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Classical Electrodynamics in Two Dimensions: Exact Solution~
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The classical electrodynamics of E charged pointlike particles, moving in the space-time of two dimen-
sions, is studied. The exact solution of this model is found, and its properties connected with the Poincarb
group in two dimensions are described. In the case of 1V=2, our solution reduces to a model of relativistic
classical mechanics discovered by Currie and Jordan and by Beard and Fong. Nonlinear generalizations
of the model are also discussed.

I. INTRODUCTION

VEN in classical relativistic theories, exact solu-
~ tions are not easily found. In this paper we lower

the number of space dimensions from three to on- the
trick that has recently become very popular in quantum
theories —in order to obtain an exactly soluble model of
a relativistic theory.

The Grst model, which we discuss in Secs. II and III,
describes E charged pointlike particles coupled. to the
electromagnetic Geld. ' Except for the number of space
dimensions, this model does not diGer from Maxwell-
I,orentz electrodynamics.

When there are only two particles present we repro-
duce the results found by Currie and Jordan' and by
Beard and Fong' in their studies of relativistic theories
of particles.

In Sec. IV we brieQy describe nonlinear generaliza-
tions of our model.

II. FIELD AND I2ARTICLE EQUATIONS

Following the standard procedure, we shall derive the
equations of motion for the Geld and the particles from
the variational principle, starting from the following
action integral 5:

1
d'x f„„(x)f~"(x)—P m~ ds~

where mz, ez, and $z& denote, respectively, the mass,
charge, and space-time coordinates of the 3th particle.
The di6erential of the proper time ds~ is defined, as

~ Supported in part by the U. S. Atomic Energy Commission
under Contract No. AT-30-1-3829.

t On leave of absence from Warsaw University, Warsaw,
Poland.

~ The term "electromagnetic" is probably not quite appropriate
here, since the 6eld-strength tensor f„,=8„A,—B,A„has only one
independent component. We shall use it here, however, to stress
the formal similarity between our model and standard electro-
dynamics. -

'D. G. Currie and T. F. Jordan, in Lectures in Theoretical
Physics, edited by A. O. Barut and %. E. Brittin (Gordon and
Breach, New Vork, 1968), Vol. XA, p. 91.' A. N. Beard and R. Fong, Phys. Rev. 182, 1397 (1969).

usual, as

gA dt(I vA2)1/2 (2)

The variations of 8' with respect to the vector potential
A„and the particle coordinates $~" give the following
equations of motion:

tl.f""(*)=Z e~ d4" ~(21(*—4), (3a)

A~" db. "

mA eAf (tA)
ds ds

(3b)

The homogeneous Maxwell equations are satisGed
identically in the space-time of two dimensions. In
nonrelativistic notation Eqs. (3) become

g,f(x,t) = —P egvgh(x (g(t)), (—4a)

8 f(x,t) =P e~b(x —(&(t)),

m~ Pv~ (t) (1 v—~') 't' j=e—~f(gg-(t),t),
dt

(4b)

(4c)

III. CANONICAL FORMALISM

For the canonical formulation of our model, we intro-
duce the energy-momentum tensor T„„,

I',.(*)=f"(*)f".(*)+4g,.fi.(~)f"'(*)

4'~v
+Q m& dg» tt&» (x—]&), (6)

A ds

where x and ( are the space components of x and $ and

f(x) = fpi(x). Tlie field equations (4a) and (4b) can be
easily integrated to give

f(x,t) =g e~e(x —gg(t))+ci
= —P eg8((~ (t) —x)+c2. (5)

The Geld strength, therefore, has a discontinuity equal
to e~ at the position of the 8th parti. cle. These dis-
continuities make it impossible to Gnd the motion of the
particles directly from Kq. (4c), because the right-hand
side of this equation is ambiguous. In the next section
we shall show that an alternative method based on the
canonical formalism leads to an unambiguous expression
for the force.
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and calculate the total energy E,

E= dX F00 Kph = mA 1—VA
A

Also, the coordinates of the particles transform prop-
erly' under the action of these generators,

{KA,P) =1, {4,H}=vA, {4,X) =4VA. (14)

Equations (13) and (14) express the relativistic covari-
ance of our model. The Dirac-Schwinger condition'

After expressing the total energy in terms of the
canonically conjugate particle variables gA and pA, =Poi(x, t)+&o2(y, t)j&A(x —y) (15)

pA=mAvA(1 vA )

we obtain the Hamiltonian B of the system,

(8) which expresses the local relativistic covariance, can
also be veriGed in this model. LTo evaluate the Poisson
bracket in Eq. (15),we eliminate the Geld. with Eq. (5).)

