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in the combinations q„b~~q ~ and q„& ~q ~ which are
invariant under rotations in the two-dimensional charge
space, so the Feynman diagrams individually manifest
chiral invariance discussed previously. 4 If all charge
vectors are parallel, then only the 5 ' term contributes
to the photon propagator and ordinary electrodynamics
in a particular gauge is recovered.

The infinite series of Feyrirnan diagrams representing
the S operator (7.1) is not useful for practical calcula-
tions because of the large magnetic coupling constant
gs/4r= (137)rs implied by the charge-quantization
condition, but its formal properties may be of interest.
For example, one might hope to deduce from it the
behavior of the scattering amplitude under Lorentz
transformation. However, even this would not be

simple, for the group property is not satisfied order by
order Las is obvious from the transformation law

(6.17)j, and when the charge quantization condition
holds, the same power of the charge appears in an
inlnite number of diagrams of different order. (By
"order" one means here the number of vertices in a
Feynman diagram. ) We hope to return to the trans-
formation law of Green's functions on another occasion.
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We present a general method for including abnormal couplings in multiparticle dual amplitudes. We con-
struct amplitudes from a sum of terms having kinematic superstructure and dual substructure; and we show
how a tensorial analysis of the kinematic superstructure in various channels determines the normality of the
trajectories involved. As an illustration, we give a specific solution for abnormal couplings in the 8-7I- ampli-
tude in which the above analysis is carried out in detail, and is compared with previous 6-~ amplitudes and
four-point amplitudes for spin-1-spin-0 scattering.

I. INTRODUCTION

A NALYSES of the structure of the E-scalar-particle
dual amplitude by Chan et ul. ' and by Koba and

Nielsen' have shown that it predicts normal coupling at
all three-point vertices. PA coupling is normal or ab-
normal if the product of the normalities of the three
particles is +1 or —1. A particle is normal, n=+1, if
it has parity (—1)~ or abnormal, e= —1, if it has
parity —(—1)~.g The existence of abnormal vertices is
essentially a complication due to spin; any vertex with
two spinless particles conserves normality. The problem
of choosing the normality of an internal trajectory thus
6rst arises in the four-point functions in reactions like
pm —+ pal-, the problem already occurs in the 3-x trajec-
tories of the 6-m amplitude. %e reexamine the previous
analyses of four-point' 7 and six-point'' amplitudes

*Research sponsored by the Air Force Once of Scienti6c Re-
search, OfIjLce of Aerospace Research, U. S. Air Force, under
AFOSR Grant No. EOOAR-68-0010, through the European OfFice
of Aerospace Research.' Chan Hong-Mo, Phys. Letters 28B, 425 (1969); Chan
Hong-Mo and J. F. L. Hopkinson, Nucl. Phys. 814„28 (1969).

I Z. Koba and H. B.Nielsen, Nud. Phys. B10, 633 (1969).
SA. Capella, B. Diu, J. M. Kaplan, and D. Schi6, Nuovo

Cimento Letters 13, 655 (1969).
4 J. M. Kosterlitz, Nucl. Phys. 813, 129 (1969).
5 G. P. Canning, Nucl. Phys. B1V, 359 (1970).

which are concerned with prescribing the normalities
of internal trajectories. From this analysis we are able
to propose a procedure for writing amplitudes for X-x's
with defined leading normality on internal trajectories.
In particular we concern ourselves with h3'ving the
co-A2 trajectory in certain 3-x channels of the S-m.

amplitude.
For four-point amplitudes with external spinning

particles, one usually writes the invariant Lorentz ten-
sors contracted against helicities and makes use of the
analysis of Gell-Mann et ul. "to determine the normali-
ties of the invariant amplitudes associated with them.
This method is clearly impractical when we come to
analyze processes involving high spins. This is especially
true since invariant amplitudes tend to give normal
couplings. The method we adopt involves the use of
"noninvariant" amplitudes, whose use has been de-

' P. Carruthers and F. Cooper, Phys. Rev. D 1, 1223 (1970).' M. A. Jacobs, Phys. Rev. D 2, 2431 (1970).
J. D. Dorren, V. Rittenberg, H. R. Rubinstein, M. Chaichan,
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9 During the 6nal stages of this work we received a copy of a
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~
aper by J. Gabarro and L. Gonzalez Mestres LOrsay Report No.
0/24 iunpublishedlg, applying analogous methods to the 6-a-

amplitude.' M. Gell-Mann, M. Goldberger, F. Low, A. Marx, and F.
Zachariasen, Phys. Rev. 133, 3145 (1964).
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Fro. 1.Trajectory a(4j) in-
the X-point amplitude.

