It is a function of the external mo-
menta P; and is designed to require certain trajectories
to be of fixed leading normality. The sums over ¢ and
b are due to the different ghost-eliminating choices or
trajectory-starting values and the fact that some chan-
nels may have more than one trajectory.

In practice, both K, and By® are dependent on a par-
ticular ordering of the external particles 1, ..., N and,
for all external pions, the sums over ¢ and b should be
taken over cyclic and anticyclic permutations with a
given ordering. Then, the complete amplitude is given

by
A=3 Tr(rimTem TN ) ;} KapBy*®. (3)
p a(p

The sum over p is over all permutations of 1, ..., N
and the trace is the Paton-Chan'? isospin factor. This
automatically guarantees that pions obey Bose sta-
tistics. Accordingly, it also gives alternating isospin
along normal-parity trajectories, and allows no exotic
isospins.

We now return to our discussion of K, and By®. As
has been shown,! at a pole in a;;=J, the residue of By
looks like

1

1 G, P. Canning, Phys. Rev. D 2, 1146(1970).
12 J. E. Paton and Chan Hong-Mo, Nucl. Phys. B10, 516 (1969).
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where m=m,;;*® and the usual summation conventions
on repeated Lorentz indices hold with the metric having
goo=-+1 [see comment after Eq. (6) for further sum-
mation conventions]. Tinitia1 is composed of momenta
from one side of the graph in Fig. 1 and Tina1 from the
other side only, and both Tinitia1 and T'gina contain
leading-rank (J—m) symmetric tensors (not pseudo-
tensors). In general they also contain lower-rank ten-
sors and pseudotensors.
We write the kinematic superstructure as

Ko= Kinigiar?" " ""Ktina??" 7, t2m (5)
with Kinisial (fina1) constructed out of momenta on the
one (other) side of Fig. 1 only. Then, the combination of
superstructure and substructure has a leading trajec-
tory a;; coupling normally, abnormally, or parity
doubled—depending on whether the highest-rank tensor
in Kinisial final) (Which rank is constructed to be m)
is a tensor, pseudotensor, or linear combination of both.
Thus, with appropriate choices of superstructure and
substructure, internal trajectories can be made to have
certain desired leading properties and the general N-
point amplitudes can be written. The normalities of the
leading particles on trajectories are determined solely
by the superstructure, and it is this which we desire to
analyze in the following sections.

In Sec. IT we discuss certain superstructures in the
four- and six-point amplitudes. From this analysis we
are able to propose a constructive technique for the
superstructures of the N(even)-r amplitudes. In Sec.
IIT we analyze in detail those superstructures which
are appropriate to the 8-r problem with an w-4» tra-
jectory in certain 3-7 channels. Section IV is devoted to
finding the substructures which occur with these super-
structures, and Sec. V presents the conclusions.

II. ANALYSIS OF ABNORMAL COUPLING

In this section we discuss the properties of super-
structures in four-point amplitudes, with specific refer-
ence to obtaining pure abnormally coupled trajectories.
We then show how these superstructures generalize to
the six-point amplitude and suggest a set of rules for
their implementation in the N-point amplitude.

The first occurrence of both normality trajectories in
one channel—2-to-2 scattering—is in spin 177 ®0,
— 1;7®04 reactions. The Veneziano model has usually
been applied to the reactions by writing sums of modified
beta functions for the invariant amplitudes associated
with the Lorentz operators

g*, PobP¢, PPy, (Po#Po*+ Ps*Py), (Po#Py—P#Py)