1
H(4 pA) =Z (mA'+pA')"'+ — dx f'(x t), (9)

2

where f(x,t) stands for a known function of the gA's

given by Eq. (5). In order to make the integral of f'
Gnite, we must restrict ourselves to systems of particles
which are neutral as a whole. In that case th'e constants
c& and csin Eq. (5) can be chosen to be zero so that the
Geld f vanishes both to the right and. to the left of the
system of particles. The Hamiltonian can now be
written in the following form:

H((A pA) Z (mA2+pA2)l/2

—', x e~e fdx 8(4—x)e(x—4)
AB

IV. NONLINEAR GENERALIZATIONS OF MODEL

Any nonlinear version of our model, in which the Geld
Lagrangian is chosen to be an arbitrary function of the
invariant s2f„„f&—"=22fs, is also exactly soluble. Such
modiGcations do not change the main feature of the
model, that forces acting between particles are constant.
%hat is changed, however, is the simple two-body
character of the forces. As we shall see, the force acting
on one of the particles cannot be decomposed in the
nonlinear case into a sum of contributions, each
attributable to one particle. To show this character of
the forces, we will describe brieQy a general nonlinear
model of electrodynamics in two dimensions.

The action integral for the Geld will now be

= 2 (mA'+PA')"' l4'r = d'x 2 (x)

2 2 eAe&l 4 ~el (10) where P(x) is any' local function of fs
AB

(16)

The canonical equations of motion derived with the use
of this Hamiltonian are

Z(x) =F(fs(x)).

The Geld equations in this case are

(17)

d4
Ch

pA (mA2+pA2)
—1/2 (11a) B„h&"(x) =p eA d]A" 3(2)(x—pA), (18)

BH
=-,'eA P e2/e((A —ge) . (11b)

where

BZ (x)
ho"(x) =— (19)

To test the relativistic covariance of this model, we
construct from the energy-momentum tensor the two
remaining generators of the Poincare group. In terms of
the canonical variables, they read

The independent component h"(x) of this Geld will be
called h(x),

(20)
P=p pA,

A
(12a)

The total energy of the system is
E=p 4(mA2+pA')"2 —

4 p eAe2/~ (A2 —ges~ . (12b)
BF

E=p mA(1 vA') '/'+—dx~ f F~, (21)—
E af //

AB

The generators H, I', and E obey the Poisson-bracket
relations of the Poincare group:

{H,P) =0, {E,H) =P, {E,P}=H.
4 Reference 2, p. 93.' P. A. M. Dirac, Rev. Mod. Phys. 34, 592 (1962);J. Schwinger,

(13) Phys. Rev. 130, 800 (1963).
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and the Hamiltonian is

+(4 pA) Z (iisA +pA2)1/2+ dx G(hs) (22)

where G is the energy density of the 6eld expressed as a
function of h,

gp
G(h')= f F—. (23)

rif f f(s)=

The field h in formulas (22) and (23) is a function of the
pA's obtained by integrating Eq. (18),

h(x, t) =p eAe(x )A(—t)) = —g eA0((A(t) —x). (24)

The integrated expression for the interaction energy can
be simplified if we number the particles according to
their instantaneous con6guration —say, from the right
to the left. The Hamiltonian (22) then becomes

&(FA,PA) =z(risA'+pA')"'+(52 —51)G(el')

+((,—(s)G((e,+e,)')+

+(4+i—4)G((Z eA)')+
A=1

+(KN (N—1)G(&N ), (23)

and the force acti.ng on the 8th particle is

G((ei+ +err)') —G((et+ . .+sir i)'). (26)

It is only in the linear case that this expression breaks up
into a sum of terms eye~.

V. DISCUSSION'

We believe that the analysis of the two-dimensional
version of electrodynamics which is presented in this
paper sheds some light on the interesting and intensely
studied problem of the existence of intera, ctions in

' There are some obvious requirements that this function must
obey; for example, the energy density should be positive.

relativistic classical particle mechanics. ~ The model of a
relativistic two-particle system with the constant inter-
particle force has been introduced in Refs. 2 and 3 to
provide an example of a system of interacting particles.
Our results show that this interaction can be attributed
to a held, even though the only dynamical variables
which need be introduced in this model are particle
coordinates and momenta. The 6eld generating the
interaction contains only the one-dimensional analog of
the Coulomb field and has no degrees of freedom which
could be excited. However, we can discover the 6eld
behind these particle interactions if we search for the
local theory which underlies this relativistic model of
particle mechanics. The local aspects are most easily
described in terms of the energy-momentum tensor, and
the formula for the energy density shows that the
interaction energy is distributed in the space be/zeee the
particles. This is a clear indication that the space is
filled with the energy-carrying 6eld, which suggests to
me that the system of interacting particles with constant
two-particle forces is not complete as a particle system.

Note added its proof. After this paper was submitted
for publication, Dr. A. Staruszkiewicz has pointed out
to me that he derived the motion of two particles in
two-dimensional electrodynamics from the Fokker
action principle. '
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