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f-Dominance of Gravity
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A Lagrangian theory is formulated describing the intrinsic mixing oi the graviton with a massive 2+ f
meson which interacts universally with hadrons through the stress tensor. The theory is developed as an
analog of the well-known p-y model of hadron electrodynamics, and in particular a Geld-current identity is
exhibited which equates the massive 2+ meson with the hadronic energy-momentum tensor. An Einstein-type
Lagrangian is used for both spin-2 particles, and general covariance is preserved throughout. The nonlinear
coupling of the hadrons to the f meson leads, within the framework of nonpolynomial 6eld theories, to a
universal cuto6 for strong-interaction physics.

I. INTRODUCTION

'FEATURE appears prodigal with respect to two fun-
damental forces, electromagnetic and gravita-

tional, in the following sense. The photon —a neutral
massless particl" is supposed to be the mediator of

the electromagnetic force; but there appear to be other
neutral 1 particles that play this role as well. In
hadronic physics there are the p, or, qb particles, and in
leptonic physics there are 1 states of positronium.

The mixing of y with the p-.co-P complex (hereafter
generically called the p') has been formulated' in an
elegant manner (the so-called formalism of the 6eld-
current identity) which attempts to stress that hadronic
electrodynamics can~ to R good Rppl oxlmatlon) bc
separated from lepton electrodynamics. Indeed, the
physical content of this theory is that the photon inter-
acts directly with leptons, but only indirectly with
hadrons via a simple p'-7 mixing. A natural consequence
of the formalism is the identiGeation, in the Geld-theo-
retic sense, of the po meson with the hadronic electro-
magnetic current. The model has a number of successes
to its credit, in particular the correlation of photon and
p-a&-P total and differential cross sections. Among the
failures the most prominent is the inability to take into
account consistently the individual polarization states
of the photon and. p' meson, presumably due to the
difhculty of covariantly separating the polarization
states of a massless y and a massive p-~-P.

It is an attractive hypothesis that the Einstein
graviton g and some mixture of the known, massive,
strongly interacting, spin-2 particles may present, in the
Acid-current identity sense, a complete analogy of this
po photon scheme. In such a theory the graviton would
interact directly with leptons, but only indirectly with
hadronic matter, and in the 6eld-current identity the
role of the current would be played by the energy-
momentum tensor.

It is well known~ that the existence of a conserved
~ International Centre for Theoretical Physics, Trieste, Italy

and Imperial College, London, England.' T. D. Lee, N. M. Kroll, and 3.Zumino, Phys. Rev. 15'7, 13/6
C', 1967).

~ S. N. Gupta, Phys. Rev. g6, 1683 (1954).The argument rests
on the fact that gravity couples universaDy to all Gelds including
itself. Thus the stress tensor which is to serve as the source of the
spin-2 particle must contain contributions from this particle itself.
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stress tensor which can act as a source of the spin-2
particles necessitates the adoption of ag. Einstein-type
system of field equations. For this reason, as well as
natural elegance, wc use the usual Einstein graviton
Lagrangian together with an identical one for the f
meson. The crucial step in the theory is the construction
of an f gmixing -term which provides one of the spin-2
6elds with a mass while maintaining general covariance.

The plan of th'e paper is as follows. In Sec. II the
essentials of the p-y mixing are summarized in a some-
what simpli6ed form so as to bring out those aspects
which have an analog in the f gtheory-. In Sec. III we
quickly review the usual Einstein generally covariant
theory of gravity, paying particular attention to the
somewhat knotty problem of the deGnition of energy-
rnomentum tensors in general relativity. The f gmixing-
is then introduced and the existence of a massive
state and an associated Geld-current identity is made
manifest.

Finally, in the conclusion, we speculate on some of
the consequences of the theory, from both the general-
relativistic and the 6eld-theoretic points of view.

g(p) — rp op 0 p OJ has

Z(A) = ——,'A„„A„„—A„J„"n,

(2 2)

(2.3)

(2.4)

This fact, together with the need for conservation of the stress
tensor, leads almost uniquely to Einstein's generally covariant
equations.

