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Anomalies of the Axial-Vector Current in Two Dimensions*
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In a world with one space and one time dimension, it is shown that the axial-vector current in a vector-
gluon model exhibits anomalies in perturbation theory analogous to those found by Adler in fermion electro-
dynamics. The analysis is extended to include a four-fermion (Thirring) interaction; this model has been
solved exactly by Sommerfield, permitting an explicit verification of the perturbation-theory calculations.
In analogy to results in four dimensions, a model is presented in which the anomalous properties of the
axial-vector current, both in its divergence and in its commutation relations, follow immediately from the
canonical structure of the theory.

I. INTRODUCTION this case, the offending diagram (the "bubble" diagram)
is only logarithmically divergent and hence can be
evaluated unambiguously. An important distinction
between the two-dimensional and four-dimensional
cases is that the former can be solved exactly (this fact
motivated our restriction to massless fermions). In
fact, the model with an additional current-current
(Thirring') interaction has been solved exactly by
Sommerheld. ~ W'e extend our perturbation-theory
analysis to include this case and explicitly verify our
conclusions via Ref. 7.

In the four-dimensional case, one can construct a
model of a pseudoscalar meson interacting nonmin-
imally with the electromagnetic field in which the
divergence condition (1.1) and the anomalous commuta-
tion relations' of the axial-vector current follow from
naive (canonical) manipulations. ' We demonstrate the
analog of this model in two dimensions, and extend
this to include the Thirring interaction. The resulting
theory involves two pseudoscalar mesons interacting
only through mass mixing.

' 'T has been shown by Adler' that in massless spinor
i - electrodynamics the axial-vector current is not
conserved, in contradiction with the prediction of
Noether's theorem. Perturbation-theory arguments'
indicate that the correct divergence condition reads

~"2 u
=~"V"y~'y&4') = ~"~1

21r

where F„„and E&" denote the electromagnetic 6eld
strength tensor and its dual, respectively; i.e.,

II. VECTOR-GLUON MODEL

We deal Erst with a massless fermion interacting with
a vector gluon, as described by the Lagrangian

2p= if'&8„$ ~BI'"B s'vsA &A „+gj "A—„,
B„,=B„A„B„A„,j„=Py—„f . (2.1)

We use natural units and describe the geometry by the
diagonal metric tensor q&" with —q"=g"=1. The
Dirac matrices satisfy

as usual. Introducing the pseudoscalar matrix

75 77
and the invariant pseudotensor density
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we find that
(2.2)

' W. Thirring, Ann. Phys. (N. Y.) 3, 91 (1958).' C. Sommerfield, Ann. Phys. (N. Y.) 26, 1 (1964).' S. Deser and J, Rawls, Phys. Rev. 18'7, 1935 (1969).
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One encounters this anomaly in a perturbation-theory
derivation of the vector —vector —axial-vector Ward
identity; there, linearly divergent expressions arising
from triangle subgraphs invalidate the naive result,
The triangle diagram (itself linearly divergent) must
be evaluated by a gauge-invariant regularization pro-
cedure; inserting the result of this calculation into the
Ward identity gives an answer consistent with (1.1).
The singular nature of the axial-vector current in
perturbation theory gives rise to other anomalies as
well; e.g., some commutators involving j'„diGer from
those calculated by use of the canonical commutation
relations. '

We will show that, in a theory of a massless fermion
interacting with a vector gluon in a world possessing
one space and one time dimension, the axial-vector
current obeys a divergence condition analogous to
(1.1). Just as in the four-dimensional case, linearly
divergent expressions arise in the derivation' of the
vector —vector —axial-vector Ward identity; however, in
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a fact that will be of use later. For de6niteness, we will
deal with the representation

P

p= &I vj
'5 v (2.3)

We will now demonstrate that, in analogy to spinor
electrodynamics in four dimensions, j „is not conserved
in perturbation theory.

we examine in perturpatioI1 theory the validity of
the naive Ward identity

The electrodynamics of a massless fermion in two
dimensions, often referred to as the Schwinger model,
has been studied by a number of authors. '~" This
case, which corresponds to Eq. (2.1) with p=O, is a
very peculiar one, for there are no transverse degrees
of freedom and the bad asymptotic behavior of the
Coulomb potential leads to a total screening of the
electric charge and to a nonzero renormalized "photon"
mass. In general, the limit p ~ 0 is singular" ";
however, all our arguments apply to this case as well.