scribed by Canning. "By this we mean that we write an
amplitude in the following form:

A =P E,(P;)B~ (r4;),),
where

4') =tr'g)+~'(P;s)', P;) =P;+P~+t+ +Ps t+P)

The function B~', which we call the dual substructure,
is a function only of the internal trajectories and is of
the form

&~ (~;),) =g f4 (~,4)&)r(~;a 4)4;)"'),—

The sum over p is over all permutations of 1, .. ., X
and the trace is the Paton-Chan" isospin factor. This
automatically guarantees that pions obey Bose sta-
tistics. Accordingly, it also gives alternating isospin
along normal-parity trajectories, and allows no exotic
lsosplns.

%'e now return to our discussion of E, and 8~ . As
has been shown, ' at a pole in o.;;=J, the residue of B~
looks like

(4)T o ~ o ljts|, P4I l)spy» iP'1 PJ
(J—. 4)4)!

"G. P. Canning, Phys. Rev. D 2, 1146(1970).
'~ J.E.Paton and Chan Hong-Mo, Nucl. Phys. 810,516 4'1969).

B~ being the usual X-point Veneziano function, ns, l,

small non-negative integers, and f& a simple poly-
nomial in the 0. s used essentially for ghost-eliminating
purposes. E,(P;), which we call the kinematic super-
structure, is a Lorentz scalar for all spinless external
particles or a Lorentz tensor of appropriate rank to be
contracted against the "wave function" of the external
spinning particles. It is a function of the external mo-
menta I'; and is designed to require certain trajectories
to be of 6xed leading normality. The sums over u and
b are due to the diferent ghost-eliminating choices or
trajectory-starting values and the fact that. some chan-
nels may have more than one trajectory.

In practice, both IC and 8@ are dependent on a par-
ticular ordering of the external particles 1, . . ., E and,
for all external pions, the sums over u and b should be
taken over cyclic and anticyclic permutations with a
given ordering. Then, the complete amplitude is given
by

where m= nz;, ' and the usual summation conventions
on repeated I orentz indices hold with the metric having
gw=+1 Lsee comment after Eq. (6) for further sum-
mation conventionsj. T;;„.,4 is composed of momenta
from one side of the graph in Fig. 1 and Tf;„,i from the
other side only, and both T;„;&,,& and Tf;,& contain
leading-rank (J—4)4) symmetric tensors (not pseudo-
tensors). In general they also contain lower-rank ten-
sors and pseudotensors.

We write the kinematic superstructure as

+I Einitial "+final

with E;„;~,,l (g;„,i) constructed out of momenta on the
one (other) side of Fig. 1 only. Then, the combination of
superstructure and substructure has a leading trajec-
tory n;; coupling normally, abnormally, or parity
doubled —depending on whether the highest-rank tensor
in E;»4;,) it;»)) (which rank is constructed to be tn)
is a tensor, pseudotensor, or linear combination of both.
Thus, with appropriate choices of superstructure and
substructure, internal trajectories can be made to have
certain desired leading properties and the general E-
point amplitudes can be written. The normalities of the
leading particles on trajectories are determined solely
by the superstructure, and it is this which we desire to
analyze in the following sections.

In Sec. II we. discuss certain superstructures in the
four- and six-point amplitudes. From this analysis we
are able to propose a constructive technique for the
superstructures of the E(even)-)r amplitudes. In Sec.
III we analyze in detail those superstructures which
are appropriate to the 8-x problem with an ~-A2 tra-
jectory in certain 3-z channels, Section IV is devoted to
6nding the substructures which occur with these super-
structures, and Sec. V presents the conclusions.

II. ANALYSES OF ABNORMAL COUPLING

In this section we discuss the properties of super-
structures in four-point amplitudes, with speci6c refer-
ence to obtaining pure abnormally coupled trajectories.
Ke then show how these superstructures generalize to
the six-point amplitude and suggest a set of rules for
their implementation in the E-point amplitude.