We shall discuss the essentials of the photon-p'-
meson mixing phenomena so as to motivate the analo-
gous graviton —f-meson mixing proposed in Sec. III. By
the p meson is meant the neutral component of the
p-au-Q complex with thc same quRntum numbers Rs thc
photon A„. The SU'(3) symmetry aspects of the ps
coupling are not essential to the points we wish to stress.

The po-y mixing, with the associated 6eld-current
identity, may be illustrated in its simplest form using
the Lagrangian

z= zQ)+z(A)+ z„,
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with p„„o=—B„p„'—B,p„' and A„„=—8„A„—.B„A„.The cou-
pling constants associated with p and A have been
omitted for the sake of clarity. They may easily be
supplied at the end of the manipulations. The leptonic
current J„"~ includes contributions from electrons,
muons, and 8' mesons, while the hadronic current
J„~'~ contains the charged p mesons together with all
other hadrons. '

The physical content of Eqs. (2.2)-(2.4) is that a
photon couples directly to leptons but only indirectly
to hadrons via the p-y vertex exhibitede in Eq. (2.4).

From this Lagrangian we obtain the equations of
motion'.

p J heo 2/22(p o A ) (2.5)

8„A„„=J»"&+rN2(p»o —A„), (2.6)

which, when added together, imply the conservation of
the total current

(J heo+ J' Iey) —0

One now defines a new hadronic current

(2.8)9»(p )

which is conserved if and only if J„"'~ is individually
conserved. This will happen if the S'+ mesons are de-
coupled from hadrons, ~ so that no charge passes directly
from leptonic to hadronic matter; that is, all lepton-
hadron interactions are mediated by the neutral A or
po

At this point it is conventional to de6ne p„'—A„ to be
the physical p' 6cld p' leading to the equations

(I) 2/2'p»'=8»(p+A) (2 9)

(II) B,A„,= J»ie'+2N2p»o . (2.10)

The first of these equations (I) is known as the field-
current identity, while the second (II) is the equation
of motion of the photon 6eM. It is important to observe
that in spite of the appearance of a m' term on the right-
hand side of Eq. (2.6), the theory does in fact contain a
zero-bare-mass state. This ls caslly scen lf we wrltc the
Lagrangian of Eq. (2.1) in the form

ep»v p»v oA»vA»v+ . (gp» ~A»)
2(s'+g')

gp oJ hen eA„J Ieo (2.11)
~We know that the photon does not possess direct strong cou-

plings and so its free Lagrangian belongs to the lepton class. For the
8' meson, however, at the present stage of our knowledge, it is
not really clear whether —~~$'„„W„„+qnPS"„8'„should he placed
in the hadronic or leptonic Lagrangians. The choice does not a8cct
the Geld-current identity argument.

4 The combination (p0—A) is chosen rather than (p'+A') so as
to preserve invariancc under an electromagnetic gauge-group
transformation when

p„'+a„e(~), A„A„+a„e(&~,y
1' Bwe had assigned the W mesons to the hadronic rather than

leptonic currents, the required decoupHng would be from the
leptons.

where thc p-meson hadronic coupling constant g and
photon electromagnetic coupling constant e have now
been correctly inserted. The diagonalized 6elds are

pp = (gp„' —eA„),
(@2y g2) I/2

(2.12)

(e.'+gA»),
(eoyg2)1/2

III 'tei'Ills of wllicll Eq. (2.11) becoiiies

op:—'p"o 4A»—.A "+22N'p»'p»'

(2.13)

(gP 2+~A )J has

(o2+ 2) 1/2

(—ep '+gA )J Ie&. (2.14)
(e2+g2) I/2

' IIL GRAVITON AND f MESON MIXING

In this section we discuss the mixing of the graviton
g with the f meson (by which is meant the appropriate
combination of fo, f", Aoo, and any other massive spin-
2 mesons). The underlying physical idea, in strict
analogy with Sec. II, is that gravity should couple
directlv to leptonic matter but only indirectly to
hadronic matter through an f gmixing. W-e shall start
by summarizing the usual Einstein theory.

