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Hydrodynamic equations for one-dimensional motion, of interest in supernova explosions, are integrated in
the relativistic limit. A simple solution is found for free expansion into a vacuum. The propagation of a
shock into a medium of decreasing density is determined, and the solution for the subsequent Row behind
the shock is also obtained.

I. INTRODUCTION

EXTREME relativistic motions of a Quid can occur
~ in supernova explosions as the result of a strong

shock propagating through the outermost mantle of the
star. It has been proposed that cosmic radiation is
matter ejected from the surface of the star in this
manner. '

In this paper the hydrodynamic equations for one-
dimensional motion are integrated in the relativistic
limit. A simple solution is found for free expansion into
a vacuum. The propagation of a shock into a medium
of decreasing density is also determined, and the solu=

tion for the subsequent Qow behind the shock front is
obtained.

P+P'~ ~ P(P+~)l1+ —i=0,
c/2: 1—P' c/C/.

' 1—P' )

~ p(p+&)» F+p'p
=o.

a2: 1—p' i ac/, 1—p'
(2)

There is also a conservation law for the nucleon num-

ber density,

of the energy-momentum tensor equal to zero. ' Let p
be the pressure, E the proper energy density, c the
speed of light, and Pc the fluid speed. For one-dimen-
sional motion in the x direction, the vanishing of the
divergence gives

IL HYDRODYNAMIC EQUATIONS

The equations for the motion of a Quid in the absence
of external forces are obtained by setting the divergence

c/ 22p c/ 22

+
gg (1 P2)1/2 gc) (I P2)1/2

=0 (3)
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where e is the nucleon number density in the proper
frame of reference. In the nonrelativistic limit, (1)—(3)
reduce to the classical forms of momentum, energy, and
mass conservation.

L. D. Landau and E. M. Lifschitz, Fluid Mechanics (Addison-
Wesley, Reading, Mass. , 1959).
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An equation of state is needed to complete the de-
scription of the Quid. In the extreme relativistic limit,
when most of the energy is in radiation or lepton pairs,

——E3 (4)

When the rest energy is not negligible, a better approxi-
mation is

p =-', (E—ewe'), (5)

where m is the nucleon mass. '
Sound propagation may be examined by eliminating

the term p(p+E)/(1 —p') between (1) and (2), with
the result

B2 p+p2E B2 E+p2p
=0.

P2 B(~t)2 1—P2
(6)

If the amplitude of the sound wave is not too large, it is
always possible to choose a reference frame where P'((1,
so that

B'p 1 B'E
=0.

Bx2 c~ BP
(7)

p =y'epN', c'(P+P,)P,

EP,c=p'rtomc'(P+P, )c,

~. =v"(tt+t3.)'
Dividing (10) by (11) gives

nsc =y ~

(9)

(10)

(12)
' Both forms of the equation of state assume that the lepton

pairs are either absent or are extremely relativistic. For a gas of
photons and e+ pairs this approximation leads to an error in the
pressure of at most about 20% )this is readily derived from Table
II of C. F. McKee, Astrophys. J. 151, 647 (1968)g. Equation (4)
further assumes nygc2«gT4, or n«5X10 "T4 (T in 'K), while (5)
neglects the nucleon pressure, which is valid for n«20T3.

4 E. Teller (unpublished).

For adiabatic variations, hE and hp are related by

aE=(BE/Bp).~p=p. 2~p, (8)-
where (BE/Bp), is the adiabatic derivative of the energy
density with respect to pressure. Then (7) becomes a
wave equation with a propagation speed cP,. For the
equation of state (4), Eq. (8) holds for Quite displace-
ments and, through second-order terms in the ampli-
tude, sound waves propagate with a constant speed
c/v3. The constancy of P, signikcantly simpliQes the
hydrodynamics.

The conditions across a strong shock front are con-
veniently treated in the frame of reference in which the
shocked Quid is at rest. 4 The internal 'energy of the un-
shocked Quid is ignored. Let P be the velocity of the
unshocked Quid, cP, the speed of the shock front relative
to the shocked Quid, and deQne y= (1—P') '". Then
(1)—(3) are replaced by corresponding continuity con-
ditions across the shock:

e/e p ——y (1+P/P, ) =4@+3. (15)

Because of the Lorentz contraction, the "apparent com-
pression" n/geo is 4+3/p, or just 4 in the relativistic
limit. However, the apparent compression in the refer-
ence frame of the unshocked Quid is ye/eo ——p(4p+3),
or 4p' in the relativistic limit: the Quid appears highly
compressed by the shock. The energy density can also
be expressed in terms of p through Eq. (15):

E=pnme' =nome'p (4@+3).