(only the first four if elastic), or other equivalent opera-
tors. If the 1~ particles are p, w, or 43, the leading nor-
mally coupled trajectory is the w-4;, B, p-f, respec-
tively. In order to have these trajectories non-parity-
doubled, it has been shown3—7 that linear combinations
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of these amplitudes with numerical coefficients must
have prescribed asymptotic behavior. To obtain the
abnormally coupled w-As, p-f, or B trajectories, re-
spectively, not parity doubled, one must relate certain
asymptotic powers of the amplitudes by polynomials in
Mandelstam variables and external masses.?7 Indeed,
even to get a parity-doubled trajectory, the asymptotics
are still related by Mandelstam variables. This result
also holds true for the reactions J1®0:~— Jd'®O0,~
(normality of J equals the normality of J'). There it
has been shown by Jacobs’ that combinations of invari-
ant amplitudes with numerical coefficients and pre-
scribed asymptotics give normally coupled trajectories,
while parity-doubled or pure abnormally coupled tra-
jectories require asymptotics related by Mandelstam
variables and external masses.

These requirements of polynomials in external mo-
menta are distinct from the polynomials in internal tra-
jectory functions obtainable by identities among beta
functions. These polynomials can be replaced by “non-
invariant” amplitude superstructures. The structures

Kw=eua"P;'Pye* Py Py Aijm (6)

have been studied by Kosterlitz¢ and by Canning.!! (In
the interest of keeping extraneous superscripts to a mini-
mum we adopt the following convention: a missing
superscript in an e##° shown by a dot indicates a con-
traction of that index with the first available Lorentz
index of a four-momentum in the expression, which is
also shown by a dot.) The Latin subscripts 7, 7, &, and
1 in Eq. (6) are intended to be labels only and are not
summed over. In the direct (s) channel, 41234 contributes
only to leading, abnormally coupled particles and lower
parity-doubled particles. Thus, the form

Kinitia1®= €2 (17)1"P1' Py’ ©)

can be thought of as a superstructure coupling 1-®0~
to (17)12* abnormally. In the crossed (#) channel, how-
ever (or equivalently Aiss in the s channel), it gives
leading parity doublets starting at spin 2 which'must be
depressed.

The reaction 1;7®0;~ — 13+®04~ allows both nor-
malities of trajectories, each coupling normally at one
end and abnormally at the other. Analyzing this reac-
tion, Canning!! found that the operator

Kw=ew PyPy ®)

had the normal vertex at the (34) end, i.e., in its cou-
pling to particles 3 and 4,

Kw=ew Py Py ©)
had the normal vertex at the (12) end, and
Kw=ew Py Py’ (10)

gave parity doubling. The remaining amplitudes in-
volved more factors of P. All three of these operators,

893

Fie. 2. Trajectory e(13) in al13)

the 6-r reaction.

4

separately, have mixed parity in the % channel. The
fact that Eq. (8) is normal at the (34) end is immediate
from observing that Ksinr” is a vector (index ») not in-
volving momenta P3 or P; Conversely, we have the
form

(11)

which couples abnormally (pirs — wis), since Kinisiar® is
a pseudovector. If we had only the superstructures (8)
and (9), which have definite normality in the s channel,
we would obviously predict restricted ratios among
couplings since we have eliminated some *allowed
operators.

In the 6-r amplitude it is possible to have the m-A4;
or w-Aq in 3-r channels. In the reduced graph of Fig. 2,
for instance, we can be sure that the «(13) trajectory is
the w-A2 by comparison with (8) when the «(12) is at
the p pole by setting up

Kinisiat*= €4 *"(17) 12" P12 Py

Y — e.p..(l_)l.Pl.Pz. ,

(12)

The “polarization vector” of the p, (17)1¢’, is made up of
Py and Py and is perpendicular to P2, i.e., for P,
= Py®=m,? it is Py—Py. Corresponding results hold
for Kginar” at the (45) trajectory p pole. Our method of
tensor analysis gives us directly that Kinisiar® is precisely
a rank-one pseudotensor (1%)”. Hence the trajectory
must start at 1~ since there are an odd number of pions,
and it always has normal parity. More symmetrically,
we have the identical form

K= e“-.-PlchaPaaeﬂc.;P4oP5cP6- , (13)
showing that the superstructure is good also for the
a(23) and «(56) trajectories. Dorren ef al.® and Gabarro
and Mestres® have, in fact, proposed this superstructure
with appropriate substructure for the 6-r amplitude.
We here derive its complete properties using our method
of tensorial analysis.

