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Local-Lagrangian Quantum Field Theory of Electric and Magnetic Charges*
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We present a local Lagrangian density, depending on a pair of four-potentials A and B, and charged Gelds
with electric and magnetic charges e and g . The resulting local Lagrangian Geld equations are equiva-

lent to Maxwell's and Dirac's equations. The Lagrangian depends on a Gxed four-vector, so manifest
isotropy is lost and is regained only for quantized values of (e„g —g„e). This condition results from the
requirement that the representation of the Poincare Lie algebra which results from Poincare invariance,
integrate to a representation of the Gnite Poincard group. The Gnite Lorentz transformation laws of A, B,
and ip„arepresented here for the Grst time. The familiar apparatus of Lagrangian Geld theory is applied to
yield directly the canonical commutation relations, the energy-momentum tensor, and Feynman's rules.

I. INTRODUCTION

"N this paper we present a quantum field theory of
~ - electrically and magnetically charged particles that
is constructed from a local Lagrangian density which
yields local Geld equations. The first quantum Geld

theory for these particles, elaborated by Dirac, ' was
nonlocal and involved the introduction of nonphysical
dynamical variables associated with strings. More
recent formulations, ' 4 following the original work of
Schwinger, ' avoid string variables. Instead, they are
based upon a Hamiltonian density which is a nonlocal
function of the Geld variables, and an independently
posited nonlocal commutation relation, which together
yield nonlocal Geld equations. ' In the present work the
familiar apparatus of Lagrangian field theory is applied
to yield directly the canonical commutation relations,
the energy-momentum tensor, Lorentz transformation
laws, and the formal expression for the S matrix given

by Feynman's rules.
The present treatment thus brings the theory of

magnetic monopoles close to standard quantum field

theory, but it retains peculiarities characteristic of the
theory of monopoles. The canonical quantization
procedure applied to the local Lagrangian density yields
nonlocal commutation relations between the potentials
because the momentum canonical to one potential is
the spatial derivative of another potential. This is the
natural way the "Dirac string" enters into the local
Lagrangian theory. Manifest isotropy of space-time
is lost because the Lagrangian density depends on a
fixed spacelike four-vector. Isotropy is regained only for
quantized values of the coupling constants (e„g —g„g ),
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give an alternative formulation in terms of path-dependent field
variables.
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where e„and g are electric and magnetic charges, as
an integrability condition of a Lie algebra.

The transformation law of the Geld variables under
Gnite change of Lorentz frame is found for the first
time. We leave for another occasion the calculation of
the transformation law of Green's functions and scatter-
ing amplitudes. In the meantime we only have the
nonrelativistic transformation law, which is not that of
a scalar, and a conjecture concerning the relativistic
transformation law. '

In Sec. II, two electromagnetic four-potentials A&

and BI' and a local Lagrangian density are introduced
which yield Maxwell's equations. In Sec. III an action
principle is introduced for classical relativistic point
electric and magnetic charges. (This section may be
omitted without interrupting the local development. )
In Sec. IV the Lagrangian density for electrically
and magnetically charged spinor fields is introduced and
the energy-momentum tensor is calculated. In Sec. V
a definite choice of gauge is made and the canonical
equal-time commutation relations are calculated. In
Sec. VI the law of transformation of Geld variables under
inGnitesimal change of Lorentz frame is found. The
condition that it integrate to a representation of the
Gnite Lorentz group yields the charge-quantization law,
(e„g—

g e )/kr=Z„, where Z„ is an integer. In Sec.
VII the Feynman rules are found. The equivalence of
the present treatment to previous Hamiltonian formal-
isms' ' has been demonstrated, but we omit the proof
which presents no new features.

II. INTRODUCTION OF POTENTIALS

We wish to find a Lagrangian form for Maxwell's
equations'

Q„PII=j g„Pp —j (2.1)

in the presence of conserved electric and magnetic
currents j, and jg, where

(2.2)8 j,=8.jg ——0.
' D. Zwanziger, Phys. Rev. 176, 1480 (1968).
'We use the notations g&'=diag(1, -1, —1, —1), and Ii"»

=—~2&&".&F"", where e&'"" is the completely antisymmetric symbol
with e'~=1.
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As usual, we will introduce potentials. For this purpose
observe that a particular solution of the second of
Maxwell's equations is' F"=(I 8) '(NA jg), where n
is an arbitrary fixed four-vector and (e 8) ' is an
integral operator with kernel (e 8) '(x—y) satisfying
e 8(n 8) '(x)=84(x). The general solution to the
second equation may be written

F&=(BnA)&+(I 8) i(Nn -j,), (2.3a)

F=(BnA) —(I 8) (ehjg)", (2.3b)

where A& is a four-potential which depends on the
choice of gauge, the choice of e, and the determination
of (I 8) '. Similarly, the general solution to the first
equation is

F= —(BnB)"+(n 8)—'(nn j,), (2.4a)

F"= (8 A 8)+ (I 8)-'(e nj,)", (2.4b)

where 81' is another four-potential. It will be convenient
to choose e spacelike so that these equations express
F(x) in terms of potentials at x and currents at points
spacelike to x.

We may express Ii locally in terms of the potentials
alone. Observe that any antisymmetric tensor G
satisfies the identity'

G= (1/I'){[nn (I G)7 (eh —(n G")7"}, (2.5)

since both left- and right-hand sides give the same
value for e G and e G~. From Eqs. (2.3b) and (2.4b),
we have

until we discuss canonical variables how to make them
unique by appropriate choice of gauge and boundary
conditions.

The equations of motion (2.8) follow from the
Lagrangian density

where
Z=Z~+Zr, (2 9)

2,7= —(1/2e')[n (BAA)7 (n (BAB)"7
+ (1/2e )[I (8 A 8)] Pe (8 A A) 7
—(1/2'~)[N (8 A A)7' —(1/2~~)[e (8 A 8)7' (2.10)

and
Zz=- j+ A —jg 8 (2.11)

-{~ [(Bn&)—(BAA)"7}' (2 13)
4e'

if the sources j, and j, are assumed given. The
Lagrangian density may be written in a slightly
different form which will be convenient later. From
identity (2.5) we have the further identity

«(G G)=G G""=(2/~')[—(~ G)'+(~ G")'7 (2»)
Letting G=BA A and G=Bn 8, we find from (2.10)

Z~=xi tr[(Bn A) (Bn A)]+-', tr[(Bn 8) (Bn 8)7

1
{ii [(BAA)+(8 n, 8)"7}'

4m~

I F=e (BnA), I F"=I (BAB),

which yields the desired expression for Ii:
(2 6) III. ACTION PRINCIPLE FOR CLASSICAL