III. MEMANN INVARIANTS

(16)

As originally shown by Taub, 5 ' the relativistic hydro-
dynamic equations can be integrated by the method of
characteristics. Multiplying (2) by P and subtracting
from (1), and vice versa, yields the two equations

Bp Bp 1—p') Bp Bp)
~ + =-

I

—+p
Bx Bct p+E) Bx Bct)

BE BE p+E) Bp Bp)+ -=-
i

—+e
Bx Bct 1—P') Bx Bct]

(17)

(18)

The combination of derivatives on the left-hand sides
of (17) and (18) are convective time derivatives follow-
ing the motion of a Quid element. Because heat conduc-
tion and viscosity terms have been omitted from the
energy-momentum tensor, the volume changes of a par-
ticular Quid element are adiabatic. Consequently, the
adiabatic derivative (8) can be introduced to rewrite
(18) as

Bp Bp p, '(p+E)) Bp Bp)
~ + =-

i

—+~
Bx Bct 1—P' ) Bx Bct&

' A. H. Taub, Phys. Rev. '74, 328 (1948).' A. H. Taub, Phys. Rev. 107, 884 (1957).

If p, is the ratio of proper energy to the nucleon rest
energy, (12) becomes

(13)

Equation (13) expresses the condition that the energy
per nucleon ahead of the shock pic' is equal to the
energy per nucleon behind the shock @me'. In the non-
relativistic limit (13) reduces to the usual condition that
the internal energy and kinetic energy behind a strong

0
shock are equal. The shock velocity can be obtained by
dividing (10) by (9):

P.=p!EP=ant 1)!(—+1)]'" (14)

In the last step (5) and (13) have been used. In the ex-
treme relativistic limit p, —&~, so that P, = s. Since the
speed of sound is c/v3, the shock is subsonic. Further-
more, in this limit y, '=V2y, where cP,' is the shock
velocity in the reference frame of the unshocked Quid.

The compression, defined as the ratio of proper den-
sities, is given from (11), (13), and (14):
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a sound wave traveling in the opposite direction to the
Quid, i.e., on the backward characteristic C . In the
nonrelativistic limit, o&12 lnL(1+P)/(1 —P)j reduce to
the Riemann invariants of classical hydrodynamics.

The evaluation of 0 is immediate for the equation of
state (4). Then P,=—234$, and (20) becomes

dE
0 = ~xV3 = x~v3 lnE.

E
(25)

The invariants on the forward and backward charac-
teristics can then be taken as

I'= L(1+P)l(1—P)jE"""
~+2E+ (v'3) /2

(26)

H p is a unique function of E, it is convenient to intro-
duce a new dependent variable 0-..

p.(p+E)
(20)

Two cases will be considered: the radiation-dominated
equation of state (4), and isentropic Qow, in which p
and E are connected by the adiabatic expansion law.
Then (17) and (19) become

a a) (1+p (a a)
I p—+ 8»l = —4 —+p
k ax act) (1—P (ax act/

(21)

FIG. 1.Expansion into a vacuum. At t =0 the Quid is at rest and
extends from x=0 to x= —cc. Three backward characteristics
C of the rarefaction fan at 0 are shown. Above the characteristic
C (p =P&) the Quid moves with constant velocity p&, the velocity
of the leading edge of the expanding Quid. Along C (p=p ) the
Quid speed and speed of sound are equal. A sound wave propagates
backward into the Quid at rest along C (P =0). A typical particle
world line C and a typical forward characteristic C+ are also
shown. Above C (p=p1) the speed of sound is zero and C+ is
parallel to C0. Since all points in the Quid can be reached by for-
ward characteristics originating from the Quid at rest at t =0, the
forward invariant has the same value 8;(&3)'2 throughout the Quid.

where the second line is the relativistic limit. The adia-
batic expansion laws are those for enclosed radiation:

p= po(Vo/V)",

E=Eo(Vp/V)4/3

(27)

(28)

/4 1=3p—/ n2nc2(/4p —1)(Vp/V)'", (30)

while (28) becomes

E=n2nc2/4=Ep(Vp/V)go '+(1—
/4o ') (Vo/V)'"j (31)

The adiabatic derivative (aE/ap), is formed by differ-
entiating (27) and (31) with respect to V and forming
the ratio. The result is

/4 =E/n2nc2 =/43 (Vp/ V)'/3, (29)

where the subscript 0 designates the initial value of a
quantity.