For the trajectory a(12), we obtain from Eq. (13)
Kinisiar*= (17)12#, which, from our comments about sub-
structure in the Introduction, shows that «(12) is of
positive normality starting at J=1. Equivalent results
hold for «(23), a(45), and «(56).

For the trajectory «(34), we have

Kinitiar?” =3[ —(17)34#(17) s — (17) 34*Pss”
+ Ps*(17) 3¢+ PsePse” ],
Kiinat?=€7#"P1"Pye”” " Ps Py

(14)

In Kinitia), the first of the terms contains a (2+)3* in.
its reduction because e’#**e”** in Kiina1 contains a sym-
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Fic. 3. Trajectory a(24) in
the 6-r reaction.

metric part in <> ». Hence «(34) is of positive nor-
mality starting at JP=2+, and similarly for a(61).

By construction «(13) is the w-A4, trajectory, abnor-
mally coupled to three pions.

For the a(24) trajectory we consider the graph of Fig.
3. Equation (13) can be written as

K= e""'P1'(1_)23'P23'€“'"P4'(1_~)55'P56'. (15)

This corresponds to the operator with A3 in pr — pr
subscattering [see Eq. (6)]. Using helicity techniques,
Canning!! has shown this to be parity doubled. From our
techniques, this can be seen if we write

Kinitiar” ™= (17)23*{ (1) 2 ® P5r’}{(17) 24P P517} ,

(16)
Kiina1™=¢€"*"P1'e°™ Py Py
Here we have written
Posk= Poyk 1) gyt
23 24#@ (17)24%, (7

Pyr=Paot® (17) 24",

meaning that, at the (23)-4-(234) vertex, Pss (or Py) is
effectively a linear combination of Pss and (17)ss. It
transforms as a scalar and a (17) which is an object
perpendicular to Ps,s and, in the Pgy rest frame, trans-
forms as a vector under O(3). The general expression
for the linear combination at a vertex a-b-¢ (see Fig. 4)
is

Pr= (1/25ab)[(1—.)ab“+ (Sab_Paz_i'Pb?)Pab"]' (18)

Now, in Kiuitia1 of Eq. (16), from the part like
Psr(17)23#(17) 247, we find a symmetric part in K¢ina1 in
u <> 7, which must correspond to a 2+ tensor as above.
From (17)23#(17)2(17) 24", however, we obtain from the
antisymmetry in g <> » in Kginal, a (17)# pseudotensor,
which, when combined with a symmetric part in Kfina
in p> 7, v<> 7, gives a 2~ pseudotensor. This shows
that «(24) is parity doubled and begins at J=2%, 2.
We have checked in the #tr—rtr—7rts— amplitude,
symmetrizing it suitably, and have found that there are
no terms canceling this doubling. Equivalent results
hold for the «(35) trajectory, and both «(24) and «(35)
must be depressed at least three units not to have lead-
ing parity doubling. Although this same form (13) of
superstructure has been proposed by Dorren ef al.,® they
are in disagreement with this analysis and the helicity
analysis of Canning,!! and they claim that these tra-
jectories are solely w-As. Nevertheless, they too recom-
mend lowering them by three units.

CANNING AND M. A. JACOBS 3

With these brief descriptions of procedures for analyz-
ing superstructures, we can now propose requirements
that the structures for the N-r amplitudes should have.
An optimal superstructure would have the property
that, when evaluated for all tree graphs included in its
dual substructure, it corresponds to particles of spin
equal to the starting point of each internal trajectory in
that graph and three-point couplings of prescribed nor-
mality. As we have seen in the mp — mp, 7w — 744, and
6-m analyses, it usually turns out that these properties

“are obtainable only on a limited subset of graphs. Hence

we must make do with superstructures with more
restricted properties. We might try requiring that all
graphs having a common trajectory (or set of nondual
trajectories) have all leading non-parity-doubled be-
havior. Crossed (dual) channels which are doubled can
then be depressed. We would then require that, in our
sum of such terms, for each graph there is at least one
term with all correct leading trajectories.