RELATIVISTIC ELECTRIC AND
MAGNETIC CHARGES

F= (1/e')({nn [I (Bn, A)7}
—{rin [e (Bn B)7}"), (2.'la)

Fe= (1/n')({nn [n (BnA)7}e
+{IA [e (8 n 8)7}). (2.7b)

We substitute these equations into Eq. (2.1) to obtain
Maxwell's equations in terms of the potentials:

(1/s2)(e Be BA" SB8"I A ——e"g 8 8 A

+n&8'n A eBe~,„ie"8—"8")=g,», (2.8a)

(1/e)(ts Bn 88'' NB Bi'I. B—ni'n—8 88
+ri~B'~ 8+I Be~„,&e"8"A")=j,~. (2.8b)

We have shown that corresponding to any solution F
to Maxwell's equations there exist potentials A and 8
related to F by (2.7) and satisfying (2.8). Conversely,
every pair of potentials satisfying (2.8) defines a unique
solution F to Maxwell's equations given by (2.7).
Of course A and 8 are highly non-unique, and we defer

8 It is convenient to suppress indices and write (u G)"=—u„G»
= —G»u„=——(G u)", and also (u Ab)»—=ul'b" —u"bl' for four-
vectors u and b and antisymmetric tensors G&". Thus, for example,
G"~=—G; u (b & c) =u bc—u cb; and u (b a c)~ is the four-vector
u„e&"gb"c

j,&( )=xg e; 5'(x x;)I;I'dr;, —(3.1a)

j,&( )=xp g; 54(x x;)I;~dr;, —(3.1b)

9%ithin a somewhat different framework, I'. Rohrlich, Phys.
Rev. 150, 1104 (1966), has in fact claimed that a Lagrangian
does not exist for classical relativistic electric and magnetic
charges.

'o K. H. Kerner, , J. Math. Phys. 11, 39 (1970), has recently
constructed a manifestly Galilean-invariant Lagrangian for
classical nonrelativistic electrically and magnetically charged
particles interacting instantaneously.

The equations of motion of the quantum 6eld theory
will be formulated in terms of the potentials. Because
they do not have a simple transformation law the
problem of Lorentz invariance becomes acute and its
correct resolution leads to charge quantization.
Therefore, we prefer to gain insight by applying the
Lagrangian formulation to classical relativistic point
particles' "where the equations of motion are manifestly
covariant and the introduction of potentials is a luxury.

Maxwell's equations (2.1) are completed by specifica-
tion of the currents
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where the particle trajectories are speci6ed by xp
=x;I'(r~), u;"=x,l'= dx;I'/dr;, and r; parametrizes
distance along the trajectory of the ith particle. The
trajectories are determined by the Lorentz force

S,= Z, (x)d4x,

Sr = Zr(x)d'x= — (j. A+j B)d4x

(3.9)

=Pe;F(x;)+g,F"(x;)] u;.
dr; (u;2)'I'

(3.2)

When expressions (2.3b) and (2.4b) are used for F
and F", the Lorentz force becomes

=(e~[gn A(x,)]+g,L8n B(x,)]) u;
dr, (u,')'"

—P (e;g, —g,e,) u. (I 8) '

X(x' x,)(u—;nu, )"dr;, (3.3)

and we see that the Lorentz force is made up of a term
which is the expected local interaction with the
potential plus an interparticle action at a distance
depending on the kernel (n 8) '(x,—x,).

We restrict the determination of (e 8) '(x) to the
form

[e;A(x;)+g;B(x;)] u,dr;, (3.10)

(u —8)((nn [n (8nB)])'
ns

and Z~ is given by Eq. (2.10).
Before going on to the quantum-Geld-theory case,

let us observe two peculiarities of the Lagrangian
method presented here. First, as we have mentioned,
the Lagrangian equations are defective for exceptional
points of exceptional trajectories. Secondly, we derived
our action principle by using Eqs. (2.3b) and (2.4b)
for F and F~ with (u 8) '(x) given by (3.4), but the
Lagrangian equations of motion only imply Eqs.
(2.3b) and (2.4b) multiplied by (e 8) To .see this,
take the dual of the antisymmetric product of (2.8b)
with n:

(n 8) '(x) =a 5'(x —Ns)ds
Using (2.5) with 6=8 n A, we obtain

—(1—u) 64(x+us) ds, (3.4) 1
u 8 ((e*—t'm (8 n A)]) (n n —[e (8 n B)])e)

ns

so the support of (u 8) '(x,—x;) is reduced to
and similarly

xp(r;) x,~(r;) =u~s—; —~ &s,r;,r, & ~ . (3.5)

=I 8(8n A) —(mnj, )",

In general, this condition will not be satis6ed anywhere
along a trajectory unless it is exceptional because
there are four equations but only three free parameters.
Hence, in the general case the last term of Eq. (3.3)
may be dropped, and we obtain"

=(e;(8n A(x,)]+g,L8n B(x;)]) u;. (3.6)
dr; (u;2)'I'

This equation of motion for the particle trajectories
and the equations of motion of the potentials (2.8)
result from requiring that the action

1
u 8—({un [e (8 n B)])+(In I I (8 n A) ])")

n'
=I 8(8n, B)+(enj,)e.

The left-hand sides are (n 8) times the expression for
the 6elds in terms of the solutions A and 8 of the
Lagrangian equations of motion. Hence, to ensure that
the Lagrangian equations of motion for the particles
agree with the Lorentz force, we must impose as
boundary conditions on the solutions that they satisfy
Eqs. (2.3) and (2.4) with (e 8) given by (3.4). Observe
that by equating Eqs. (2.3b) and (2.4a), it follows
that admissible solutions A and 8 satisfy

S=S,+S,+Sr
8 n A+ (8 n B)e= (u. 8)—'p(e nj,)+ (n n.j,)'] . (3.11)

3.7

S,= —P m, (u')'"dr;, (3 8)

"At exceptional points of exceptional trajectories where con-
dition (3.5) holds, the right-hand side of Eq. {3.6) iri fact becomes
singular and it should be solved by continuity.

be an extremum with respect to variation of xp(r;)
and A (x) and B(x), where Conversely, one may show that this equation implies

both the Lagrangian equations (2.8) and also the
boundary conditions (2.3) and (2.4), when F is defined
by (2.7). Thus, it has all the desired properties of an
equation of motion for the potentials.