To evaluate 0 using the equation of state (5), the
adiabatic expansion laws are needed. Since the pressure
and internal energy density E—emc2 are still connected
by the laws for radiation, the pressure law (27) remains
valid. Equation (29) is replaced by

p (aE/ap) —1/2 1~3(~ 1)1/2(~ 1)—1/2 (32)
( a a (a a ) (1+p)

i p—+ — = p.i
+p-—

i a2: act Eat act/ E1—p)

By addition and subtraction, (21) and (22) become

a a-- 1yp
(p+p.) +(1+pp.)— ~+lln

ax act 1—p//
(23) The invariant on the forward and backward charac-

teristic can now be taken as

(22) Since (/4
—1) (/4

—4) '(1 for /4) 1, the speed of sound is
always less than the extreme relativistic value c/V3.
Evaluation of (20) gives

o = 2' in)2 (/4
—1)'/'/%3+2 (/4

——')'/'/V3g. (33)

8 a 1+p
(P—P )—+(1 PP,) o.———,'ln =0.

Bx act 1—p
(24)

I+= (1+p) (1 p) 'L2(t4 1)'/'/VS+2(/4 41)' 'Iv3j
~41+443~2(1 )+243 (34)

Since (P+P,)(1+PP,) is the relativistic sum of the
Quid velocity and sound velocity, (23) states that the
quantity 0+21 1nL(1+P)(/1 —P)j is constant on the
world line of a sound wave traveling in the same direc-
tion as the Quid. This world line is the forward charac-
teristic, designated C+. Similarly, (24) states that
o —~ lnL(1+p)/(1 —p)j is constant on the world line of

The second line is the relativistic limit, which diGers
only by a constant from (26) since E~ /44 in an adiabatic
expansion.

IV. EXPANSION INTO A VACUUM

Let the Quid be at rest at t=O, extending from x=0
to x= —~.Also let the initial energy density E; be the
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same throughout the ffuid so that the quantity o in (25)
also has the same value o; throughout the Quid at t=0.
Since every point in the expanding Quid can be reached
by a sound wave originating from a point in the Quid
at rest, the invariant on the forward characteristic
(1+p) (1—p) 'e" is equal to es~' throughout the entire
Quid. Now on a backward characteristic the quantity
(1+p) (1—p) 'e "must be constant, so that its product
with the forward invariant, given by (1+P)'(1—P) s,

must be constant on a backward characteristic. This
implies that p is a constant and the backward char-
acteristics are straight lines. A rarefaction fan of
backward characteristics emanates from the surface
of the fluid at t =0 (the point 0 in Fig. 1). At one ex-
treme is the characteristic with P=0, which represents
a sound wave propagating backward in the resting Quid.
The other extreme of the fan is the characteristic for
the maximum velocity Pt attained by the leading edge
of the expanding Quid.

The velocity of the leading edge is obtained by solving
the equation

(35)(1+P )(1 P )
—t=es(~*—~r)

For the equation of state (4), Kq. (35) becomes

(1+Pt) (1—Pt) '—kyts= (E;/Et) (~s)(s. (36)

The result diverges as Ej —+0. The dBBculty can be
evaded by assuming that (4) only holds for p) 1 and
that the pressure drops to zero when p reaches the value

1; thereafter the Quid expands without acceleration.
Combining (28) and (29) gives

&'/~= ( '/u)',

where p; =8;(44,)sscs) ' and F.attains its least value when
)4=1. Setting E equal to this least value in (36) gives

Yi -IJ (38)

Thus the leading edge acquires a directed energy which
is ~p; ' ' times as large as its initial energy.

If.the equation of state (5) is used, (35) becomes

(1+Pt) (1—P )
—t =L2 (p —1)t&s/~3+ 2 (i4 —t))Is/~ j4&s

(39)
In the relativistic limit, (39) reduces to

—t (16/3) lsp. &4 (40)

Comparison with (44) shows that the cutoff procedure
used above underestimates the 6nal energy by a factor
(16/3) &s. In the nonrelativistic limit, (39) becomes

p)=6p . (41)

This is the result to be expected from classical hydro-
dynamics for a Quid obeying the adiabatic expansion
laws (30) and (31).'