The 6rst occurrence of both normality trajectories in
one channel —2-to-2 scattering —is in spin 1» 02
—+ 1~ 04 reactions. The Veneziano model has usually
been applied to the reactions by writing sums of modi6ed
beta functions for the invariant amplitudes associated
with the Lorentz operators

g~", P,~P4" P4~P2" (P2 Pl"+P4 P4") (Pm P2"—P4"P4")

(only the 6rst four if elastic), or other equivalent opera-
tors. If the 1 particles are p, cv, or A j, the leading nor-
mally coupled trajectory is the 4r-A&, B, p f, respec--
tively. In order to have these trajectories non-parity-
doubled, it has been shown3 ~ that linear combinations
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of these amplitudes with numerical coefficients must
have prescribed asymptotic behavior. To obtain the
abnormally coupled 48-A2, p f, -or 8 trajectories, re-
spectively, not parity doubled, one must relate certain
asymptotic powers of the amplitudes by polynomials in
Mandelstam variables and external masses. ~v Indeed,
even to get a parity-doubled trajectory, the asymptotics
are still related by Mandelstam variables. This result
also holds true for the reactions J~I302 ~ J3'04
(normality of J equals the normality of J'). There it
has been shown by Jacobs' that combinations of invari-
ant amplitudes with numerical coe%cients and pre-
scribed asymptotics give normally coupled trajectories,
while parity-doubled or pure abnormally coupled tra-
jectories require asymptotics related by Mandelstam
variables and external masses.

These requirements of polynomials in external mo-
menta are distinct from the polynomials in internal tra-
jectory functions obtainable by identities among beta
functions. These polynomials can be replaced by "non-
invariant" amplitude superstructures. The structures

EI'"= eI' "P P.'e" ''P 'P 'A" (6)

EI"'= el'""P' P ' (8)

had the normal vertex at the (34) end, i.e., in its cou-
pling to particles 3 and 4,

E""=e"""P3'P4'

had the normal vertex at the (12) end, and

Ei""=ei"""P 'P '

(9)

gave parity doubling. The remaining amplitudes in-
volved more factors of P. All three of these operators,

have been studied by Kosterlitzt and by Canning. "(In
the interest of keeping extraneous superscripts to a mini-
mum we adopt the following convention: a missing
superscript in an ~&"& shown by a dot indicates a con-
traction of that index with the 6rst available I.orentz
index of a four-momentum in the expression, which is
also shown by a dot.) The Latin subscripts i, j, ft, and
/ in Eq. (6) are intended to be labels only and are not
summed over. In the direct (s) channel, A 1284 contributes
only to leading, abnormally coupled particles and lower
parity-doubled particles. Thus, the form

Einitial 8 (1 )1 P1 P2

can be thought of as a superstructure coupling 1 0
to (1 )12 abnormally. In the crossed (24) channel, how-
ever (or equivalently A14» in the s channel), it gives
leading parity doublets starting at spin 2 which'must be
depressed.

The reaction 1~ 02 —+1'+04 allows both nor-
malities of trajectories, each coupling normally at one
end and abnormally at the other. Analyzing this reac-
tion, Canning" found that the operator

FIG. 2. Trajectory a(13) in
the 6-~ reaction.

6
a(lS)

E—~ "P P P &"P'P P6 (13)

showing that the superstructure is good also for the
n(23) and t2(56) trajectories. Dorren et 48l.8 and Gabarro
and Mestres' have, in fact, proposed this superstructure
with appropriate substructure for the 6-x amplitude.
We here derive its complete properties using our method
of tensoria1 analysis.

For the trajectory n(12), we obtain from Eq. (13)
E n,t ala= (1 )12&, which, from our comments about sub-
structure in the Introduction, shows tha, t n(12) is of
positive normality starting at J= 1. Equivalent resu1ts
hold for 48(23), n(45), and n(56).

For the trajectory n(34), we have

E;.xtiai""=4[—(1 )84"(1 )84"—(1 )84"P82"

+P82"(1 )84"+P82"P82"j„(14)
Eg p"=e & PyP2 e" P5P6 .

In E;„;„,1, the 6rst of the terms contains a (2+)84a" in
its reduction because e~&"e ""in Eg;,q contains a sym-

separately, have mixed parity in the I channel. The
fact that Eq. (8) is normal at the (34) end is inunediate
from observing that Ei;,1" is a vector (index 8) not in-
volving momenta P3 or P4. Conversely, we have the
form

E"=4'""(1 )1'Pl'P2' i

WhiCh COupleS abnOrmally (pttr2 ~ 48»), SinCe E~»ttai" iS

a pseudovector. If we had only the superstructures (8)
and (9), which have definite normality in the s channel,
we would obviously predict restricted ratios among
couplings since we have eliminated some - allowed
operators.