We will see later how each of the peculiarities of the
Lagrangian theory recurs in the quantum field theory.
The boundary conditions will be imposed as boundary
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B„T""=0)

with

conditions on equal-time commutators between the Since a" is arbitrary, we obtain
potentials, while incorporation of the exceptional

configurations restricts the charges to quantized values. (4 9)

IV. SPINOR FIELDS AND ENERGY-
MOMENTUM TENSOR

BZ
2'«v P 8a@ g«vg

88«atiaa

(4.10)

ga«=Q en/«V«al'm a
J««=Z'gA'«'Y'V~. (4 1)

By correspondence with the classical action (3.7), we
obtain the action function for the spinor 6elds:

Let f be a set of Dirac fields each with electric and
magnetic charges e„andg„,so the currents are~ " the conserved nonsymmetric energy-momentum tensor.

Lorentz transformations present new features. For
any Lorentz transformation A, the Lagrangian (4.6)
satisfies the identity

Z(Ax) = ZLy. (Ax), A„"8„y.(Ax), zz],

Z(Ax) =ZfD. '(A)at (Ax),
8„D.'(A)y. (Ax), A 'n], (4.11)

S= Z(x)dzx, 2 =Z~+ZM+Zr,

with Z~ given by Eqs. (2.10) or (2.13) and

Zir ——Q f„(zy8 nz)f—

(4 2) where D (A) is given by A for at =A or B and by S(A)
for ata =f„,with S(A) the usual transformation matrix
for a Dirac spinor. Let the Lorentz transformation A
be infinitesimal, 4„"=g„"+0„",where 0„„is an infinites-

(4 3) imal antisymmetric matrix, so

Z(Ax) =Z(x+Qx) = Z(x) —x.Q 8Z(x) = Z(x)+8@(x) .

where the antisymmetric matrices Z &" are defined by

The corresponding changes in @ are

The Lagrangian equations of motion for the potentials
8y 1Q ~ «,y (x Q 8)y iQ g y (412)

are (2;8), with the currents given by Eq. (4.1). For the
Dirac fields, we have

Ly (i8 e„A——g„B)—nz„]f=0. (4.5)

Because of the appearance of the fixed four-vector e
in „, the crucial question is Lorentz-transformation
properties, which we proceed to elucidate. Let P be
the set of fields A, B, P„,so the Lagrangian depends
locally on these fields and on the fixed four-vector e,

—,'Q«„Z«"A„=Q„~Ay, (and A a B)

zQ«.&"0 =zV Q V0 .

In terms of infinitesimals, (4.11) becomes

—x Q 82= 8, Q —— (zQ«, nz~«"$ )
~ 88.$

(4.13)

(4.14)

Z(x) =Z(y. (x), 8.y. (x), n)

and all the equations of motion take the form

(4.6)

Defining M'&" by

8
yn Q —Z. (4.15)

Bs

-=0 (4.7)
8

M"«"=g — nz «"y (x«g"" gx—)Z«, , (4—.16)
~ 88„ata

CorresPonding to a change in the fields 8P, the or by Fqs (410) and (4. 12)
Lagrangian changes by

BZ
a«=a„r, aa )~~yQa

(4 8)
M"«" =x«T"" x"T"«+P 2—«"y (4.17)

a

as one verifies using the equations of motion. For a",
an infinitesimal displacement, we have in the standard
way bZ=a 82 b@=a 8$, so

( 8Zs.a«=a„r.
~

s aa.) .
I 88„y.

~ We use the convention yI'p"+y'y&=2g&" f =iP~y0.

we have from Eq. (4.15), since Q is arbitrary,

8.M"""=(n«8 " n"8 «)Z—(4.18)

All of this is standard except for the nonvanishing
divergence of M"&"which represents the nonconservation
of (four-dimensional) angular momentum due to the
presence of the fixed vector e in Z. Let us evaluate the
violating term en 8„Z.The four-vector e only appears
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which is almost completely symmetric. It is differen-
tially conserved,

in 2~, so we have from Eq. (2.13)

(4.21)8„8&"=0)
eAB 2

1
nn{n [8nA+(8nIl)"7 [8n A+(8n8)"]} and its spatial integral

2s2

1
+ nn{n [8nB—(8nA)"7 [8n J3—(8nA)"7}.

2Q2

8'"d'x = T'"d'x (4.22)

Making use of Eq. (3.11), we easily obtain

nn8„2= nn {n —[(n 8) 'j, n (n 8) 'j~]d} . (4.19)

Let us see under what conditions it vanishes. First of
all, we note that it depends on the coupling constants
e„andg„only through the combination

pmvv= (emgvv gmevv) ~

Hence it vanishes if all electric and magnetic charges
are proportional, i.e., g„=ce (all n) and in particular
if g„=0(all n) This. result is nontrivial for it shows
that angular momentum may be conserved even
though the Lagrangian itself is not rotationally sym-
metric, and this includes the case of ordinary electro-
dynamics. Secondly, we observe that because of the
support properties of (n 8) '(x), expression (4.19)
vanishes for classical currents everywhere except for
the exceptional points of exceptional trajectories where,
as we have seen, the Lagrangian equations of motion
are not correct. To see this we note that (4.19) vanishes
unless both x= x(r,)+ nsx and x= x, (r;)+ns2 or x;(r;)

x,(r,)=n—(s2—s~), which is the condition for the
exceptional configurations. Hence we may say that in
the classical case 3II"&"is a conserved angular momentum
current. We defer until after quantization the discussion
of spinor currents with e g —g e /0.

Inserting Eq. (4.17) into Eq. (4.18) and using (4.9)
and (4.19), we obtain

8
2'»v Tv»+8 p g»vy

~ 88„$
= —(nn {n [(n 8)-'j, n(n 8)-'j ]"})»"

Because of the nonvanishing right-hand side, we
cannot completely symmetrize T&", but proceeding as
usual, we de6ne

8""=T""+'8 Q Z ""P—
88,qh

is the conserved energy-momentum vector. In evaluat-
ing (4.20) explicitly, considerable simplification results
if one uses Eqs. (2.3), (2.4), (3.11), and the identity

( H. G+G—" 8")»"=—~g»" tr(G 8), (4.23)

where G and H are antisymmetric tensors. One obtains

8»v —1(P.P+Pd. Pd)»v

+kZ0 L'Y»(i8 —e 'A —
g '&)"

+7"(i 8 e„A g—„B—)»]p
—n"{n [(n 8) 'j,n(n 8) 'j,]'}" (4.24)

where 8 is half the derivative to the right less the
derivative to the left. The first part is just what we
expect for charged Dirac particles interacting with the
electromagnetic field. The last term is spurious because,
as we have seen, in the classical case it is nonvanishing
only for exceptional points of exceptional trajectories,
where the Lagrangian method itself is not correct. In
any case, it does not contribute to the integrals E")
Eq. (4.22), if the time axis is chosen perpendicular to
e&. In such a frame, it does not contribute either to

M»"= (x»8'" x"8'»)d'x. — (4.25)

For the time derivative of 3f&", we find

~Ps gyv gvP dsx
dt

V. CANONICAL QUANTIZATION

eA n e 8 —'j.A m 8 —'j, " ~"d'x.