The Einstein action integral' for pure gravity is

8,= — ( g)-"'R(g)d0-,
Kg

where a, is the weak gravitational constant (~,=2.2
X 10 "2/2. ') (224 being the electron mass) and dQ in-
dicates the volume element. The curvature tensor R(g)
is defined as

g

where the Ricci tensor R„„is a contraction of the curva-
ture tensor E p~p) with

R»av= I' »a, v
I' »v, a+& xv&"»a I'ia I' »v (3 2)

and E„,=E. „„.We shall be assuming a Riemannian
geometry~ so the connection I' is simply the Christo6el
symbol and may be expressed in terms of the metric
g~" as

I' "=:g'E(g ')s-. +(g ')p.... (g ')"s5—-,
We wish to emphasize that from a 6eld-theoretic point
of view there is only one independent 6cld g&". The other
entity (g ')„„which is normally written as g„., must be
regarded as a derived quantity. Speci6cally we have

(g ')"=(1I6g)"-p".2"g'g"g'", (3.3)
6 A very good modern text is J. L. Anderson, Priecip/es of

Retentivity I'hysics (Academic, London, 19@').
~ In particular this implies that the covariant derivative of the

metric tensor vanishes identically.
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R(g)
(—g '») +g„dQ.

2
Kg

(3.4)

Under a variation of g"" (which vanishes on the inte-
gration boundary) the symmetric energy-momentum
tensor T„„of the matter Lagrangian density Z is
defined by

1
I:&"( g) "'~g""3—~II.

2
(3.5)

Setting the variation of the total action of Eq. (3.4)
equal to zero leads to the fundamental field equations

(3.6)(II') Gyy RI,y Qg„vR= ,'~g'T„„——
where the left-hand side arises from the variation of the
curvature tensor. The Einstein tensor 6„,has an iden-
tically vanishing covariant divergence

where g means the determinant of the contravariant
tensor g&". To emphasize this dependence we shall fre-
quently write the covariant tensor g„„as (g ')„.. It
follows at once from Eq. (3.3) that (g ')„. is indeed
the inverse matrix of g&" satisfying

g" (g ')-=t'"
This point has great relevance when the techniques' for
handling nonpolynomial Lagrangians are applied to our
theory.

Concerning notation, a comma written in a tensor
subscript indicates ap ordinary derivative, while a semi-
colon indicates a covariant derivative.

In the presence of matter fields, the action integral
becomes

in which the integrand differs from that of (3.1) by a
four-divergence. Now compute the canonical energy-
momentum "tensor" from the gravitational Lagrangian
2' in Eq. (3.9) defined as usual by

82'
( g)—'"~."= — g.s.—4"~'

~gaP, v

(3.10)

Using the vanishing of the covariant divergence of the
matter field tensor T„"PEq. (3.8)$ and defining

e."=(—g) "'(r."+T.")

it may be shown that

g v 0

(3.11)

(3.12)

gay —( g)-1(Tpv+]Ia) pvvva—(3.15)

This vanishing of the ordinary divergence is a first
requirement of any energy-momentum tensor and led
Einstein to choose the definition of (3.11) for the total
energy-momentum complex. "

One important property, first demonstrated by
Freud, "of the pseudotensor 0„"is that it may be written
as a four-divergence. That is,

e."=24." . = ( g) '12( —k~."+(Ii—")G."7, (3 13)

where the so-called superpotential f„va is antisymmetric
in the upper two indices and is given explicitly as

( g) "V—." =(Il")g.she '(g"'a " g'g""—)j,' (3.14)

If a complex with two upper indices is required, one
might define tI&"=. g& 8 ".This object, however, does not
possess the desirable property of symmetry between its
indices. A symmetric complex can be defined as

Gp yv ——0

which implies in particular that

(3.7) with
]vyy= gpa~ v 1g/( g) ll2gpa) Sf vp- (3.16)

S'=—
g

Kg
2

(—g) '"R(g)

aR(g)—(—g "')g ~- dO (3.9)
~gatv, a,P-,P

See, for example, Abdus Salam and' J. Strathdee, Phys. Rev.
D 1, 3296 (1970), and references contained therein.

1'This is a direct consequence of the contracted Bianchi
identities.