In the 6-m amplitude it is possible to have the m-A~

or co-A ~ in 3-x channels. In the reduced graph of Fig. 2,
for instance, we can be sure that the n(13) trajectory is
the co-A2 by comparison with (8) when the t2(12) is at
the p pole by setting up

Einitial & (1 )12 P12 P8 ~

The "polarization vector" of the p, (1 ) 12", is made up of
P~' and P~" and is perpendicular to P~2", i.e., for P»'
=P22=ns 2, it is Pj"—P2". Corresponding results hold
for Ei;„1"at the (45) trajectory p pole. Our method of
tensor analysis gives us directly that E;„;&,,&" is precisely
a rank-one pseudotensor (1+)". Hence the trajectory
must start at 1 since there are an odd number of pions,
and it always has normal parity. More symmetrically,
we have the identical form
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l

a&we) FIG. 3. Trajectory 0.4'24) in
the 6-w reaction.

metric part in p, &-+i. Hence n(34) is of positive nor-
mahty starting at 7~= 2+, and similarly for n{61).

By construction n(13) is the ro-A2 tra]ectory, abnor-
mally coupled to three pions.

For the n(24) trajectory we consider the graph of Fig.
3. Equation (13) can be written as

E=e~ P, (1 ),3P,3e~ P4 (1 )ee PM . (15)

This corresponds to the operator with 3~432 in pn. ~ px
subscattering Lsee Eq. (6)j. Using helicity techniques,
Canning" has shown this to be parity doubled. From our
techniques, this can be seen if we write

Here we have written

P23"=P24"8(1 )24",

P4"=Pe4"8{1 )e4",
(17)

meaning thatat , the (23)-4-(234) vertex, P2e (or P4) is
effectively a linear combination of P24 and (1 )2e. It
transforms as a sca,lar and a (1 ) which is an object
perpendicular to I'~4 and, in the F24 rest frame, trans-
forms as a vector under O(3). The general expression
for the linear combination at a vertex a b c(see F-ig-. 4)

Now, in E;„;~;,i of Eq. (16), from the part like
Pel (1 )28~(1 )24, we find a symmetric part in E&;„,i in
p. ~ v', which IQust. Correspond to 8. 2 tensor as above.
From (1 )2e"(1 )24"(1 )e4', however, we obtain from the
antlsymmetry lil p ~ p iii Ei;~g,i, a (1+)""pseudotensol~
which, when combined with a symmetric part in Eg;„,~
in p, +-+ v, v&-+ v, gives a 2 pseudotensor. This shows
that n(24) is parity doubled and. begins at J= 2+, 2-.
Ke have checked in the m+x x+m x+x amplitude,
symmetrizing it suitably, and have found. that there are
no terms canceling this doubling. Equivalent results
hold for the n(35) trajectory, and both n(24) and n(35)
must be depressed at least three units not to have lead-
ing parity doubling. Although this same form (13) of
superstructure has been proposed by Dorren et al'. ,

' they
are in disagreement with this analysis and the helicity
analysis of Canning, " and. they claim that these tra-
jectories are solely co-A2. Nevertheless, they too recom-
mend lowering them by three units.

With these brief descriptions of procedures for analyz-
ing superstructures, we can now propose requirements
that the structures for the E-m amplitudes should have.
An optiIQal supcrstructuI'c would have thc property
that, when evaluated for all tree graphs included in its
dual substructure, it corresponds to partides of spi.n
equal to the starting point of each internal trajectory in
that graph and three-point couplings of prescribed nor-
mality. As we have seen in the xp —+ xp, mo ~ xA ~, and
6-m analyses, it usually turns out that these properties
are obtainable only on a limited subset of graphs. Hence
we must make do with superstructures with more
restricted properties. We might try requiring that all
graphs having a common trajectory (or set of nondual
trajectories) have all leading non-parity-doubled be-
havior. Crossed (dual) channels which are doubled. can
then be depressed. We would then require that, in our
sum of such terms, for each graph there is at least one
term with all correct leading trajectories.

We note that, in vrM —+ mA~ for instance, "use of the
simplest superstructures satisfying these criteria does
not allow all couplings to be independent, and we expect,
therefore, that we will have restrictions in the X-point
case too. We dder this point to a later paper.

We propose that the simplest superstructures with
prescribed normality should include the following.

(a) A vertex of 2n vr to t-he p ftrajecto-ry, e&1.This
is a normal vertex, and we use E= 1 or a linear com-
bination of the P; (for e=1, such as Pi —Pe). The E=1
superstructure allows a scalar 0 to couple. Since
this would be a ghost, it must be eliminated by the
substructure.

(b) A vertex of 2n vr to the 8-trajectory, n) 2 This is.

an abnormal vertex. Since the 8 is usually considered to
lie on a trajectory in a daughterlike relation to the pf-
trajectory and is, in any event, low lying, we do not
couple this trajectory as a leading one.

(c) A vertex of (2n+1)-s- to the s -A i, n) 1. This is
a normal vertex and again we use K= 1. Since this tra-
jectory does start at J=O, the ghost-eliminating and
B~ substructure is simpler for this than in (a).