(4.26)

Choosing the three-axis along N&, we see that M", N",
and M" are violated by the spurious term, and that the
other seven generators of the Poincarb group are
manifestly conserved.

or
8»v L(2'»v+2'v»)

vvg g Ã»4

88»f 88„$

~ ""@+
(88»f 88„Q

—(nnn {n [(n 8) 'j.n(n . 8) 'j ]"})"" (4.20)

In the usual formulation of quantum electrodynamics,
2 satisfies a second-order differential equation and 8
does not appear. Here we have doubled the number of
variables, so they should satisfy a 6rst-order equation.
If we examine the Lagrangian equations of motion
(2.8) we observe that except for the terms 8'n A and
82m B, the second-order differential operator which
appears there factorizes into e 8 and another 6rst-order
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differential operator. If the factorization were perfect,
we would have, in effect, a first-order system. The
unwanted terms could be eliminated by imposing the
axial gauge conditions, '3

n A=n a=o. (5.1)

All equations up to now have been invariant under
the substitutions

A„+A„—+B„X„
&» ~&»+8»X»

f -+ exp[ ie X,—ig„X,—]P„,

(5.2a)

(5.2b)

(5.2c)

8'e A+8'rl 8=0 (5.4)

are satisfied as equations of motion to replace the
constraints n.A =n 8=0. This is enough to eliminate
the unwanted terms from Eqs. (2.8). In fact, if we put

where X, and X, are a pair of arbitrary functions of
spacetime, and a choice of gauge such as (5.1) is in
fact necessary to make A and 8 well dehned. The
constraint (5.1) on the equation of motion (2.8) leads
to another constraint. Contract Eqs. (2.8) with a
timelike vector r orthogonal to n:

(1/e')e B[e Br A r(Ba—B)" e] rj,=0, —(5.3a)

(1/g')e 8[n Br 8+r (BAA)" I] rj =0—. (5.3b)

These equations constitute another pair of constraints
because they contain derivatives only along directions
perpendicular to r. Equations (5.1) and (5.3) reduce the
four degrees of A and 8 to the two degrees of freedom
appropriate to a massless spin-one field. However,
incorporation of these constraints into a canonical
formalism is clumsy, though feasible, and we prefer a
slightly different but entirely equivalent procedure.

The method will be to add a gauge-dependent term
Zt-.to the Lagrangian, which will ensure that the free-
field equations

n a
(e B-B» 8»—e 8 n»—8 B+e»„„&ri8'A") j,». (5.7b)

n'

These are the old equations of motion (2.8), with the
8'n A and 8'n 8 term missing. .%e impose as boundary
conditions that the potentials satisfy the corresponding
integral equations

(1/e')(I BA» 8»n A—N»8 A—~»„„&l"—8"B")
= (e 8) 'j,„,(5.8a)

(1/I')(ri BB» 8»N 8 —rl»8 8+—e„„&,n"8 Ai)
(& 8) 'i»"—, (5gb)

with (e 8) ' given by Eq. (3.4). On taking the di-
vergence of these equations and using current conserva-
tion, one recovers the free-field equations (5.4) which
together with Eqs. (5.7) yield the old equations of
motion (2.8). On contracting Eqs. (5.8) with n, we
obtain the gauge conditions

8 A= —(e 8) 'n j„
8 8= —(e.B) 'e j»,

(5.9a)

(5.9b)

which restrict the gauge functions X, and X, of Eqs.
(5.2) to solutions of the free wave equation. If one
takes the antisymmetric product of Eqs. (5.8) with n,
and uses identity (2.5), then the integral equation
(3.11) results. Finally, if we contract Eqs. (5.8) with
a timelike four-vector r orthogonal to n, we obtain

r B~ A=I Br A , (B~a)'~—
I'(ri 8) 'r—j., (5.10a)

r BN B=ri Br B+r (BAA)" n.
—n'(e 8) 'r j, . (5.10b)

potentials take the desired factorized form

n'8
(e BA» 8—»rl, A —e»8 A s»—„„&n"8"&")=j,", (5.7a)

n~

«=( /2~')([8(+ A)]'+[8( &)]'&

&=&s~+&~+&r

These equations state that also quantities (5.3),
which in the axial gauge are constrained to zero, are
instead free 6elds because they are time derivatives of

(5.5) the free fields e A and n B.
The additional gauge-dependent Lagrangian 2 0 adds

with Z~ and Zr de6ned by Eqs. (4.3) and (4.4) and an extra term Tg» to the 2'» tensor (4.1.0):
by

&.-=&,+& = —(1/2~')[& (8+A)] [& (8+&)']
+(1/2~')[n (BAB)] [rI (8 nA) "]
—(1/2N2)[(e BA)'—2(N BA) (Bn A)

+ (n 88)'—2(n BB) (Be 8)], (5.6)

then the Lagrangian equations of motion for the

'3 B.Zumino, in Intenzatiorial School of I'hysics, Ettore j/Iajoraea,
edited by A. Zichichi (Academic, New York, 1966), advocates the
axial gauge for magnetic monopoles.

2'0»= (1/I')[8»(e A)8"(n A)+8»(e B)8"(e 8)]
—g»"z 0 . (5.11)

It is symmetric and adds unchanged'4 to 8»", Eq. (4.24),

"If one carries out systematically the procedure of Sec. IV
with the extra term 2z, Eq. (4.16) gets an additional contribution
on the right:

fs A 8 g»"B&=s„{(1/tP)f(enA)»"8"I A+(I » B)»aL~ Bjl
This does not vanish, but because it is a four-divergence, it may
be brought to the left-hand side. The Gnal result is Eq. (5.12).
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so we have,

8vv (p ' p+Fd' pd)lvv

+k 2 0-Lv"('8"—"A"—g-B")

tation relations between the potentials:

(5.15a)LAv(t, x), B"(t,y) j=ie""„,e"(44 8) '(x —y),
LA" (t x), A" (t,y) 1=LB'"(t,x), B"(t, y)]

= —i(go 44"+go"e ) (44 8)
—'(x—y), (5.15b)

+v"(i8"—e.A"—
g B")34'-

+(1/~')9 m A8"~ A+8 ~ B8"~ B. where we have restored e to the more general form
(5.13). Here (44 8) ' means the three-dimensional"
inverse of 44 8)=(44&8„)=(nV), so from Eq. (3.4)

gv"—', (an -A)'+ (an B)'5
(n V) '(x)

44"{4—4'E(44'8)-'2, p (44 cl) 'j ]"}". (5.12)

We are now ready to consider the important question
of the equal-time canonical commutation relations
which correspond to the Lagrangian (5.5). We choose
the time axis orthogonal to e,

ev= (O,n), (5.13)

which is assumed to hold henceforth, so that the
Lagrangian equations for the potentials (5.7) are of
fi.rst order in the time derivatives. In order to find four
pairs of canonically conjugate variables for this first-
order system with eight independent variables A& and
BI', we must rewrite the Lagrangian in the form

8'(x —ns) ds —(1—a) 84(x+ns) ds. (5.16)

The equal-time commutation relations between the
potentials (5.15) are the principal result of this section.
They have been obtained as a consequence of the
canonical quantization procedure.