T„".,„=0. (3.8)

One of the classic (and still unsolved) problems of
general relativity is the construction of some geometric
entity which can serve to describe the energy-momen-
tum content of the combined system of gravitational
and matter fields. Such objects are of great interest to
us as they form the analog of the currents of Sec. II.

One possible construct is due to Einstein himself.
First remove the second-derivative terms from the
gravitational Lagrangian of (3.1). For example, one
may use the action

'( g) "'g-"V—s" (3.17)

This allows an angular momentum complex to be
constructed.

There are very many other possible choices for an
energy-momentum complex, none of which is a true
tensor under the general coordinate group, and all
differing from each other by a four-divergence. For a
given set of global boundary conditions on an integra-
tion region on the space-time manifold, it may be possi-
ble to limit this arbitrariness. Good discussions of this
problem may be found in Refs. 6 and 12.

'o The use of the word tensor is misleading since although T„v
is a genuine mixed tensor, v„"most certainly is not, as follows at
once from its definition in (3.10).It has the correct transformation
properties under the Lorentz group but in general not under
arbitrary coordinate changes. This has been in the past a cause of
great consternation in the general-relativity literature. It may not
cause such concern to a particle physicist. The object ~„"is fre-
quently known as a pseudotensor.

» P. von Freud, Ann. Math. 40, 417 (1939).» A. Trautman, in Brandeis Lecture Notes 1964 (Prentice Hall,
Englewood Cli6s, N. J., 1965), Vol. I.
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(3.23)

where g&" denotes the usual Minkowski metric, diag
(1, —1, —1, —1). In order to make expression (3.22)
into a scalar density it will be sufFicient to make the
replacement

(3.1s)( f) '—"R(f)dt),
Kf

Ke now come to the main part of the paper, which vanishing vacuum expectation values and then normal-
concerns the introduction of a "strong gravity, "massive ize them in such a way that we can write
spin-2 particle into the theory.

We shall hypothesize that the pure f-meson part ot
the Lagrangian has the same form as that of (3.1).Thus ga"= qa"+~,ha",

we write

where K~ is the coupling constant of the strongly inter-
acting fmeson and is roughly equal to the inverse of its
mass. All geometric quantities in (3.18) are to be re-
garded as having their usual definitions in. terms of f&"

as the metric tensor. The essential prescription now is
that the hadronic matter Lagrangian is to be formed
using f&" as a metric tensor while for the leptonic
one must use g&". Thus we have as the combined
Lagl angian

(3.19)

Zr= (1///r2)( —f) '/2E(f)+Z(hadrons, f), (3.20)

Zg ——(1/K02)( —g) '/2R(g)+2(leptons, g) . (3.21)

So far the theory simply says that the universe consists
of two noncommunicating" worlds —the hadronic and
the leptonic. The crucial step is the introduction of a
mixing term Zy, which causes these two worlds to
interact. This term must be chosen so that one of the,
rank-2 tensor Acids (or more precisely some combina-
tion of both of them) describes a massive particle. "

The simplest mixing term that we can think of is
given by a straightforward "covariantization" of the
usual mass term for a spin-2 6eld,

'M'(F PF P —F-FPP), (3.22)

whose form is determined by requiring that Ii I =Ii&
describe a pure spin-2 system. "Now in order that the
Lagrangians ot Kqs. (3.20) and (3.21) make sense, the
fields f&", g&" viewed as 4X4 matrices must be invert-
ible. '~ In particular, we require that they have non-

'~In Z(hadrons, f), for example, we shall usc the ChristoBel
sym»& &,. (f)=if Pf(f ')p, .+(f ') p„, (f ')„„pg Wh—i&e -ill

2 (leptons, g) we shall use F» (g) =—,'ga&I (g-1)p„„+(g-1)&„„—(g ')
"This is in the absence of electromagnetic and weak inter-

.actions. Sce Ref. 3 for remarks concerning the hadronic or leptonic
nature of photons and 8' mesons."%e must emphasize that the resulting theory does not contain
two independent physical metr@ tensors, although it does, of
course, include two rank-2 tensors. The real metric tensor of
space-time (whatever that may mean) is presumably the rank-2
tensor Geld which corresponds to the massless combination of f
and, g.