Owing to the invariance of (2.1) under the trans-
formation

4 ~exp(i(~+Pe)jk, 4'~k'exp' —i(~+Pe)j
for constant n and P, there are two formally conserved
currents,

j,=IVY i '~ =A «Vs4'

which are related by

Fxo. 1. Diagrams which give rise to an anomalous Ward
identity in the vector-gluon model.

loop momentum. This operation is valid for all diagrams
except the bubble diagram, illustrated in Fig. 1. It is
amusing to note that this graph vanishes in four
dimensions because of charge-conjugation invariance;
however, as is seen immediately from Eq. (2.3), j„and
j'„have identical charge-conjugation properties in two
dimensions. Although this diagram is only logarith-
mically divergent, it gives rise to a linearly divergent
expression in the derivation of the Ward identity;
hence we must calculate separately its contribution to
(p —p') "1".(p p').

Since j'„=t.„„j",we can evaluate the contribution of
Fig. 1 by calculating, to lowest order in g,

e" d'x e 's*(O~T*(j (x)A"(0))(0).

The result is

(p p')"f"'.(p p')-=s '(p) ' + s '(p') ' (2 4)
where

, where the vertex part I'„ is defined by

sp (p)I' (p p)s (p)

ge&.T e(k)he"(k)=M~"(k),

v v+kskvt'Iss
as"(k) =

ks+ps

dsxdsy e-iyveiy's(0
~
T(js (0)y(xg(&)) ~ 0) (2 5) is the free vector-boson propagator and

Following Adler's' treatment, we divide the diagrams
which contribute to the axial-vector vertex into two
classes: (a) those in which y~ys attaches to a fermion
line in the main trunk of the diagram, i.e., that part
which remains connected to the external fermions when
the gluon lines are removed, and (b) those in which

y„y5 attaches to a fermion line which is not in the
main trunk of the diagram. Diagrams of type (a) give
the entire right-hand side of (2.4). The diagrams of
type (b) sum to an expression which vanishes, provided
that one can shift the origin of the integral over the

"J.Schwinger, Phys. Rev. 128, 2425 (1962); SemirIur oe Theo-
retica/ Physics, Trieste, 1962 (IAKA, Vienna, 1963).

'0 L. S. Brown, Nuovo Cimento 29, 617 (1963); C. R. Hageri,
ibid. 51B, 169 (1967)."B.Zumino, Phys. Letters 10, 224 (1964).

'~ J. H. Lowenstein and J. A. Swieca, Ann. Phys. (N. Y.)
(to be published).

Tsv (k)
d'q ( 1 1

Tr(:y y"
)

(2.6)
(2s )s E lv.'+q —ie q —ie)

d'x e—'s (0~ T*(Ljv'(x)+tv'(x)7L j (0)+iJ(0)g) ~0)

to lowest order, we hnd in the limit A. —+ ~,
ksk"

q
T~"(k) = —q"—

k'-iei

is the contribution of the bubble. This is evaluated by
means of the standard regularization procedure, in
which an auxiliary field 4 with large mass h. is intro-
duced, and the interaction Lagrangian is taken to be
gA~ j~+zgA "JIs~ where J~=0pp%'.

Evaluating the expression
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independent axial charge

Q5 (Pg j5

I'xG. 2. Type-(b) diagrams which give rise to an anomalous
term in the %ard identity in the Thirring model with a vector-
gluon interaction.