The constant 44 of Eq. (5.16) is yet to be determined.
All equations heretofore are invariant under the simul-
taneous substitutions,

(e„,g„) v (cos8 e„sin8—g„,sin8 e„+cos8g ), (5.17a)

(A,B) v (cos8 A —sin8 B, sin8 A+cos8 B), (5.17b)

(p pd) ~ (cos8F—sin8F" sin8F+cos8pe) . (5.17c)a=1

4 which imply
g = P ~ (A,B)4'.(A,B) R(A,B)+8„&"—, (5 14)

where B„X&are exact derivatives and all other time
derivatives appear explicitly (all dependence on the
spinors is suppressed). Then P (A,B) and sr (A,B)
may be identifi. ed as canonical conjugate variables.
Comparison with Eq. (5.6) shows that we may write

This chiral invariance means that absolute directions
in the two-dimensional charge space (e,g) are unobserv-
able. If we also want the commutation relations (5.15)
to be invariant under this substitution, then we must
have a=~~ and hence

Q x 4Iv = —44 BB'A'+44 BA'B'+. 44 8A'A'+. e 8B'8',
a~1

(n V) '(x) = 8'(x—ns)-,'e(s)ds. (5.18)

where we have temporarily taken e along the three- This has been discussed in detail in Ref. 4.
axis, n&= (0,0,0,1). Hence we make the identifications The quantization of the f„'sis ordinary:

p =8'
B'= —(44 8) 'nri

A'=(n 8) '4rs,

&3=A' &4=B'

A'=(n 8) 'm2-
Bo=(~ 8)- ..

determine the desired nonvanishing equal-time commu-

In the last relation, we choose the determination of
(N. 8) ' provided by Eq. (3.4). This is a boundary
condition which goes beyond the canonical identifica-
tion and which ensures that not only the I agrangian
equation (5.7), but also the integral equation (5.8) will
be a consequence of the Heisenberg equations of motion.

The equal-time canonical commutation relations

Ly-(t,x), ye(t, y) j=L~.(t,x), ~, (t,y) j=o,
L~-(t,x), A(t, y)j= —i8-P8(x —3),

Q„(x)A„(y)}=0;
{4-(x)A-'(y) }=8(x-y)8-, (5.19)

and the lt „commute with A and B. From Eqs. (2.3)
and (2.4) we express the electromagnetic fields in terms
of the canonical variables':

—F~'= —-'e;; Ii&~=H=V XA
+(n V)—'np, =H, , (5.20a)

—F"=2&;;aF"~'=E=—VXB
+(n V) 'np, =—E;, (5.20b)

which gives the standard equal-time commutation

"The relation of three- and four-vector notation is x&= (t,x),
j&=(p,j), A&=(Ao, A), 8 =(8',B), e =(eo,n)s 8„=(88,V), y= (7o,p), and e;~& is the three-dimensional antisymmetric symbol
With ey23=1.
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relation for the electromagnetic 6elds,

[&'(x)»i(y)]=i&' i,Vi~(x —y)

P''(x), »(y)]=[H'(x),»(y)) =0, (5»)
and the important commutator between the fields and

[E(x),P (y)]= —e„n(n V) '(x—y)f (y), (5.22a)

[H(x),p (y)]= —g„n(n V)—'(x—y)p„(y) . (5.22b)

The Hamiltonian density of Eq. (5.14) equals 8" of
Eq. (5.12):
8"=-', (E'+H')+P P y'(ie' e„A'—g„B'—)P

—(1/2n') [8'(n A)'+(8'n B)'
+(Vn A)'+(Vn B)'] (5.23)

The last term, which arises from the gauge-dependent
Lagrangian Z g, contributes to 8" the negative of the
energy density of two free scalar fields, (n A) and
(n B). Physical states may be restricted by the
subsidiary condition that they be vacuum states with
respect to these free fields.

We use Eqs. (5.20) and the equations of motion
(4.5) and (5.10) to express e~ in terms of the canonical
variable A, B, and. f„,
eo'=-', [(vXA)'+(v XB)']

—(1/2n')[(n VA' —n VXB)'

+(n VB'+n VXA)'+(Vn A)'+(Vn B)']
+EO.(T p+ni)O. +~. ~+j. B

n

—n V[A'(n V)—'p, +B'(n V) 'p,]. (5.24)

The last term is a divergence and does not contribute
to the Hamiltonian. Thus, the interaction Hamiltonian
J'(j, A+j, B)d'x is the negative of the interaction
Lagrangian. One easily verifies that the equations of
motion (4.5) and the integral equations (5.8) follow
from the coinmutation relations (5.15) and (5.19)
and the Heisenberg equations of motion

(5.25)
where

H= 8"d'x and P is A", B', or P„.

Finally, we note the expression for the momentum
density in terms of canonical variables,

e"=(vXA)X(VXB)
—(1/n')[n VA' —n VXB]vn A

—(1/n')[n VB'+n'VXA]vn B

+Q y„t( i)vy„+,'—v Xp 4.'-&

—n V[A(n V) 'p, +B(n.V) ip ], (5.26)

ie @.=[y.,Z ]. (5.28)

VI. COVARIANCE AND CHARGE QUANTIZATION

As a guide to the 6eld- theoretic case, we will firs t
briefly review the nonrelativistic quantum-mechanical
monopole problem from a point of view that lends
itself to generalization. A more detailed discussion is
provided by Hurst. "The nonrelativistic interaction of
a pair of particles with charges (ei,gi) and (em, g2) is
defined, , after elimination of center-of-mass motion,
by the standard canonical commutation relations and
the Hamiltonian

with

1 CK

(p —pV)'+-
2ns r

ngx
V=n x

)nXx/'

(6.1)

(6.2)

and n= (eie2+gig2)/4n, p= (eig2 —gie2)/4~c. The curl
of the vector potential V gives the radial Coulombic
6eld plus a spurious 6eld with support on the Dirac
string x = fl ~x ~,

VXV=[x/ra —4sn(n V) (x)), (6.3)

where (n V) '(x) is defined by Eq. (5.16).The operator

J—=xX (p —pV) —p&, (6.4)

with x=x/r, which corresponds to the classical expres-
sion for the angular momentum, satisfies the commuta-
tion relations