We note that, in 7w — 74 for instance,!! use of the
simplest superstructures satisfying these criteria does
not allow all couplings to be independent, and we expect,
therefore, that we will have restrictions in the N-point
case too. We defer this point to a later paper.

We propose that the simplest superstructures with
prescribed normality should include the following.

(a) A vertex of 2n-w to the p-f trajectory, »>1. This
is a normal vertex, and we use K=1 or a linear com-
bination of the P; (for n=1, such as P1—P;). The K=1
superstructure allows a scalar ¢ to couple. Since
this would be a ghost, it must be eliminated by the
substructure.

(b) A vertex of 2n-m to the B trajectory, n>2. This is
an abnormal vertex. Since the B is usually considered to
lie on a trajectory in a daughterlike relation to the p-f
trajectory and is, in any event, low lying, we do not
couple this trajectory as a leading one.

(c) A vertex of (2n+1)-7 to the 7-A44, n>1. This is
a normal vertex and again we use K=1. Since this tra-
jectory does start at J=0, the ghost-eliminating and
By substructure is simpler for this than in (a).

(d) A vertex of (2n+1)-7 to the w-A,, n>1. This is
abnormal. We propose the forms

Ker= 6“'"Plyi'P¢+1,j'Pj+1,2n+1' . (19)
This is patently a pseudovector, orthogonal to P1,5.41%,
the momentum of the w, and hence corresponds to a
trajectory beginning at J¥=1~. The change from ap- -
parent starting value of the trajectory of JP=1%+ to
JP=1~is due to the odd number of pions forming the

F16. 4. A vector from two scalars

e in a tree subgraph.
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trajectory. In general, the vertex

€ ""P1'Pyon'Ponyt’ (20)

can be shown to have defined parity trajectories on all
trajectories involving only a subset of the labels 1, ...,
2n+1; however, since it predicts trajectories starting
at J=0 for the two-body channels (23), (34), ...,
(2n—1, 2n) and precludes pions on some three-body
trajectories which should have them, we have the option
of including forms other than (20) which have defined
parity on fewer graphs, but start various of the two-
body trajectories at J=1, and the pion trajectories at
J=0.

(e) A wwp coupling. This is abnormal, the w and p
coming from a type (d) and type (a) (P1—P; variety)
structure.

1)

In any real 2NV-mr amplitude there are always an even
number of abnormal vertices. Thus, there may arise
_ questions as to which pairs of vector indices to contract.
We propose to take up this question in a later paper.

e.-.-w.p.Pw-Pp..

III. KINEMATIC SUPERSTRUCTURE FOR
8- AMPLITUDE

The simplest type of superstructure is of course where
there are no abnormally coupling trajectories. Here the
only problem is that of constructing « factors to sys-
tematically eliminate all spin-0 ghosts on the ptrajectory
without eliminating too many 7 poles. For this the kine-
matic superstructure is the identity.

The next simplest type of process is one which re-
duces to the four-point wr-wr in the eight-point ampli-
tude with four abnormal couplings. For the tree graph
of Fig. 5, the kinematic superstructure is of the type

6"“.Pl'Pg'P?,'év“"P4.P13'€"p”P5'P53'€p.. .PG-P7-P8. . (22)

This can easily be seen to be correct for the a(13) tra-
jectory by observing that the form of Kinitiat* has ex-
actly-the form already discussed of Eq. (12), so that the
a(13) trajectory starts at 1~. For the a(14) trajectory
we see that Kinisar” is precisely a rank-1 tensor, which
determines that the trajectory a(14) will start at JP= 1~
and will always have normal parity.