V. SHOCK PROPAGATION

In the relativistic limit a solution can be obtained for
the propagation of a strong shock into a medium of de-

Fro. 2. Shock driven by expanding Quid. The initial conditions
are the same as for the expansion into a vacuum problem shown
in Fig. 1, except that the region x&0 contains a Quid of decreasing
nucleon density n and energy density nmc~. As before, three back-
ward characteristics C of the rarefaction fan emanating from 0
are shown. The characteristic C (P=Po) corresponds to the ve-
locity p0 of the shocked fiuid at O. A contact discontinuity /labeled
Cs(U)) separates the shocked Quid from the unshocked expanding
fiuid.

4 sEHs) (s =F.,(&s) Is (42)

where p and E are at the shock front. By using (13) and

(16), Eq. (42) becomes

y =-,'(E;/Nwcs)',

s =—sVS(2+F3)-'.
(43)

Thus the shock strength increases approximately as
e '/, where n is the density just ahead of the shock.

The shocked Quid expands until p, =1 and the avail-
able internal energy is exhausted. Since the forward
invariant remains at the same value at the shock front,
it follows that

y 2g (~3)/2 —/2'(/3)/2f f (44)

creasing density. At t =0, let a hot Quid of constant en-

ergy density E; occupy the region x&0 and a cold Quid

with p= 1 and decreasing density n occupy the region
x&0; both are at rest. Forward characteristics originat-
ing in the hot Quid carry the constant value of the for-
ward invariant E;("'~/' throughout the region behind the
shock. Then, just as in the problem of expansion into a
vacuum, the backward characteristics are straight lines
which P and y are constant. A rarefaction fan of back-
ward characteristics emanates from 0 (Fig. 2). A con-
tact discontinuity separates the shocked from the un-

shocked Quid. Since the pressure is continuous across
the discontinuity, the medium appears continuous inso-
far as hydrodynamic motion is concerned (the dis-

continuity is in the nucleon density, which does not
enter the hydrodynamic equations in the extreme rela-
tivistic limit). The characteristic C (P=0) is a sound
wave propagating backward into the Quid at rest.

Any point on the shock front can be reached by for-
ward characteristics carrying the invariant E;("'&/', so
that for y&)1
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1———1—
p.

~3(2yes), (4S)
2y ' 2y ') 4y'

(1+43).
27'

Hence (46) becomes

(49)

dx
=-', (3+43) 1+—(x—xi) 1ny

dx~ K3 dx~
(50)

The integral of (50) which satisfies the boundary con-
dition x=xo at x~=xp is

FIG. 3. Post-shock acceleration. A Quid element is shocked at
Po(xo,ct0) and travels along C' to P (x,ct); there it is connected to a
corresponding point P1(x1,ct) on the shock trajectory by a back-
ward characteristic C . From the figure, Ax=Ax'+{/ /P)hx,
Ax'=AxI'+Ap (x—x1), and AxI=b, xI'+(p jp,)hxI, where AxI
and QxI' are dehned analogously to hx and Dx'. The second equa-
tion contains the approximation c(t—t1) = (x—x1)jp:x—x1.

where the subscript f denotes values at the end of the
expansion. Estimating Er from (3'I) just as in the prob-
lem of expansion into a vacuum, (44) becomes

Vf =V@ =7 (45)

Consequently, pf is proportional to m ", with r
=~&3(v3 —1). With a reasonable model of the stellar
atmosphere in a supernova, (45) predicts a cosmic-ray
energy distribution in fair agreement with experiment.
The solutions of the problem of the expansion into a
vacuum indicates that the method of estimating Ef
underestimates the 6nal energy by a factor like 18.

Unfortunately, a similar solution is not possible with
the equation of state (5). The Qow behind a shock of
variable strength is not isentropic, so that E depends on
both p and the entropy. Then the Riemann invariants
no longer satisfy (23) and (24). Only in the extreme
relativistic case is p a unique function of E.

VI. FLUID TRAJECTORIES BEHIND SHOCK

The path of a particIe af ter passing through the shock
front can be determined by relating the displacement
hx on the trajectory to a corresponding displacement
hx~ on the shock trajectory. The corresponding points
are connected by backward characteristics originating
at the shock front so that the fluid velocities (and y)
are the same at corresponding points. The geometry in
Fig. 3 yields

x—xi ——-', (v3 —1)y'+~' (7') "+ "d»' (51)

R —xy'
Sg —Sp for E.—x,'&&E,

E—xp
(52)

where E is the radius of the star and np is the density
at the radius xo. Equations (43) and (52) determine y
at the shock front as a function of the shock position x~".