[JH)= —i2s(p/n')(nX[nX(p —pV)]n x(n V) '(x)
+n x(n V) '(x)nX[nX(p —pV)]j, (6.5)

[J,',J;]=ie,,j,[JI, (4np/n—')ni(n x)'(n V) '(x)). (6.6)

Thus J would commute with H and would have the
commutation relations of an angular momentum
operator, except for terms corresponding to the spurious
field, whose support is on the Dirac string, x=&6~x~.
However, we have seen in our classical discussion that
the Lagrangian equations of motion are correct only
when the Dirac string drawn from one particle does not
go through the other particle. When translated into
the quantuxn-mechanical language of Hilbert space,
this condition becomes a restriction on the domain of
definition of H and J which is thereby limited to func-
tions that vanish suKciently rapidly on the Dirac
string. It is found that H and J may then be extended
to self-adjoint operators satisfying [HJ)=0, [J;,J;]
"C. A. Hurst, Ann. Phys. (N. Y.) 50, 51 (1968).

where e=+,'i-yXy O. ne easily verihes that the momen-
tum operator P=J'8'*'d'x satisles

—iVy. =Q.,P) . (5.27)

Equations (5.25) and (5.27) together have the covariant
form
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i[a,M"j=—(x»8 x8»)B +(g"—B —g-B»)
-8"X,»"+(n 8)-'Ln»(nn j,)"""

—n"(n* j,)"»"j,
where

(6.8c)

X ""=(n 8) (nAA)»" X ""=(n 8) '(nAB)»"

X„»"=e„X»"+g„xe»".
We see that apart from the spinor and vector trans-
formations of |t„,A», and B» and a gauge transformation
X which is not unexpected, there are extra terms
involving the currents, which are added to the vector
potentials.

Some quantities do transform simply, however. Thusj„"=P„yQ„transforms like a four-vector,

—i(j„",M»"j = (x»8"—x 8»)j„"+g"»j„"—g"."g„». (6.9)

=i~,;I,J&, namely, the commutation relations of the
Lie algebra of the rotation group, with H an invariant.
This is true for any value of p. However, if one further
requires that the J; generate a representation of the
finite rotation group and not just the inGnitesimal Lie
algebra, then p, becomes quantized and only the
values t4=0, &1, +2. . . are allowed"

Let us now outline the same procedure in the Geld-
theoretic case. The domain of deGnition of the operator
is restricted to states

~ ) satisfying

P(n 8) j,A (n 8) 'j,j ) )=0. (67)

On such states nn 8 2 of Eq. (4.19) vanishes, andhence
also the spurious last term of 8»", Eq. (5.12), so 8»" is
synnnetric and hence, by Eq. (4.26), M»" is conserved.
Let us assume by analogy with the nonrelativistic case
that the operators I'& and M&" may be extended to
self-adjoint operators satisfying the Lie algebra of the
Poincare group, and see what the consequences are if
we also assume that they generate finite Poincare
transformations.

We begin by calculating the equal-time commutator
of M»" with the dynamical variables f„,A», and. B»,
for this will give their inGnitesimal transformation law.
From Eqs. (4.25), (5.24), and (5.26), we find, after
some algebra,

4$$„M—»"j=Lx»8" x"8"—+ (y»y"— y"y»—)
+ix„"jg„,(6.8a)

4/A M"j=—(x»8 x8»)A +(g—"A" g""A )—
—8"x»"—(n 8)-'Ln»(nh j )"""

n" (n A j,)"»"j, -(6.8b)

currents ensure that the electromagnetic field P""
transforms like a tensor:

i'—"",M»"j= (x»8 x8—»)F ~+ (g"F 4 g-—F»")

+ (g"»F""—g""F"») . (6.11)

This is most easily verified from Eq. (2.3) by writing
8'A"= —iLA",F"j and making use of Jacobi s identity
and the commutation relations of the Lie algebra of
the Poincare group.

Let us see what happens when we integrate these
inGnitesimal transformations to Gnite Lorentz trans-
formations. The simple scalar, vector, and tensor trans-
formations of e A, e 8, j„&,and FI'" are easily inte-
grated. With finite Lorentz transformation A, =exp(Q)
and representative U(A) =exp(iM 0), M 0—=—2M»"0,»,
we have

n A4(x)=U(A)n A(x)U '(A.)
=n A(Ax) and A ~B, (6.12a)

j.""(*)= U(A)j»(x) U '(A) =A '»j„"(Ax), (6.12b)

F""(x)=U(A)F" (*)U-~(A) '$,„'"'-i",;~-I" @+)I:"., [;&

=A '» A '" F '(Ax) . (6.12c)

These transformations and Eqs. (2.3) and (2.4) which
relate the Geld and potentials determine the Gnite
transformation laws of A and 8,

A'»(x) = U(A)A»(x) U '(A) =A "A"(A-x)-
+8»X,4(x)+L(n 8)(A. 'n 8)j '

X e»».,n» (A-'n) j»4', (6.13a)

B"(x) = U(A)B»(x) U '(A) =A »„B"-(Ax)-
+8»x (x)—L(n 8)(A.-'n 8)7-'

Xe»».,n»(A 'n) j 4', (6.13b)
where

X,4(x) = (n 8) '(x —y)(n —An) A(Ay)d4y, (6.14a)

X»4(x) = (n 8) '(x y)(n A—n) B(—Ay)d4y. (6.14b)

The kernel (n 8n' 8) ' appearing in Eqs. (6.13) is
ambiguous. If we restrict its support to the e—e'
plane and require that n'(n 8) '(x)=nx(n 8) ',(x)—
which was used in deriving Eqs. (6.8), then we have

Contracting Eqs. (6.8b) and (6.8c) with n„we see that
the gauge transformation X makes the free Gelds e A
and e 8 transform like scalars:

(n 8n' 8) '

84(x—ns —n't) Pe(s) e(t)+1jdsdt. (6.15)
—iLn A, M»"j=(x»8" x"8»)n A, —

and A ~ B . (6.10)

Finally, we note that the extra terms involving the
When A is inGnitesimal one easily~veriGes that Kqs.
(6.13) reduces to Eqs. (6.8b) and (6.8c). To verify the
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A =RV(')S, (6.18)

where R and S are rotations and V(') is a velocity
transformation along the 1 axis and thus in the little
group of ts. Then for arbitrary A. we have the transforma-
tion 1aw

0 a(g) =S '(A)f (Ax) exp( iX "(V—"&Sx)]

Xexp( —iU(RV&]&)X„s(x)U—](RV&»)] . (6 19)