Then,

k„M&"(k) =i(g/s) e„k~a "

=i(g/vr) d'x s-"*(0
~

2"*(B(x)A"(0)) ~
0)

to lowest order in g, where

8= eI""B„A„=Bpj.

Thus the contribution to (2.4) from a diagram of the
type illustrated in Fig. 1 can be represented by a similar
diagram with the bubble replaced by —Z (g/rr)B. The
net effect is to modify the naive Ward identity to read

(p-p') I"„(p,p') =S '(p)-'r +'r S '(p')-'
—i(g/~)a(p p') (2 7)

where

S&'(p)B(p,p') SI '(p')

is gauge invariant. A further discussion of this point is
is found in Sec. IV.

In order to calculate the contribution of the bubble
diagram, we introduced an auxiliary fermion field with
mass A and computed matrix elements of j'„+iJ'„
The formal identity

a~(j '„+iJ'„)= 2A-J',

J5=4~,e,
suggests that the observed anomalous divergence arises
because some matrix elements of —2AJ' do not vanish
as A.~ ~.This point of view was advanced by Hagen"
in the case of quantum electrodynamics (QED) in
four dimensions. To verify this in the model under
discussion, we note that for the —2'' vertex, all
diagrams are of order A. ' except those of the form
shown in Fig. 1 (with a massive fermion bubble and
the vertex —2i1y5 instead of y„y5). The contribution of
the latter is found by computing

—2A d'x e "*(0
~
T(J'(x)A "(0))

~
0)

to first order in g. The result is

A.'ds
keg v(k).

0 Ps(1 s)k'+—A' iej.—

which reproduces the expected result ik„M&"(k) as
P~ ao.

Z W y s-' *~'" (012'(S(0)g(*)1i(y))lO&. (2.S)

Equation (2.7) is consistent with

III. THIRRING MODEL

With the addition of a current-current interaction,
the Lagrangian of Eq. (2.1) becomes

(g/~)&. — (2 9) 2 =ipy"B„f ~B""8„. ~p A "Ap+gj "A„+g(rj "j„.(3.1)

Here, as in four dimensions, the anomalous divergence
is proportional to the simplest pseudoscalar object
which can be formed from the vector field.

By virtue of the definition (2.3) and the method of
regularization, we have imposed gauge invariance
upon j'„.The anomalies just discussed then follow as a
consequence. In analogy to the situation in four
dimensions, ' ' however, it is also possible to define an
axial-vector current which is conserved but is not
gauge invariant:

The analysis of the Ward identity in this case is con-
siderably simplified by the observation (proved in
the Appendix) that fermion loops with more than two
vertices do not contribute in perturbation theory. "
The most general diagram of type (b) is illustrated in

Fig. 2. It consists of a y„y5 vertex attached to a bubble
which is in turn attached to a string of bubbles, the
latter being connected to the blob by a single gluon
line. We can sum the contributions to the Ward
identity by evaluating, to erst order in g and to all

j'„=j'„+(g/s) e„„A". "C. R. Hagen, Phys. Rev. 188, 2416 (1969).
~ This is also true in the gluon model but it was not necessary

It is interesting to note that the corresponding time- to use it.
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orders in 0, and

0& d'xe '5'(O~T(g (x)A"(0))~0).

The expansion in powers of 0- is simply a geometric
series because the "product" of two bubbles is given by

le "+k k"/Il' g' ( k k" )+i—I
~""——

k'+ll' i—0 irk k k' i—0)

t e~( krak ~P erat k.k"~

)E k )& ~)E k)
kk)

) E

vv+. kpkv/~ 0

= —z

k++ 00

X
(k0+P0 —i0) (k0+P'0 —i0)

g' k~k—Z

whee'p, "k' —ie

We Gnd the result

(g/ll) 0~.T e(k)he"(k) = (1/ll)Mv" (k)

We now calculate matrix elements of the equal-time
commutators of the theory by use of the Bjorken-
Johnson-Low" technique, which identi6es the com-
mutators by the relation