1~ This form was derived by %.Pauli and M. -I'icrz, Proc. Roy.
Soc. (London) Ale, 211 (1939),by requiring that the spin-1 and
spin-0 components of the tensor Geld should not propagate. ln
order to construct a generally covariant mass term out of this
expression one needs an independent Geld g~ ' to replace the
Minkowskian contractions; i.e., one could not use such an ap-
proach to make massive gravitons if there were not also massless
ones present.

l~ Cf. thc dlscusslon following Eq. (3.2).

F'~ (1/~r) (f' g'—)

and make contractions relative to (g ') p Lor (f ') p].
In this way one finds the mixing term

M
gr ( detf) 1/2(fap —gap)(fv/1 gv))

4K''
X(gav gpss gap

—
g 2 )

aP ya( «tf) -'"Lf'g- 'f"g «
'

(faPg —
p ')'+6fa-Pg. p

'—12].-(3.24)

One can easily verify that to zeroth order in Ky and K,
this expression coincides with (3.22). Different mixing
terms with this property can be obtained by using g

'
and f ' in diiIerent ways to make the contractions. Also
one could use ( detg—) "' in place of (—detf) '".
Another sort of mixing term, one which employs cosmo-
logical terms, is discussed in the Appendix.

Consider now the equations of motion. Variation of
f&' and g"" yields the respective equations

G„.(f) T„„(hadrons, f) Bg/g
+— + — =0, (3.25)

g 2( f)l/2 2( f)1/2 gfav

G"(g)

/1 2( g)1/2

T„„(leptons, g)—+ =0, (3.26)
2( f) 1/2 ggla

where 2'„,(hadrons, f) is associated with g(hadron, f) in
Eq. (3.20) and does not include a contribution from
L'r, . Likewise for T„„(leptons, g). The contributions oi
the mixing term are given explicitly by

BZr2 M2—24 &/2+ &» ~f. ',
Bf"" 2//y

M'
ag —1

2K'

where F„denotes the combination

(3.27)

( «tf) "'L(g—'f—g 'f):-
Kf

(g 'f):(g "f"—" 3)], (32S)—
which reduces to 2/ "(F„„—2/„,1/P&Fp~) in zeroth order in
Ky and K„and therefore can be viewed as an interpolat-
ing 6eld for the massive spin-2 particle.
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The equations of motion (3.25) and (3.26) can be put
into the suggestive form

1
,(f)+ [ „"(f)+T„"(hadrons,f)]

(—)"'
8—„"2 ra — 5„"=0, (3.29)

2K'

P„", (g)+ [r„"(g)+T„"(leptons,g)]
( g)

1/2

M'
+ r„"=0, (3.30)

2K'

where P and. r denote the expressions defined by Eqs.
(3.13) and (3.14). In (3.29) the expression

[1/(—f)'"][r„"(f)+T„"(hadrons, f)]
is the Einstein complex associated with the hadronic
Lagrangian (3.20). On the other hand, the quantity
—b„i"Z~, is simply the contribution of the mixing term
to the total canonical energy-momentum complex.
Therefore let us define

8'„"(hadrons, f)= [1/( —f) 'I'][r„"(f)+T„"(hadrons, f)]
—8„"Z&„(3.31)

in terms of which (3.29) reads

(f)= 8 '"(hadrons, f) (M'/2K'—)P " (3.32)

On comparing this formula with Kq. (2.5) one sees a
term-by-term correspondence. Thus 8 P„" corresponds
to B,p„» 8'„" corresponds to the current J„",and 5„"
corresponds to the massive field p„. Finally, by analogy
with (2.8), one should define the hadronic tensor
current

O~„"(hadrons, f)= 8'„"(hadrons, f)+8 f„"~, (3.33)

in which case Kq. (3.32) takes the form of a field-current
identity,

(M'/2~r) g„"=O~„"(hadrons, f) (3.34).