We must now verify that this law has the group
multiplication property. This is done in two steps.
One erst verihes that it holds for rotations, as will be
described in detail below because it yields the charge-
quantization condition. Once it is known that the group
property holds for rotations, one veri6es it for an
arbitrary Lorents transformation by performing on f
the succession of operations which bring a product of
A's of the form (6.18) back in this form. We indicate
the order of these operations, without writing them
explicitly, beginning with

h kg =R2 V2 (')S2RgVg(')S), ~

jv One could presumably introduce an additional gauge trans-
formation on P with additional gauge function g given by the
line integral of the last term of Kq. (6.13) (problems of operator
ordering arise), even though it appears to have the wrong in-
finitesimal limit. For if the charge quantization condition (6.25)
holds, then for a finite Lorentz transformation, the presumed
additional phase factor e'x not only becomes single-valued, but in
fact reduces to unity

group multiplication law, one makes use of the property

U(A])X]](g)U ](As) =X]»(g)—Xs](A]g)
—((n Br]] Be» B) 'e„]„„r]"r]]"n»sj»](x), (6.16)

where ~2~ =AD~, n~ =4~ 'rs, and rs2~ =42~ 'e.
The Lorentz transformation law for f is determined

from Eqs. (6.8) and (6.13) by the general principle of
gauge invariance, '~

f"(x) = U(A)ti'„(x)U '(A) =S ](A)f„(Ax)
XexpL —iX s(x)], (6.17)

where X„s=e„X,]+g„X,]. The meaning of this expres-
sion must be made more precise because X~ is an
operator gauge function which does not commute with
&&I' in general. We recall that r]s is assumed to have a
vanishing time component ns = (O,n) and that we only
know equal-time commutation relations. Referring
back to the definition of Xs, Eqs. (6.14), we observe
that when A belongs to the little group of ]], (An=']])
then xs vanishes, so f„transforms like a spinor. We also
observe that if A is a pure rotation (A =R), II'„(Rx)
commutes with Xs(x). Hence Eq. (6.17) is unambiguous
for rotations and Lorentz transformations which belong
to the little group of e. However, any Lorentz trans-
formation may be written as a product of these, and
thus the transformation law of f„become sdetermined
for any A. For definiteness let us suppose that n & lies
along the three-axis, r]s= (—e')]&'(0,0,0,1). We decom-
pose any A. into the product

The product of rotations S2R~ may be decomposed as

S2Rg ——R,(')Rg(')R (')

where R"' are rotations about the i axis; so, commuting
R(') with V('), we have

R R (~)V (~)Ry(3) V (~)R (~)Sy

We observe that V(" and R(" are in the little group
of e&, so the rearrangement

V (&)R (3)V (&) —R (3)V (&)R (3)

is possible and yields

A]A] ——LR]RN&]&Rg&'&]Vs]&]&(R,&s&R,&]&S]]

which is of the required form. The main work involved
is to verify, by repeated use of (6.14) and (6.16), that
the gauge factors X~ combine properly.

We now verify explicitly that the group property
holds for rotations. From Eqs. (6.16) and (6.17), we
obtain

U(Rs) U(R])P„(x)U '(R])U ](Rs)
=S—'(Rs])iP(R]]x) expL —iX„"](R]x)]

Xexp( —iLx "»(x)—x„~'(R]x)—p(x)]), (6.20)

where

P=n n]Xns](n Vn] Vns] V)-'
X (e„p,»]—g„pP») (6.21)

and Rs] ——R&sR], n] ——R] 'n, ns] ——Rs] 'n. p(x) commutes
with the other factors in the exponent and one may
check that X„"'(R]x)commutes with X„"»(x).Hence
we have

U(Rs) U (R])f„(x)U-'(R]) U
—](R,)

= U(Rs])tt„(x)U '(R,])e'«*& (6.22)

and the group property is satisfied only if e'& (') is unity,
which means that the eigenvalues of the operator @(x)
must be integral multiples of 2x. To study the eigen-
values of P(x) we commute it with f "»(y) at equal
times and 6nd

Q (x) f "»(y)]= —(e„g —g„e )n n]
Xns](n Vn] Vn» V) '(x —y)f~s»(y) . (6.23)

The operator (e Vn] Vns] V) ' is ambiguous but
becomes determinate by requiring consistency with
Eq. (6.15), and we find

11'n]Xr]s](r]'Vr]]' Vr]s]' V) (x)

1
=n n]Xn, ]- 3'(x—n$ —n]i —n, ]N)

8

XPe($) e(i)e(N)+e($)+e(1)+e(p]) ]d$di&fg

=gLe($p) ~ (tp) e(lp) +e($p) +e(tp) +e(gp)), (6.24)
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where so ——x.ngn~, to ——x n&Xn2~, and No ——x n2iX&.
Q)'e see that 1t "»(y) connects eigenstates of p(x),
whose eigenvalues differ by 0 or &,'(e-g g—~e~)
which must be an integral multiple of 2m or

and that, by Eq. (5.24),

Hr = —I.r = — ~rd'x.

(e„g —g„e )/4s. =Z„ (6.25)

A more explicit construction of the operator extension
to replace the formal discussion presented here is
required to resolve this paradox adequately.

VII. FEYNMAN RULES

An important question which remains to be answered
is how Green's functions in general and 5-matrix
elements in particular transform. In an explicit non-
relativistic calculation6 it was found that the amplitude
for scattering of spinless particles does not transform
like a scalar, but picks up an extra phase characteristic
of helicity-Qip amplitudes. It is important to 6nd out
the transformation law in the relativistic field-theoretic
case to replace the conjecture presented earlier. ' A
likely candidate for study is the in6nite series of Feyn-
man diagrams represented by the T product

S=T exp i Zr(x)d'x (7.1)

where Z„ is an integer. Since ()t, f t, A, and 8 form
a complete set of operators, this is also a sufhcient
condition for e'&& ) =1. Thus the requirement that the
representation of the Lie algebra of the Poincare
group integrate to a representation of the finite group
yields the quantization condition obtained earlier. "'

If one wishes to verify that the equations of motion
are invariant under the transformations given here,
one encounters a paradox. For the invariance depends
on use of the apparently contradictory relations'

8
epwis(p) 1 epwie(p) 4s.i8(y)'

a

The charged particle propagators are as usual

i(TQ—„(x)P„(y))=(iy 8+m„)Ap(x y,m„—), (7.2)

where &z(x,m) is the Feynman propagator for a scalar
particle of mass m, ( 8—' m—p)t(, ),(x,m)=&4(x).
photon propagator presents new features. It is most
easily expressed as a 2X2 matrix in charge space.
Defining

V„—= (A„,B„), (a=1, 2) (7.3)

we write the free Lagrangian equations of motion for
A and. 8 as matrix equations. From Eqs. (5.7), with
vanishing sources, we have