= lim k' d'xe '0*(P~ T(A(x)B(0))~n).
gy&~CO

where X= 1+o/lr. Thus the current-current interaction
changes the anomalous term in the Ward identity i dxl e—'ib41(p~t-A(0 xl) B(0)j~~)
(2.7) by a factor X '. In a similSr analysis of type-(a)
diagrams, summing strings of bubbles again produces a
factor of P '; hence the Ward identity becomes

(P—P )"I' (P P )=l 's~'(P) 'v'+~ '7's~'(P') '

i(g/~l )B—(P P') (3 2)

Equation (3.2) is consistent with the relations

We 6nd, in addition to the canonical commutation
relation between 3' and 8, results consistent with the
following nonvanishing commutators:

and

Bvj'„= (g/~7)B— (3.3)

t
j5 (x0 xl) llv(x0 yl)] $—1~5$(x0 xl)b(xl yl) (3 4)

I j0(x',+),jl(x',y')3= (i/~l)~1~(x y) (3 5a)

LA0(x'vx') jA1(x' y') j= (5/p')815(x' —y') (3.5b)

Lj (x0,x'),B(x0,y') j= i(g/%. ll) 5 (x'—y') . (3.5c)

Since the only fermion loop which contributes in
perturbation theory is the bubble diagram, the boson
6elds A& and j& have very simple properties. The
vacuum expectation value of any product of the boson
fields is a sum of products of two-point functions. "
Furthermore, we can compute the two-point functions
by summing the perturbation series, which is essentially
just a geometric series. In terms of the renormalized
mass p"=p'+g'/lrvl, the results can be written

d'x e-'"(0~ T*(j&(x)j"(0))~0)

Sommer6eld' has solved the model speci6ed by (3.1)
exactly in two dimensions. ' In this reference, jo is
de6ned as the limit of a spatially spread 1Ptg, jl is
determined by Lorentz invariance, and j „is defined by
j'„=e„„j". He 6nds that our perturbation-theory
results, namely, the anomalous divergence condition
(3.3) and the anomalous commutation relations (3.4)
and (3.5), are valid as operator statements. In view of
the differing opinions" concerning the validity of (1.1)
as an operator statement in four dimensions, we regard
it as interesting that, , in the case studied here, perturba-
tion-theory results are valid as operator statements.

IV. MASS-MIXING MODELi ( krak" ) ( g'/0rA

irk E k' —ie) E k0+p" i0)—
d x e-'0.

&OI T"(j (x)A (O)) lO)

k0k"
~ 1

k' i 0)k'+ll" ie— —
ig ( 0v—

"This property suggests that we may be dealing with general-
ized free fields.

In four dimensions, a madel of a pseudoscalar meson
interacting nonminimally with the electromagnetic
field has been proposed' in which the anomalies of the

~~ K. Johnson and F. E. Low, Progr. Theoret. Phys. (Kyoto)
Suppl. 37-38, 74 (1966); J. D. Bjorken, Phys. Rev. 148, 1467'
(m66).

'~ A survey of the literature on the Thirring model is given by
A. S. Wightman, in High Energy Electromagwetic Irlteractions and
Field Theory, edited by M. Levy (Gordon and Breach, New York,
1967), Vol. II.

'8 For opposing positions, see Adler and Bardeen (Ref. 3) and
Jacklw (Ref. 4).
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j„=(1/gs) e„„B"y, (4 4)

is identically conserved by virtue of the antisymmetry
of e„„.Then, introducing the axial-vector current via

(4.5)

axial-vector current follow directly from canonical
reasoning. We will exhibit a similar model in the two-
dimensional vector-gluon case. The Lagrangian

Z= —-,'BsyB y —,'8s"8—„,'i'A—sA—„+(g/Q~)y8 (4.1)

gives rise to the field equations

(—gl&~)8, (4 2)