This formula, together with the gravitational equation
of motion (3.30), demonstrates the similarities between
the p'-y and f gmixing theo-ries. "One slight difference
is the following. If, in the p-y model, the 8'+ mesons are
decoupled from the hadrons, then the hadronic and
leptonic currents are individually conserved. A similar
decoupling —of the W+ and electromagnetic inter-
actions —in the f gmodel -will not ensure 8„0'„"
X(hadrons, f)=0 This is b.ecause part of this stress
tensor is contributed by the mixing term itself which
contains the weak graviton g explicitly. To secure such a
conservation equation we would have to make the non-
generally covariant substitution ~g=0 in the mixing

The possibility of dominating the matrix elements of the
hadronic energy-momentum tensor has been considered before in
P. G. O. Freund, Phys. Letters 2, 136 (1962); R. Delbourgo,
Abdus Salam, and J. Strathdee, Nuovo Cimento 49, 593 (1967).

term, thereby decoupling the hadronic and leptonic
worlds gr'avitationally as well.

We end this section with the remark. that if half-
integer spin Gelds are present in the matter Lagrangian,
then the well-known vierbein formalism" for the
gravitational fields must be introduced. There are no
consequences of this, apart from a slightly increased
algebraic complexity, and we shall not give the details
here.

IV. CONCLUSIONS

The present theory can be surveyed from at least
three distinct points of view: (a) that of a particle
physicist, (b) that of a general relativist, or (c) that of a
cosmologist.

(a) From a particle physicist's point of view this is
basically a theory of strong interactions which employs
Einstein's famous equation for describing the fmeson's
universal coupling to the hadronic stress tensor. The
Geld stress-tensor identity could, at a date in the far
future, provide a means of correlating graviton f scatter-
ing data just as the well-known Geld-current identity
does for photon p scattering. Immediately, however,
the major testable statement of the theory would be the
universality of the f meson's coupling and its stress-
tensor form. To check this, it is important to state
explicitly if our f meson can be identified with any of the
known massive spin-2+ objects. These are the fo
(1260 MeV decaying predominantly into two pions),
f" (1514 MeV decaying into XK), and A2 (1300 MeV
decaying predominantly into p+~).

To decide on this, note that the strong tensor trans-
forms for SU(3) as a mixture of a singlet, an octet, and
possibly a 27-piet, with the singlet predominating.
Identifying, as a first approximation, our f with the
singlet mixture of f' and f" (in an ideal mixing scheme),
a preliminary investigation based on decay-rate data
and exchange degeneracy of f' and f" and &o and P does
not seem to lead to any inconsistency with the hypoth-
esis that f couplings may indeed be proportional to
the strong stress tensor. " Thus on present evidence
it could well be identified with a mixture of the known
2+ objects, though nothing rules out the more aesthetic
possibility" that the f of this paper is a new object
lying on the Pomeranchuk trajectory which, in view of
recent data" assigning to this trajectory a slope lying
between 0.3&a,~&0.5, would possess a mass between
1400 and 1700 MeV. The universal coupling of the
Pomeranchukon to hadronic. matter would then be
mirrored in the universal coupling of its spin-2 recur-
rence to the strong stress tensor.

Notwithstanding the title of this paper, we must
confess the immediate incentive we had for using an

"V. Fock and D. Ivanenko, Compt. Rend. 188, 1470 (1929).
'0 We are indebted to Professor B. Renner, Professor R. Capps,

and Professor P. Rotelli for informative discussions on this point."P.G. O. Freund, Ref. 18.
"G.Beznogikh et a/. , Phys. Letters 30B, 274 (1969}.
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Einstein-type equation for strong f' gravity was the
search for a universal nonpolynomial feature in strong-
interaction physics. From recently developed techniques
in Geld theory we know that for such Lagrangians the
conventional ultraviolet inGnities are automatically
suppressed, the inbuilt ultraviolet cutoB being pro-
portional to the inverse of the (universal) length in the
theory. For Einstein's gravity theory —and for lepton
physics —it was shown in a recent paper" that this in-
built cuto8 comes at around (~,) '= 10"BeV. For the
strong gravity in its present formulation this would
come at around (zr) '=a few 3eV. Most theoretical
work in strong-interaction physics heuristically em-
ploys such a cuto8; the present theory would provide a
more rigorous formulation of this.