Another type of abnormal coupling would be that
illustrated in Fig. 6, for which we would select from the
general form given in Eq. (20):

e"“'Pl‘P:}'Plz}'e"“'P5.P8'P58‘ R (23)
or possibly
6..-.PI-P2-P3.P4-€..-.P5-P6-P7.P8-. (24)
' 8
F16. 5. wr = wr in 6

the 8-r reaction.
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F16. 6. The 4—7 — B trajectory
in the 8-r reaction.
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In Eq. (23), Kinitiar* is precisely a rank-1 pseudo-
tensor, and in Eq. (24), Kinitia1 is precisely a pseudo-
scalar, so that on the «(14) trajectory only abnormal
parity particles will be found. However, we do not in-
vestigate these forms any further, since the a(14) tra-
jectory of Fig. 6 would correspond to the B trajectory,
which is in a daughterlike relation to the p trajectory,
and which therefore we do not need to put in separately.

The only nontrivial problem is the single, abnormally
coupling trajectory of the type illustrated in Fig. 7(a).
This trajectory is meant to couple abnormally to pions
1, 2, and 3 at one “end” and to couple abnormally to
pions 4, 5, 6, 7, and 8 at the other “end.” Of the general
solution to this problem given in Eq. (20), we choose the
following forms for investigation:

- K(1,2,3;4,57,8)=¢#"Py" Py Py'er Py Py Py, (25)
K(1,2,3;46,7,8)=e#"Py"Py' P3¢ "Pys’Pr' Py, (26)
K(1,2,3, 4,5,68)= (1. "Pl'Pz'P3'€”'"P4'P5'Peg' . (27)

In fact, only the form of Eq. (25) determines that the
two abnormal couplings should be on adjacent vertices
(123)(45678) in all tree graphs including the «(13) tra-
jectory. The other two forms achieve this for only
certain of the tree graphs including the «(13) trajectory.
They are, however, necessary to permit pions on the
trajectories a(46) and «(68) in the superstructures of
Eqgs. (26) and (27), respectively. This is why the cou-
pling of five pions to make an v is not a trivial problem
like the coupling of three pions to make an w.

We now examine the kinematic superstructure of Eq.
(25) by referring to various general types of tree graphs
chosen to elucidate the normalities of the individual
trajectories present. Our task is to perform the analysis
implicit in Eq. (5), i.e., to ascertain the maximum rank
of tensor in the product Kinitia1*Ktina1 and to find
whether it is a tensor or a pseudotensor or both. For
this purpose we shall use the tensorial methods already
developed in Sec. II.

a(56)—see Fig. 7(b). Here we may rearrange and
factorize K to give simply Kinitir=1. Clearly Kinitial
corresponds to a scalar Ot. This determines that the
trajectory a(56) has normal parity starting at JP=0%,

a(57)—see Fig. 7(c). Here again we may arrange K to
give simply Kinitia1=1, corresponding to a scalar OF.
Since there are an odd number of pions, this determines
that the trajectory (57) has abnormal parity starting
at JP=0". _

a(12)—see Fig. 7(d). Here we may rearrange K,
using Eq. (18), to give

Kinitiar*= (17) 12", (28)



896
¢ 5
7
a(58)
o s
4
3 0 g
7

9
4
1
2
a(34
5
0]
a(57) !
3
a(24)
5
2
2
6
6
®
5
2

7

@
1
3
(L)
5
a(56)
€
5 ©
1
a(2)

K4
K]

8
4
2
4
8
3 %]
a(35)
3
4 ¢ 4
a(45)
5
5 >
6
3

w
@

0)

®

©

a6l

4
a(46)
5 1
(]

F16. 7. Various trajectories used in the analysis of 8-r reaction.

Kinitia1 is thus precisely a rank-1 tensor, and this
determines that the trajectory a(12) has normal parity
starting at JP=1—.

a(45)—see Fig. 7(e). Here we may rearrange K, using
Eq. (18), to give

Kinisiar*= (17) 45+ Pest.