(d) A vertex of (2N+1)-s. to the e~-A2, n& 1. This is
abnormal. We propose the forms

T»s is patently a pseudovector, orthogonal to I'~, 2~+~&,

the momentum of the ~, and hence corresponds to a
trajectory beginning at J"=1 . The change from ap-
parent starting value of the trajectory of J~= 1+ to
J~= 1 is due to the odd number of pions forming the

I 10. 4. A vector from turbo scalars
in a tree subgraph.
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c R pP~Pp (21)

In any real 2X-x amplitude there are always an even
nunlbcI' of RbDormRl vcl tices. Thus there may- arlsc
questions as to which pairs of vector indices to contract.
%e propose to take up. this question in a later paper.

GI. KINEMATlC SUPERSTRUCTURE FOR
8-m AMPLITUDE

The simplest type of superstructure is of course vrhere
there are no abnormally coupling trajectories. Here the
only problem is that of constructing n factors to sys-
tematically chminate all spin-0 ghosts on thep trajectory
without eliminating too many x poles. For this the kine-
matic superstructure is the identity.

The next simplest type of process is one which re-
duces to the four-point ~x-oi~ in the eight-point ampli-
tude with four abnormal couplings. For the tree graph
of Fig. 5, the kinematic superstructure is of the type

&""'Pi'Ps'Ps s"""Ps'Pis'&""Ps'Pss'ss" 'Ps'P&'Ps' ~ (22)

This can easily be seen to be correct for tlM Q(13) tra-
jectory by observing that the form of X;„;~,,p has ex-
actly the form already discussed of Kq. (12), so that the
n(13) trajectory starts at 1 . For the n(14) trajectory
we see that L;„;~,,1" is precisely a rank-1 tensor, which
determines that the trajectory n(14) will start at J~= 1
and vill always have normal parity.

Another type of abnormal coupling vrould be that
illustrated. in Fig. 6, for which we would select from the
general form given in Kq. (20):

Py P4 P14 &~ P5 P8 P68 ~

or possibly
O' "'P].'P2 P8'P4'~' "'Ps'P6'Pv'P8'.

FIG. 5, vox ~ co7i. in
the 8-7r reaction.

trajectory. In general, the vertex

&""'Px'P2, 2~'P2n+x'

can be shown to have defined parity trajectories on all
trajectories involving only a subset of the labels 1, ...,
2N+1; however, since it predicts trajectories starting
at J=O for the two-body channels (23), (34),
(2ss —1, 2ss) and precludes pions on some three-body
trajectories which should have them, wc have the option
of including forms other than (20) which have de6ned,
parity on fewer graphs, but start various of the two-
body tlajcctorlcs Rt J.= 1~ Rnd thc pion tI'RjcctoI'lcs Rt
J=0.

(e) A sa&p coupling. This is abnormal, the c0 and p
coming from a type (d) and type (a) (Ps—Ps variety)
structure.

FIG. 6. The 4—x -+8 trajectory
in the 871- reaction.

In Kq (23)y Ei~isia i is precisely a rank 1 pseudo
tensor, and. in Kq. (24), E;;s;,i is precisely a pseudo-
scalar, so that on the n(14) trajectory only abnormal
parity particles will be found. However, wc do not in-
vestigate these forms any further, since the n(14) tra-
jectory of Fig. 6 would correspond to the 8 trajectory,
which is in a daughterlike relation to the p trajectory,
and which therefore vie do not need to put in separately.

The only nontrivial problem is the single, abnormally
coupling trajectory of the type illustrated. in Fig. 7(a).
This tI'ajcctoly ls meant to couple abnormally to ploDS
I, 2, and 3 at one "end" and to couple abnormally to
pions 4, 5, 6, 7, and 8 at the other "end."Of the general
solution to this problem given in Kq. (20), we choose the
following forms for investigation:

E(1,2,3; 4,57,8) = s&"'Ps'Ps'Ps s&"'Ps'Pss'Ps', (25)

E(1,2,3; 46,7,8)= ss".Ps Ps.Ps ss "P«P& Ps, (26)

E(1,2,3; 4,5,68) = ss" Pi Ps Ps ss "Ps Ps.Pss . (27)

In fact, only the form of Kq. {25) determines that the
two abnormal couplings should be on adjacent vertices
(123)(45678) in all tree graphs including the n(13) tra-
jcctoI'y. Thc other t%'o forms Rchicvc this fol only
certain of the tree graphs including the n(13) trajectory.
They are, however, necessary to permit pions on the
trajectories n(46) and n(68) in the superstructures of
Kqs. (26) and (27), respectively. This is why the cou-
pling of five pions to make an ~ is not a trivial problem
like the coupling of three pions to make an cv.