(b) Consider now the implications of the theory for
general relativity in its metrical aspects. The theory
works with two second-rank. tensors. The Grst question
one may ask is: %hich of the two tensors approximates
to the "actual" metric tensor on space-time? In regions
far removed from hadronic concentrations of matter,
clearly the old tensor g predominates. Inside hadrons,
however, the situation may perhaps better be described
using the f tensor. The geodesics associated with the
f metric may provide a semiclassica, l description of
paths of "particles" inside hadronic matter. Likewise
one may be tempted to speculate with Wheeler24 on
whether "feons"—the analog of "geons"—may not be
the elementary stuff of hadron physics. Also of interest
would be the relationship of hadrons to "black holes"
in a strong f-gravity field.

(c) The most exciting implications of the present
theory may, however, be cosmological. Could f
mediated gravity be repulsive for short distances and
what implications may this have for the problem of
collapse? At the very least, the gravitational law of force
(for a particle of mass M) may be expected to be modi-
Ged exhibiting roughly an M'l" dependence for monstatic
high-frequency graviton interactions rather than a linear
3f dependence. This would be in analogy with the re-
sults of the p-dominance model of hadron electrody-
namics where photonic high-frequency interactions with
a large nucleus of charge Z are expected to show a sur-
face dependence" (as a consequence of the conversion
of the photon to the p meson, followed by a short-range
surface — rather than volum- -absorption of the p
meson), giving effects proportional to Z'~' rather than Z.
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APPENDIX

There is at present no criterion (other than that of
simplicity) which could serve to limit one's choice of
the f gm-ixing term. The one exhibited in the text
LEq. (3.24)7 seems to be one of the simplest. However,
it may be worthwhile to consider others as well. One
such is given by

Zr, =X(—detg) 'I'+li'( —detf) 'I'+y( —detf)
X(—detg) ~P—det-,'(f+g)7 &, (A1)

where p, n, P, and y are parameters which must be fixed
in terms of the "cosmological" constants X and X'.
The following paragraphs are concerned with develop-
ing the criteria whereby the parameters p, n, P, and p
are Gxed.

First, notice that general covariance by itself im-
poses only the restriction

~+P+v=4. (A2)

—',l~+ u(P+-,'~) =0,
2li'+u(~+ sV) =o

(AS)

(A6)

Further conditions are obtained by expanding the
Lagrangian

&r+&g+ &fu

in powers of the quantized Gelds Ii I"" and h&" which were
defined by (3.23). In this expansion we require the
terms linear in F"" and h"" to vanish (absence of tad-
poles) and that the quadratic terms define a sensible
propagator (absence of ghosts).

The determinants in (A1) may be typically ex-
panded" according to the formula

(detf) a=e-a Tr in&i+a&&

—g-a Tr (aE—)a~E~+ ~ ~ )

= 1—nz TrF+2nw $TrF +n(TrF)27+ ~ ~ ~ .
(A3)

We want to show that 2f, provides a mass term for one
of the two particles. On expanding this up to quadratic
terms, the constant and linear pieces are

z„=(~+7'+„) {',7+1 (p+,'~)—) T-r(.,h)
(2li'+ p—(n+ 2y) ) Tr(arF)+ (terms quadratic in h,F)

+ (higher-order terms) . (A4)

The linear pieces should be eliminated leaving only the
quadratic ones, thus imposing the constraints

We wish to acknowledge a stimulating conversation
with 3. Zumino, who informed us of his work with J.
Wess along closely related lines.

~ R. Delbourgo, C. J. Isham, Abdus Salam, and J. Strathdee,
Phys. Rev. (to be published).

2' J. Wheeler, Geometrodynumics (Academic, London, 1962).
"We are indebted to J. S. Bell for a discussion of this.

which when added together imply, on using Eq. (A2),

li+X'+@=0. (A7)

26To simplify the computations it is convenient to use a
Euclidean-space metric. This has the eGect of replacing the g» in
Eqs. (3.40) and (3.41) by the Kronecker delta 8». The minus signs
must also be removed from in front of the determinants. For
example, (—detf) ~ becomes (detf) . This change involves no
loss of generality and the correct Minkowski signature can easily
be inserted at the end.
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Notice that the constant term in Eq. (A4) is eliminated
simultaneously with the linear terms.