(E—xi')/(8 —xo) = (yo/y')'/'&. (53)

The integration of (51) leads to

x xl

xJ

—
/ + 1+v'3+1/s 0

(54)

or, from (53),

x—xp
—

y '+~' + q
i/sq-

1+ci —(1+ci) —
I

&—xo — yo

where

ci ——L2 (V3+1+p/3) j-'.

(54')

According to (54), when the Quid trajectory reaches
the edge of the star (i.e., x=g), the fiuid y is given by
y=yo(1+1/ci)', with l= (1+@3+1/sq) '. For a poly-
tropic index q=3, this yields p~2&p.' The Quid p has
about doubled in traversing the distance E—xp.

The result for an exponential atmosphere is obtained
by taking the limit q

—+~. De6ne the scale height

where the integration is on the shock trajectory. An
appropriate form for the preshock density is that of a
polytropic stellar atmosphere, in which p~m«+'&«;
then the density e&' at x&' is given by

Ax(1 P /P) =Axi(l —P /—P,)+hP (x—xi), (46) a= (d inn/dx~-' (55)
where all quantities are dehned in the reference frame
of the unshocked fluid. Then, in the relativistic limit so that for the density distribution (52),

p —-',v3 q (2+vS)A~
Ap =~ ~=(2+VS)Ap=

1—P/~/3) 7'

qh=E —x. (56)
(4&) It is readily verified that the limiting form of (52) as
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(t —+pp is an exponential, while (54) becomes

*-..=-h.(2~3)-~L(v/v. )~+"-1j+ (~./~) h (v/») (»)
For large y only the 6rst term on the right-hand side of
(57) contributes, and the use of (45) gives

the latter characteristics y, =yr ——yp'+~p from (45), and
E=—c~yp/cp since yp))1.

The limiting forward characteristic C~+, which inter-
sects the shock at x=8, separates the two classes of
characteristics, The equation for Cg+ is obtained by
letting 7p~pc in (60):

x—xg =cp (E—xg); (62)
For large y~, the acceleration takes place over many
scale heights and indeed may take place over many
stellar radii. In the latter case the approximation of one-
dimensional Qow breaks down.

4 d
=-'(2+VS) 1+—(x—x,) in'

K3 ding

(59)

where x is now a point on C+. Integration of (59) leads to

c,= (2—VS)/(4+2'),

where E is an integration constant and yo is the value
of the Quid y at xo, just behind the shock.

To evaluate E, consider a Quid element shocked at xo
which intercepts the forward characteristic at y=y„.
then (54) and (60) yield

VII. FORWARD CHARACTERISTICS

The forward characteristics C+ behind the shock can
be determined in the. same way as the Quid trajectories.
The di8erential equation replacing (50) is

x—~,=(1—-,'v3)aL1 —Z(&/») / q,
(63)

it is the same for both classes of characteristics. Since x
and xg are corresponding points on a backward charac-
teristic (see Fig. 3), they are not simultaneous. The
simultaneous spatial separation between the point x and
the shock front is of order Ip/y', because the apparent
compression behind the shock is of order y2.

The limiting characteristic can also be approached by
allowing y/yp to become small for 6xed X and yp. Thus,
when traced backward in time, all forward character-
istics converge on C~+ in spite of the decreasing com-
pression and the increasing scale height; the conver-
gence is more rapid for the characteristics intersecting
the shock line. This suggests that the results in Secs. V
and VI are asymptotically correct even if all the for-
ward characteristics do not originate in a spatially uni-
form medium: The spatial variation in the forward in-
variant can be made arbitrarily small for sufficiently
large pq.

The results for an exponential atmosphere are qual-
itatively similar to those for a polytropic atmosphere.
The limit as g ~~ in (60) and (61) gives

-(p+p)/pp~
g&/~ q

&/~p

&=~ 1+—
~~

— ——
~

—
~

. (61) as the equation for the forward characteristics. The
c i(gp &p ~pp~ existence of a limiting characteristic, given by

One class of characteristics intersects the shock front,
so that y, =y0 and E=j.The remaining characteristics
end at Quid elements which are just reaching their ter-
minal velocity; thereafter the characteiistic follows a
Quid path since the local speed of sound is zero. For

x—x(——(1—',v3) Ip,

implies that the shock outruns disturbances suQiciently
far behind the shock, just as in the nonrelativistic case.

7 R. Grover and J. W. Hardy, Astrophys. J,. 143, 48 I'1966).