%'e now examine the kinematic superstructure of Kq.
(25) by referring to various general types of tree graphs
chosen to elucidate the normalities of the individual
trajectories present. Our task is to perform the analysis
implicit in Kq. (5), i.e., to ascertain the maximum rank
of ' tc11soI' ln thc ' pI'oduct Xj~'jt i@1 Efj~gl Rnd to 6nd
whether it is a tensor or a pseudotensor or both. For
this purpose we shall use the tensorial methods already
developed in Sec. II.

a(56)—see Fig. 7{b). Here we may rearrange and
factorize E to give simply E;„;t,„l=1. Clearly E;;t;,1
corresponds to a scalar 0+. This determines that the
trajectory n(56) has normal parity starting at 5~=0+.

n(57)—see Fig. 7(c).Here again we may arrange E to
give simply E;„;t,„1=1,corresponding to a scalar 0+.
Since there Rrc RD odd DuIDbcI' of plons, this determines
that the trajectory n(57) has abnormal parity starting
at J&=0-.

a{12)—see Fig. 7(d). Here we may rearrange E,
using Kq. (18), to give

Einisisi = (1 )ss
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(a)
I

(8(13) —see Fig. 7(a). We see directly from the form of
E that

+initial & P1 P2 P3 (31)

{b)
5

a{56)

aQ4) f

Clearly this corresponds to a rank-1 pseudotensor,
since it has exactly the form of Eq. (12). Since there are
an odd number of pions, this determines that the tra-
jectory (8(13) has only normal parity starting at Jl'= 1 .

(2(58)—see Fig. 7(g). Using Eqs. (17) and (18), we

may rearrange E to give

7

(c)

0(67) /

(d)
I

0(12) f

(e)
4 .(46) (-

2

+(n(t(al (1 )58 8P14 ~ (32)

E(n(t(a(a"= [(1-)84"+P52"][(1-)84 —P52 ],
+final 4 & P1 P2 & P58 P8 ~ (33)

By comparison with the form of Kq. (14), we see that
there will be some contribution to E;„;~,,l like a rank-
2 tensor. This determines that the trajectory n(34) has
only normal parity starting at J~= 2+.

(8(24) see F—ig. 7(i). Using Eqs. (17) and (18), we
may rearrange E to give

E(n(t(al [(1 )24 8P51 ](1 )28 [(1 )24 SP51 j )

+fjnal~v T—
& ep v p1 g~T P8 P57 ~

This corresponds to a rank-1 tensor and scalar, de-
termining that the trajectory n(58) has only normal
parity starting at J~=1 .

(2(34) se—e Fig. 7(h). Here we may rearrange E, using
Eq. (18), to give

&f) .(06)

FIG. 7. Various trajectories used in the analysis of 8~ reaction.

+(n(t(al (1 )45 +P68 (29)

Ejnjgjg, l clearly represents a rank-1 tensor and a scalar.
This determines that trajectory (2(45) has normal parity
starting at J~= 1—.

o((46) see Fig. —7(f). Using Kqs. (17) and. (18), we

may rearrange E to give

Z(n(t(a)a= (1 )4safE) P28". (30)

E;„j&,,l is thus precisely a rank-1 tensor, and this
determines that the trajectory n(12) has normal parity
starti. ng at J~=1 .

n(45)—see Fig. 7(e). Here we may rearrange E, using
Kq. (18), to give

By comparison with the form of Eq. (16), we see that
there will be some contribution to E;„;~,,i like a rank-
2 tensor and pseudotensor. This determines that the
trajectory (2(24) is parity doubled starting at J"=2+,
2.

(8(35)—see Fig. 7(j). Using Eqs. (17) and (18), we
may rearrange E to give

K (tia)a"n'= [(1 )45"8(1 )85"SP52"j
X[(1 )84"SP62"SPss"j[(1 )85"SP52"g, (35)

PVT —qO'PV'P 'gO'T' P 'P

As above, comparison with Kq. (16) tells us that there
will be some contribution to E;„j~j,l from rank-2
tensors and pseudotensors. Accordingly, the trajectory
(2(35) is parity doubled and starts at J~= 2+, 2 .