B"8"+ 'A. = ( /V' ) ..B"e (4.3)

The vector current, defined to be the source of A,

This model has a particularly simple energy-momen-
tum tensor. Since T„„is defined as the response of the
action to a change in the metric, i.e.,

T„,—=20
Zd'x

ggpv

the interaction term QB does not contribute to T„„
(P is a scalar and 8 is a scalar density). It follows that

T„„=T„„(y)+T„„(A), (4 12)

where the terms on the right-hand side denote the
standard (Belinfante) expressions for free pseudoscalar
and vector-meson fields. But T„„Q),which is given by"

T„„Q)= 7,(B„yB—„y ', q„„B y—B-.y), (4.13a)

it is seen that
j'„=(1/Qw) B„y,

so that (4.2) may be reexpressed as

B"j'= (g/~)8—,

(4.6)

(4."/)

can be written in the so-called Sugawara' "form

(4.13b)

or, equivalently,

as desired. It is easy to extend this model to include a
Thirring interaction. Because

the introduction of an interaction term ~a j&j„alters
(4.1) to read

,'XB~yB„y ~—8~-"8,„,'I 'A~A„+ (g—/g-~)y8, (4.8)

and gives for the divergence condition

Bj '„=—(g/vrX)8, (4 9)

in agreement with (3.3). Equation (4.9) can be viewed
in another way. By dropping a total derivative term,
$8 can be replaced by e"B„QA„in (4.8) I

note that this
has transcribed the interaction into the form —gj&A„,
just as in (3.1)j. The invariance of this modified
Lagrangian under the transformation p~p+tl for
constant q implies that

In passing, we point out that the Thirring model also
has a T„„ofthis form (see Refs. 21 and 22 for details).
In the language of the dynamical theory of currents,
in which a theory is specified by its T„„and the com-
mutation relations of the operators entering in T„„
we have introduced the interaction $8 through the
commutation relations. As mentioned above, the
resulting "anomalous" commutators are precisely those
of Eq. (3.5).

The fact that the interaction @8 is quadratic suggests
that the model we are discussing is really a free theory.
This can be made more precise by 6rst noting that the
vector-gluon 6eld, which possesses only one degree of
freedom, is equivalent to a pseudoscalar 6eM. This is
seen most clearly in the first-order formalism, where
BI'" and A„are taken as independent variables, and

Zg=-'8&"8 —-'8""(BA BA )——-'ii'A&A . (4.14)

Defining

=XB„&+ e„.A" (4.10)

is a conserved current, a statement which is equivalent
to (4.9). This also clarifies the origin of the time-
independent axial charge Q', defined by

Eq. (4.14) may be reexpressed as

2 =mcI m"+ —m x"——p w (4.15a)

Q'= d*' j's——Ai I. (4.11) ir"B„s+ss—"s„si'isirs— (4.15b)

A similar result holds in four dimensions. "Further, it
is easily verified that use of the canonical commutation
relations of the theory specified by (4.8) results in
complete agreement with Eq. (3.5), which are the
"anomalous" commutators that characterize the Thir-
ring model with an added vector-gluon interaction.

"Note that the T„, for a free massless scalar 6eM is traceless
in two dimensions; hence the new improved T~ of Callan, Cole-
man, and Jackiw I Ann. Phys. (N.Y.}59, 42 (1970)j is identical
to the canonical T„,.

~0 H. Sugawara, Phys. Rev. 1'70, 1659 (1968)."C.Sommer6eld, Phys. Rev. 176, 2019 (1968)."C. G. Callan, R. F. Dashen, and D. H. Sharp, Phys. Rev.
165, 1883 (1968); S. Coleman, D. Gross, and R. Jackiw, ibid.
180, 1359 (1969).



ANOMALIES OF THE AXIAL —VECTOR CURRENT - - ~

ACKNOW' EDGMEÃTS

It is a pleasure to thank Charles SommerGeld and
Lai-Him Chan for helpful conversations.