Knisia1 clearly represents a rank-1 tensor and a scalar.
This determines that trajectory a(45) has normal parity
starting at JP=1". :

a(46)—see Fig. 7(f). Using Egs. (17) and (18), we
may rearrange K to give

Kinitiat*= (17) 46*® Prs®.

As above, Kinitial represents a rank-one tensor and a
scalar. Since there are an odd number of pions, this de-
termines that the trajectory a(46) has abnormal parity
and starts"atV/P= 1+,

(29)

(30)
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a(13)—see Fig. 7(a). We see directly from the form of

K that
Kinitiat*=€*""P1y' P2’ Py’ 31)

Clearly this corresponds to a rank-1 pseudotensor,
since it has exactly the form of Eq. (12). Since there are
an odd number of pions, this determines that the tra-
jectory a(13) has only normal parity starting at JP=1".

a(58)—see Fig. 7(g). Using Eqgs. (17) and (18), we
may rearrange K to give

Kinitiar*= (17) 5" D P14*. (32)

This corresponds to a rank-1 tensor and scalar, de-
termining that the trajectory «(58) has only normal
parity starting at JP=1-.

a(34)—see Fig. 7(h). Here we may rearrange K, using
Eq. (18), to give

Kinitiar®”=[(17) 34+ Pt J[(17) 32 — P52 ],

Ktina1”=1e#""Py'Py’e” " Psg' Py’ (33)

By comparison with the form of Eq. (14), we see that
there will be some contribution to Kinitia1 like a rank-
2 tensor. This determines that the trajectory «(34) has
only normal parity starting at JP= 2+,

a(24)—see Fig. 7(i). Using Egs. (17) and (18), we
may rearrange K to give

Kinitiar®™=[(17)24*® P5:* J(17) 22 [(17) 24" ® P17 ],

Kiina® ™= e"" Py’ " Pg Py

(34)

By comparison with the form of Eq. (16), we see that
there will be some contribution to Kinitia1 like a rank-
2 tensor and pseudotensor. This determines that the
trajectory «(24) is parity doubled starting at JP= 2+,
2-.

a(35)—see Fig. 7(j). Using Egs. (17) and (18), we
may rearrange K to give

Kinitia”™=[(17) 15*® (17) 35D Pe2*]
XL(17) s @ Pex*® Peg’ [ (17)357® P2, (35)

Kina1” ™= ¥ Pg'e’™ " P1"Py’.

As above, comparison with Eq. (16) tells us that there
will be some contribution to Kinitia1 from rank-2
tensors and pseudotensors. Accordingly, the trajectory
a(35) is parity doubled and starts at JP=2+ 2~

a(61)—see Fig. 7(k). Using Egs. (17) and (18), we
may rearrange K to give
Kinitiar” ™= [ (17) 61#® P2s*® P2s* ]

XL )eg® (17) 6" @ P2s”]
XL e ® P2s7],

Kiina?™=e# Py e’ Py Py

(36)

As above, comparison with Eq. (16) determines that
the trajectory «(61) is parity doubled starting at
TP=2+, 2.
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TaBLE I. Properties of two superstructures for 8-r reaction. Integers to be used in the By of the substructure for
various « factors used with these superstructures. NL signifies nonleading behavior in that channel.