(2(61)—see Fig. 7(k). Using Eqs. (17) and (18), we

may rearrange E to give

Kn(t(a)""'= [(1 )sl"SP25 "SP28"g
X[(1 )ss"8(1 )sl SP25 j

X[(1 )51'8P25'j, (36)
Ef' l —6 P4 6~ P2 P3

As above, Ej;~,,1 represents a rank-one tensor and a
scalar. Since there are an odd number of pions, this de- As above, comparison with Eq. (16) determines that
termines that the trajectory (2(46) has abnormal parity the trajectory n(61) is parity doubled starting at
and starts"at&J~= 1+. J~=2+, 2 .
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TABLE I. Properties of two superstructures for 8-x reaction. Integers to be used in the B& of the substructure for
various n factors used with these superstructures. NL signifies nonleading behavior in that channel.

Channel

-(»)
n(23)
n(34)
n(45)
n(56)

(67)
n(78)
-(»)

(13)
n(24)
n(35)

(46)
n(57)

{68)
n(71)
n(82)
n(14)

(25)
(36)

n(47)

Behavior of
superstructure
K(1,2,3; 4,57,8)

1
1
2+

1
Q+

Q+

1
2+

1
2+ 2
2+, 2
1+

0
1+
2+, 2
2+ 2
1
2+, 2
2+, 2
1

n{67)

1
2
1
1-NL
1-NL
1
2
1
3-NL
3-NL
1
0

3-NL
3-NL
1
3-NL
3-NL
1

1

1
2
2
0
1
1
2
1
3-NL
4-NL
1
0
2
3-NL
3-NL
1
4-NL
3-NL
1

1
1
2
1
1
0
2
2
1
3-NL
3-NL
2
0
1
4-NL
3-NL
1
3-NL
4-NL
1

Integers used in BN
for n factors of

n(56)

Behavior of
superstructure

K(1,2,3; 46,7,8)

1
1
2+
Q+

0+
1
1
2+

1
2+ 2
2
0
1+
1+, 1
2+ 2
2+ 2
1+ 1
2+ 2
2+ 2
1

(56)

1
1
2
1
0
2
1
2
1
3-NL
3
0
1
3-NL
3-NL
3-NL
2-NL
4-NL
3-NL
1

1
1
2
1-NL
1-NL
1
1
2
1
3-NL
2
0
1
2-NL
3-NL
3-NL
2-NL
3-NL
3-NL
1

1
1
3
0
1
1
1
2
1
4-NL
2
0
2
2-NL
3-NL
3-NL
3-NL
3-NL
3-NL
1

Integers used in BN
for n factors of

(45)

The results of the above analysis are recorded in
column 2 of Table I in the form of the J~ of the lowest-
spin particle allowed on each trajectory. Here we have
made the compilation for all trajectories, the others
being strictly analogous with the ones we have analyzed
above. In column 6 we have tabulated the similar re-
sults obtained by an analysis of the superstructure of
Eq. (26), which proceeds along similar lines.

eluded. In order to allow reduced graphs with n(13) and
n(46) to have a s-(46), we consider superstructure 2.
The m;; for a set of various n factors, suKcient for the
requirements listed in Sec. II, are presented in columns
7—9. An exactly analogous result holds to allow the
s-(68). We note that, with these additional super-
structures, not all trajectories compatible with n(13)
are of single normality.

IV. ANALYSIS OF EIGHT-POINT
AMPLITUDE a-FACTORS

In columns 2 and 6 of Table I we have tabulated the
behavior of the kinematic superstructures ~&"'p1'p'2'p'

p4 p5Z p8 and &~ p1 p2 p3 & p46 pZ p8 fe
spectively. With the 6rst of these we note that trajec-
tories n(56) and n(67) which are p fmay start a-t 1=0.
We have the option of starting them at J= 1 and making
them nonleading trajectories or starting them at J=o
and putting in ghost-eliminating factors. A factor n(ij)
has the property that it eliminates a pole at o(ij)=0
from the B& function and that it raises by one the
highest angular momentum present in all channels dual
to n(ij).However, it does not change the normality of
the highest angular momentum present and hence does
not parity-double leading single-normality trajectories.

In columns 3—5 of Table I we list the small integers
m;; for the various choices of u factors, sufhcient to
eliminate all ghosts. We indicate by NL those trajec-
tories which are nonleading.

All of the trajectories nondual to n(13) are of single
normality and start at their appropriate values of J
except u(46) and a(68), both of which have the ~ pre-

V. CONCLUSIONS

In the S-point amplitude it is necessary physically
to be able to specify the normalities of particles on
all internal leading trajectories. We have described a
method of constructing amplitudes from a sum of terms
each with a kinematic superstructure and dual sub-
structure. By means of the superstructure, we prescribe
the normalities of a complete set of compatible leading
trajectories. By means of the substructure, we arrange
to make appropriate trajectories leading, to suppress
parity doublets, and to eliminate ghosts.