We will show that for the Thirring model with a
vector-gluon interaction, fermion loops with more than
two vertices do not contribute in perturbation theory.
This is equivalent to showing that in a theory of free
massless fermions in two dimensions with j)'=Pyi'f,
the connected part of

&olr(j {s,)" j-(s„))10), (A1)

which we will denote by T{j„},vanishes for 22)2.
This is intuitively reasonable because 8~j&= &&"B„j„=0
implies Qj&=0, so we might expect j„ to behave like
a free Geld.

We will work in position space and dehne

Gp{x)=
dpp 1 1 y"x„

s'&* = — —. (A2)
(22r) ' P ip 22—r x'+ip

Using the symbol P(i(n)} to denote the permutation
1, 2, . . ., 22 ~ i(1), i(2), . . ., i(22}, we have

T(j„}~ Q Tr[y»Gp(s„—2;(i))
P~s(n—1)~

X'r Gp(si(» si(2)) ' ' 'r Gp(si(a-» sn)]
=»[y".G"' "= (» "~s.—,x,y)jl*=,--, (A»

the standard first-order expression for a free (pseudo-)
scalar field. Then (4.8) becomes (returning to the
second-order form)

22—M—&(kB„(t) 22—8&—2'„2r ,'—F2-r2+ (g)(/gpr)~,

indicating clearly that the &B interaction is simply of
the mass-mixing type. Thus, we are indeed dealing
with a free theory. This suggests that the Thirring
model with a vector-gluon interaction is a free theory.
SommerGeld~ reached a similar conclusion by studying
the exact solution to the model, although infrared
problems prevent the examination of the fermion
spectrum. It is interesting to note that, in the case of
QED in two dimensions ()i=p=0), the algebra of
observables has in fact been shown" to be that of free
(pseudo-) scalar f(elds; however, our analysis is not
valid in this case because the electromagnetic Geld,
which has no quantized degrees of freedom, is not
equivalent to a pseudoscalar Geld.

where

G~ "'=i(s, "s,. *y)

Z Go(x —s*(»)V"""Gp(s'(» -s'(2)) "
Pfi(n-1) J

XV"*'" "Gp(s'(.-2) —y) (A4)

We will now show that

=[II Gp"'(s" x y) jGo(x—y) (AS)

Go"*'(s;;x,y)—=Go(x—s,)y '—Gp(y —s;)y '. (A6)

This is sufhcient to establish T{j }=0 for 22) 2
because Gp&*(s; xy) (x—y) and Gp(x —y) (x—y) '
as x~ y. The proof of Eq. (AS) proceeds by induction.
For m= 2, it reduces to the identity

Gp(x —s)y"Gp(s —y) =Gp{x—s)y&Gp(x —y)
Gp(y s)—y&Gp(x —y) . (A"—/)

We have, for 22=k+1,

G"i ' ' '»(zi' ' '»,' x,y)

Z (Gp(x —sp)y"'Gp(» —s'(2))v"'"' "
P{~(k—1)}

XGp(s'(2 —i) —y)+ Z Gp(x —s((») Gp(si(j)»)

XV"'Gp(» —s'O'+i)) '
. Gp(s'(p-i) —y)

+Gp(x s((») ' ' 'Gp(si(ih i)»)v—Gp(» y)} & (A8)

the three terms corresponding, respectively, to i(k) = 1,
1&i(k)&k, and i(k)=k in (A4). Now applying (A'I)
to the vertices involving y&', and using the fact that
Gp(a)y" commutes with Gp(b)y" [this follows from Eq.
(2.2), which shows that yi'y" is a diagonal matrix], we
find that all but the first and last terms cancel, and the
result can be written

G~i "»(si" » xy)

=Gp»(s&, x,y) p G,(x—s;(»)yp'(» ~ ~

Pf i(k-1) J

&&Gp(s'(p-i) —y) (A9)

Use of the induction hypothesis completes the proof.