Behavior of Integers used in By Behavior of Integers used in By
superstructure for o factors of superstructure for a factors of
Channel K(1,2,3;4,57,8) 1 a(56) a(67) K(1,2,3; 46,7,8) 1 «(45) a(56)
a(12) 1- 1 1 1 1- 1 1 1
«(23) 1- 1 1 1 1- 1 1 1
a(34) 2+ 2 2 2 2+ 2 3 2
a(45) 1- 1 2 1 o+ 1-NL 0 1
a(56) o+ 1-NL 0 1 o+ 1-NL 1 0
a(67) o+ 1-NL 1 0 1- 1 1 2
a(78) 1- 1 1 2 1- 1 1 1
a(81) 2+ 2 2 2 2+ 2 2 2
a(13) 1- 1 1 1 1- 1 1 1
a(24) 2+, 27 3-NL 3-NL 3-NL 2+, 2~ 3-NL 4-NL 3-NL
a(35) 2+, 2~ 3-NL 4-NL 3-NL 2= 2 2 3
a(46) 1* 1 1 2 0= 0 0 0
a(57) 0- 0 0 0 1+ 1 2 1
«(68) 1+ 1 2 1 1+ 1~ 2-NL 2-NL 3-NL
a(71) 2+ 2= 3-NL 3-NL 4-NL 2+, 2- 3-NL 3-NL 3-NL
a(82) 2+, 2~ 3-NL 3-NL 3-NL 2+, 2~ 3-NL 3-NL 3-NL
a(14) 1- 1 1 1 1+ 1~ 2-NL 3-NL 2-NL
a(25) 2+, 2~ 3-NL 4-NL 3-NL 2%, 2- 3-NL 3-NL 4-NL
«(36) 2+ 2- 3-NL 3-NL 4-NL 2+, 2~ 3-NL 3-NL 3-NL
a(47) 1- 1 1 1 1- 1 1 1

The results of the above analysis are recorded in
column 2 of Table I in the form of the J? of the lowest-
spin particle allowed on each trajectory. Here we have
made the compilation for all trajectories, the others
being strictly analogous with the ones we have analyzed
above. In column 6 we have tabulated the similar re-
sults obtained by an analysis of the superstructure of
Eq. (26), which proceeds along similar lines.

IV. ANALYSIS OF EIGHT-POINT
AMPLITUDE a-FACTORS

In columns 2 and 6 of Table I we have tabulated the
behavior of the kinematic superstructures e***Py* Py’ P%
X 5“".P4'P57'P8. and E“'"P]_'Pg'P3'€"' ”P46'P7'P8’, re-
spectively. With the first of these we note that trajec-
tories a(56) and a(67) which are p-f may start at J=0.
We have the option of starting them at J=1 and making
them nonleading trajectories or starting them at J=0
and putting in ghost-eliminating factors. A factor a(ij)
has the property that it eliminates a pole at a(ij)=0
from the By function and that it raises by one the
highest angular momentum present in all channels dual
to a(ij). However, it does not change the normality of
the highest angular momentum present and hence does
not parity-double leading single-normality trajectories.

In columns 3-5 of Table I we list the small integers
ms; for the various choices of a factors, sufficient to
eliminate all ghosts. We indicate by NL those trajec-
tories which are nonleading.

All of the trajectories nondual to a(13) are of single
normality and start at their appropriate values of J
except «(46) and «(68), both of which have the = pre-

cluded. In order to allow reduced graphs with ¢(13) and
a(46) to have a 7-(46), we consider superstructure 2.
The m,; for a set of various « factors, sufficient for the
requirements listed in Sec. II, are presented in columns
7-9. An exactly analogous result holds to allow the
7-(68). We note that, with these additional super-
structures, not all trajectories compatible with «(13)
are of single normality.

V. CONCLUSIONS

In the N-point amplitude it is necessary physically
to be able to specify the normalities of particles on
all internal leading trajectories. We have described a
method of constructing amplitudes from a sum of terms
each with a kinematic superstructure and dual sub-
structure. By means of the superstructure, we prescribe
the normalities of a complete set of compatible leading
trajectories. By means of the substructure, we arrange
to make appropriate trajectories leading, to suppress
parity doublets, and to eliminate ghosts.

We have suggested a procedure for the construction
of these kinematic superstructures appropriate to
securing the normalities of the internal trajectories.
The techniques for a more systematic analysis of the
N-point problem will be presented in a later paper. Here
we have discussed the superstructures appropriate for
four-point and six-point amplitudes in which we use
our method of tensorial analysis to rederive the results
of previous analyses using helicity amplitudes.