(1/n')(n 8)(n 8V '—8 n V' —n 8 V~

pape vegan 8 V„p)—0 (7 4)

Here e ~ is the antisymmetric two-dimensional tensor
with e"=1. The equal-time commutation relations
(5.15) take the form

[V„(t,x),V„'(t,y)]=[i 'pep 'n
—ib'(g„pn„+g„pn„)](nV)

—'(x —y) . (7.5)

Applying the Lagrangian differential operator (7.4) to
the photon propagator (—i)(TV„'(x)V„'(y)),we obtain

(1/n')(n 8)[(n 8g),~ 8&n~ -n,8~)-8"
—(e)...&n 8') p"]( i)(TV„'(—x) V„'(y))

=() 'g), 8'(x y) (7—6)

Thus, we see that as in other Lagrangian theories, the
propagator is the Green's function for the Lagrangian
diRerential operator. The solution to this equation with
Feynman boundary conditions is easily verified to be"

where, from Eq. (4.4),
—i(TV„~(x)V„'(y))=([—g„„+(8„n„+n„8„)(n8) ']8~'

—[e„...n'8'(n 8)-']p")6);(x—y, 0) . (7.7)

and

Here f„,A, and 8 satisfy the free-6eld equations. The
justification for this expression is that

S=T exp —i Hzdt

"Schwinger (Ref. 2) asserts that one should assign the median
value to a step function at its point of discontinuity and that
consideration of this point requires an extra factor of 2 in the
charge-quantization condition.

The Feynman rules are completed by specifying
that the vertex ey& of ordinary electrodynamics is
replaced for the Nth charged particle by q p&, where
the charge vector q„ is given by

(7 g)

It is contracted with the photon line entering or leaving
the vertex. We observe that the charges only appear

' The off-diagonal part of the propagator already appears in
the literature: B. Zumino, Ref. 13; S. Weinberg, Phys. Rev. 138,
8988 (1965); J. G. Taylor, in Lectlres in High Energy Physics,
edited by H. H. Aly (Wiley, New York, 1968); A. Rabl, Phys.
Rev. 1'V9, 1363 (1969).
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in the combinations q„b~~q ~ and q„&~q ~ which are
invariant under rotations in the two-dimensional charge
space, so the Feynman diagrams individually manifest
chiral invariance discussed previously. 4 If all charge
vectors are parallel, then only the 5 ' term contributes
to the photon propagator and ordinary electrodynamics
in a particular gauge is recovered.

The infinite series of Feyrirnan diagrams representing
the S operator (7.1) is not useful for practical calcula-
tions because of the large magnetic coupling constant
gs/4r= (137)rs implied by the charge-quantization
condition, but its formal properties may be of interest.
For example, one might hope to deduce from it the
behavior of the scattering amplitude under Lorentz
transformation. However, even this would not be

simple, for the group property is not satisfied order by
order Las is obvious from the transformation law

(6.17)j, and when the charge quantization condition
holds, the same power of the charge appears in an
inlnite number of diagrams of different order. (By
"order" one means here the number of vertices in a
Feynman diagram. ) We hope to return to the trans-
formation law of Green's functions on another occasion.
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Kinematic Superstructures for Abnormal Couplings in the 8-~ Dual Amplitutle*
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We present a general method for including abnormal couplings in multiparticle dual amplitudes. We con-
struct amplitudes from a sum of terms having kinematic superstructure and dual substructure; and we show
how a tensorial analysis of the kinematic superstructure in various channels determines the normality of the
trajectories involved. As an illustration, we give a specific solution for abnormal couplings in the 8-7I- ampli-
tude in which the above analysis is carried out in detail, and is compared with previous 6-~ amplitudes and
four-point amplitudes for spin-1-spin-0 scattering.

I. INTRODUCTION

A NALYSES of the structure of the E-scalar-particle
dual amplitude by Chan et ul. ' and by Koba and

Nielsen' have shown that it predicts normal coupling at
all three-point vertices. PA coupling is normal or ab-
normal if the product of the normalities of the three
particles is +1 or —1. A particle is normal, n=+1, if
it has parity (—1)~ or abnormal, e= —1, if it has
parity —(—1)~.g The existence of abnormal vertices is
essentially a complication due to spin; any vertex with
two spinless particles conserves normality. The problem
of choosing the normality of an internal trajectory thus
6rst arises in the four-point functions in reactions like
pm —+ pal-, the problem already occurs in the 3-x trajec-
tories of the 6-m amplitude. %e reexamine the previous
analyses of four-point' 7 and six-point'' amplitudes

*Research sponsored by the Air Force Once of Scienti6c Re-
search, OfIjLce of Aerospace Research, U. S. Air Force, under
AFOSR Grant No. EOOAR-68-0010, through the European OfFice
of Aerospace Research.' Chan Hong-Mo, Phys. Letters 28B, 425 (1969); Chan
Hong-Mo and J. F. L. Hopkinson, Nucl. Phys. 814„28(1969).

I Z. Koba and H. B.Nielsen, Nud. Phys. B10, 633 (1969).
SA. Capella, B. Diu, J. M. Kaplan, and D. Schi6, Nuovo

Cimento Letters 13, 655 (1969).
4 J. M. Kosterlitz, Nucl. Phys. 813, 129 (1969).
5 G. P. Canning, Nucl. Phys. B1V, 359 (1970).

which are concerned with prescribing the normalities
of internal trajectories. From this analysis we are able
to propose a procedure for writing amplitudes for X-x's
with defined leading normality on internal trajectories.
In particular we concern ourselves with h3'ving the
co-A2 trajectory in certain 3-x channels of the S-m.

amplitude.
For four-point amplitudes with external spinning

particles, one usually writes the invariant Lorentz ten-
sors contracted against helicities and makes use of the
analysis of Gell-Mann et ul. "to determine the normali-
ties of the invariant amplitudes associated with them.
This method is clearly impractical when we come to
analyze processes involving high spins. This is especially
true since invariant amplitudes tend to give normal
couplings. The method we adopt involves the use of
"noninvariant" amplitudes, whose use has been de-

' P. Carruthers and F. Cooper, Phys. Rev. D 1, 1223 (1970).' M. A. Jacobs, Phys. Rev. D 2, 2431 (1970).
J. D. Dorren, V. Rittenberg, H. R. Rubinstein, M. Chaichan,
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~
aper by J. Gabarro and L. Gonzalez Mestres LOrsay Report No.
0/24 iunpublishedlg, applying analogous methods to the 6-a-

amplitude.' M. Gell-Mann, M. Goldberger, F. Low, A. Marx, and F.
Zachariasen, Phys. Rev. 133, 3145 (1964).