We have suggested a procedure for the construction
of these kinematic superstructures appropriate to
securing the normalities of the internal trajectories.
The techniques for a more systematic analysis of the
E-point problem will be presented in a later paper. Here
we have discussed the superstructures appropriate for
four-point and six-point amplitudes in which we use
our method of tensorial analysis to rederive the results
of previous analyses using helicity amplitudes.

Electively, this method of tensorial analysis involves
decomposing the momenta which appear in the super-
superstructure, and which are Lorentz rank-1 tensors,
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as 0(3) vectors I and scalars 0+ in a chosen rest frame.
Then we analyze products of these vectors involving
e pseudotensors in order to determine the highest repre-
sentation of 0(3) present and to determine its parity.
This method is CQective, much simpler, and more gen-
eral than the use of helicity amplitudes employed by
Dorren et ul. s We also avoid any need to work out
Gram determinants with this method.

The problem of incorporating the co-A2 trajectory as
an abnormally coupled trajectory to 3-m and. the remain-
ing 5-x in the 8-m amplitude was then analyzed in detail.
There we showed, using our tensorial technique, how
our proposed form for the X-point superstructures couM
be applied to achieve the desired result.

From these considerations, we are able to formulate
a minimality hypothesis. In ~x —+ mw "and ~x —+ mm,

'4

lt was posslblc to obtain thc desllcd leading bchavlor ln
all channels by writing electively only one term for each
of the reactions. The minimahty hypothesis then
daimed that these single terms gave the complete
amplitude. Sy contrast, for the four-point amplitudes
with two spinning particles, no such minimal hypothesis
can be formulated. However, for the S-point, all-spin-0
amplitude, we may take as an acceptable minimal hy-
pothesis that we should only include the minimum num-
ber of terms necessary to include all possible subgraphs
with minimum starting points on all trajectories, which

"C. Lovelace, Phys. Letters 288, 264 (1968).
'4 G. Veneziano, Nuovo Cimento 51A, 190 (1968).

have the necessary property of dehned normabties on
all leading trajectories.

Accordingly, by careful examination of Table I, we see
that the unit o, factors for both kinematic superstruc-
tures a,re superfluous. The minimality hypothesis leads
us to reject these forms, especially as they have a higher
number of nonleading trajectories. Then, in fact, we
obtain the correct minimal forms for xw —+ex when

n(46), n(57), or n(68)=0. In any case, the correct
minimal form for m-x —+xco is obtained when either
a(46) or a(68) =0, and a(13)= 1.At least in this examples
the hypothesis of minimality applied to 2n-x amplitude,
is consistent with minimality for a smaller 2n'&2N-x
amplitudes.

Since changing the set of B~ functions used in defin-

ing an amplitude changes drastically the degeneracy
structure of the amplitude, we feel that such a hypothe-
sis of minimality is critically necessary to a discussion of
the factorization and level. structure. %c do not, how-
ever, discuss this here, since we have not included
speci6cally all the forms of tree diagrams with two cv-A~

trajectories and no co-A& trajectories. Moreover, from
the discussion given by Canning, 1' we may expect some
conflict between minimality, duality, and factorization.
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We present a uniied approach to compact and noncompact wave equations based on the algebra of
0(6,C). The Bhabha and Nambu equations emerge as the simplest possibility for describing multiplets of
relativistic particles. Dynamical quantities such as mass, spin, and magnetic moment are evaluated in
terms of the spectra of relevant operators.

INTRODUCTION

MONG the most interesting phenomena of the
physics of strongly interacting particles is the

fact that hadrons and their resonances seem to fall into
morc or less wcII-dined gloups and famlllcs. Some of
these are described, on a phenomenological level, by
internal symmetry groups such as SU(2) and SU(3).
Other approaches yield families or trajectories of
particles with different spins. One wouId weIcome,
perhaps, a description of such supermultiplets in terms
of 6elds and wave equations. Attempts in this direction

are the Rnite-component wave equation of Bhabha' and
the in6nitc-component equation of Nambu. ' While
neither of these equations is perhaps very physical, it
seems, nontheless, to be rewarding to explore them as
models of an eventually more complete theory. After
all, the Dirac equation, which is physically quite
relevant, is indeed the Bhabha equation of lowest
order.

' H. Bhabha, Rev. Mod. Phys. 17, 200 (1945};21, 451 (1949).
See also A. Aurilia and H. Umezawa, Phys. Rev. 182, 1682
($969}.

~ Y. Nambu, Progr. Theoret. Phys. (Kyoto) Suppl. N'-38, 368
(1966).See also Y. Nambu, Phys. Rev. 150, 1171 (1967).