Effectively, this method of tensorial analysis involves
decomposing the momenta which appear in the super-
superstructure, and which are Lorentz rank-1 tensors,
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as O(3) vectors 1~ and scalars O* in a chosen rest frame.
Then we analyze products of these vectors involving
e pseudotensors in order to determine the highest repre-
sentation of O(3) present and to determine its parity.
This method is effective, much simpler, and more gen-
eral than the use of helicity amplitudes employed by
Dorren et al.® We also avoid any need to work out
Gram determinants with this method.

The problem of incorporating the w-4, trajectory as
an abnormally coupled trajectory to 3-r and the remain-
ing 5-w in the 8-r amplitude was then analyzed in detail.
There we showed, using our tensorial technique, how
our proposed form for the V-point superstructures could
be applied to achieve the desired result.

From these considerations, we are able to formulate
a minimality hypothesis. In 77 — 77 13 and 77 — 7,4
it was possible to obtain the desired leading behavior in
all channels by writing effectively only one term for each
of the reactions. The minimality hypothesis then
claimed that these single terms gave the complete
amplitude. By contrast, for the four-point amplitudes
with two spinning particles, no such minimal hypothesis
can be formulated. However, for the N-point, all-spin-0
amplitude, we may take as an acceptable minimal hy-
pothesis that we should only include the minimum num-
ber of terms necessary to include all possible subgraphs
with minimum starting points on all trajectories, which

13 C. Lovelace, Phys. Letters 28B, 264 (1968).
¥ G. Veneziano, Nuovo Cimento 574, 190 (1968).
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have the necessary property of defined normalities on
all leading trajectories.

Accordingly, by careful examination of Table I, we see
that the unit o factors for both kinematic superstruc-
tures are superfluous. The minimality hypothesis leads
us to reject these forms, especially as they have a higher
number of nonleading trajectories. Then, in fact, we
obtain the correct minimal forms for == — = when
a(46), a(57), or a(68)=0. In any case, the correct
minimal form for 7w — mw is obtained when either
a(46) or a(68)=0, and a(13)= 1. At least in this examples
the hypothesis of minimality applied to 2z-r amplitude,
is consistent with minimality for a smaller 2n'<2n-r
amplitudes.

Since changing the set of By functions used in defin-
ing an amplitude changes drastically the degeneracy
structure of the amplitude, we feel that such a hypothe-
sis of minimality is critically necessary to a discussion of
the factorization and level structure. We do not, how-
ever, discuss this here, since we have not included
specifically all the forms of tree diagrams with two w-4,
trajectories and no w-A4, trajectories. Moreover, from
the discussion given by Canning,!* we may expect some
conflict between minimality, duality, and factorization.
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We present a unified approach to compact and noncompact wave equations based on the algebra of
0(6,C). The Bhabha and Nambu equations emerge as the simplest possibility for describing multiplets of
relativistic particles. Dynamical quantities such as mass, spin, and magnetic moment are evaluated in

terms of the spectra of relevant operators.

INTRODUCTION

MONG the most interesting phenomena of the
physics of strongly interacting particles is the

fact that hadrons and their resonances seem to fall into
more or less well-defined groups and families. Some of
these are described, on a phenomenological level, by
internal symmetry groups such as SU(2) and SU(3).
Other approaches yield families or trajectories of
particles with different spins. One would welcome,
perhaps, a description of such supermultiplets in terms
of fields and wave equations. Attempts in this direction

are the finite-component wave equation of Bhabha! and
the infinite-component equation of Nambu.? While
neither of these equations is perhaps very physical, it
seems, nontheless, to be rewarding to explore them as
models of an eventually more complete theory. After
all, the Dirac equation, which is physically quite
relevant, is indeed the Bhabha equation of lowest
order.

1H. Bhabha, Rev. Mod. Phys. 17, 200 (1945); 21, 451 (1949).
S§e6a)lso A. Aurilia and H. Umezawa, Phys. Rev. 182, 1682
(1969).

2'Y. Nambu, Progr. Theoret. Phys. (Kyoto) Suppl. 37-38, 368
(1966). See also Y. Nambu, Phys. Rev. 160, 1171 (1967).