The computation of the second-order quadratic terms
is straightforward but tedious. The result on substitut-
ing the above constraints is

t/'Tr(KrF K,h)—7'
8(X+X')

(X+X')y+ $Tr(KrF KgI2)—27
8

+(higher-order terms) . (AS)

KfKg
g""=ng.+ kgb ~

(K 2+K 2)1/2
(A16)

The parameters n, p, and/2 can be eliminated by
conditions (A5)—(A7). The parameter y can be elimi-
nated by requiring that no spin-0 ghost should appear.
To see this, a tedious calculation is necessary. One must
set up the spin-0 part of the propagator matrix —in the
center-of-mass fram- for the fields Pg" delned by
(A10). According to (AS) and (A9), this propagator is
defined by the bilinear form

(Mll' M21' & (P")
(A17)

EM122 24p2+M222/ EP—")
A similar expansion must be performed for the quadratic where
kinetic terms of the f and g fields. These appear in the
form

4 (Il/vv, alggv, a I2/vtv, aIgvv, a+2I//gg, a~av, v

—2h„„, h„,„), (A9)

with a similar expression for the F field.
From (A8) it is clear that the bilinear terms in 2 are

diagonalized by the fields F and h defined by

Mll (Kf +Kg ) +(X+X )r
X+X'

Ml 2 —M212 —(Kr2+K 2)
X+X'

M22 (Kf +Kg ) +2(X+X )P
X+l1'

(A18)

In order that no ghosts should appear —in fact no spin-0
states of any kind —the determinant of (A17) must be
independent of p'; i.e., M112=0. Thus the parameter y
must satisfy the condition

(Kr2+K 2)2pgv —KrFgv K /ggv

(A10)
(Kr2+K 2)1/2hgv —

K Fgv+K /pv

in terms of which the pure spin-2 part of the mass term
appears as V,'/(X+X')+ (X+V)y= 0 (A19)

3

Z„l»= —42M2 P P,,P...
with

(A11) and the mass of the spin-2 meson (A12) is given by

M'= —'U, '/(X+X')(K '+K ') (A20)

f""= (f"" g"")— (A13)

M'= —-'(X+X')y(Ky2+K ') (A12)

Obviously none of the quantities above is necessarily a
generally covariant tensor. The associated diagonal-
ized" tensor fields are

Apparently this mixing model requires that both cos-
mological constants shall be nonvanishing.

In summary, we find the rather surprising result that
the parameters n, p, y, and /1 which specify the mixing
term are completely fixed in terms of the two cosmo-
logical constants,

g" =I 1+—
I I

g"+—X"
I

which are related to I' and h by

(A14)

n= 12(2X+V)V/(X+ V)',
P=—',X(X+2K')/(X+ X') ',
y = —V,'/(X+ X') ',
/2= —(X+l%.') .

(A21)

fgv —
(K 2+K 2)1/2Fgv (A15)

~7 The insertions of Kqs. (A10) show clearly that the true weak
and strong gravitational coupling constants are, respectively,

Kp Kf«p/(Kf +Kp )~ and Kf =Kf /(Kf +Kp )~.

Experimentally, of course, K,««f and inversion of the above equa-
tions shows that «,«Kf. Essentially then, (Kf'+Kp')& may be set
equal to «f and Kq. (A14) becomes simply g„„=g„„.These coupling-
constant renormalizations have an exact analog in the p-y case
where, as shown by Kqs. (2.11) and (2.13),

e= eg/(e +g') & and g =g'/(e +g~) &.

A constraint on the relative values of the two cosmo-
logical constants is provided by (A20), which gives the
heavy graviton mass.

An interpolating field 5„" for the heavy graviton in
this model can be defined by similar arguments to those
used in Sec. III. The analog of Eq. (3.28) is

."=( r/M'){ —l1(—g) '"4"
+Lpga g ( f)—1/2 l1( g)-1/27

&&i»."+~(f+ ).=g' 7g)


