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It is shown that within the dynamical framework of N/D bootstraps, Z=O Geld theories, Gnite-energy
sum rules, or narrow-resonance models, a self-consistent world of mesons of both parities, in which all
particles interact symmetrically and belong to representations transforming as &&dj oir&tQ+sir&gle& of an arbi-
trary, compact, simple Lie algebra, may be constructed only for the algebras SU (n).

INTRODUCTION
' 'N this paper, a-previous conjecture by one of us and
i ~ Schmid is verified by explicit construction. The
conjecture amounts to the statement that in the frame-
work of the approximations commonly made in models
of the bootstrap, a self-consistent world of even- and
odd-parity mesons, in which all particles interact sym-
metrically and belong to degenerate multiplets classi-
fiable according to representations transforming as
adjo&ztsinglet with respect to an arbitrary, compact,
simple, real Lie algebra, ' makes sense only if the algebra
is of unitary type. '

*Present address: Belfer Graduate School, Yeshiva University,
Qew York, Q. Y.' C. Schmid and J. Yellin, Phys. Rev. 182, 1449 (1969), Sec.
III; Phys. Rev. D 2, 1354(K) (1970).' A glossary for some of the mathematical terms of this paper is
as follows. A Lze algebra L is a vector space {for our purposes,
over the real or complex numbers) in which a product, denoted
P, ], has been de6ned having the properties (i) Lx,y] = —Ly,x],
(ii) LLx,y],s]+[I:y,s],x]+Ks,x],y]=o, (iii) L*+y, s]=Cx,s]
+Ly,s], and (iv) os,y] =Lnx, y] =Px,ny] for all x, y, s+L and all
real or complex numbers u. A subspace 8 of L is an ideal if and
only if for all b+8 and lCL, Pb, f]+B. The derived algebra
L'=[L,L], which is the subspace spanned by all D&,4] where
(l&,l2) QL, is an ideal of L. We say that L is simple if it contains
no ideals except {0}and L and if L' =L. We say that L is A belian if
L'=(01. Let L'=)L,L], L"=[L',L'g, . . ., L&s&=PL&~'&,L&~'&).
We say that L is so/vuble if L(")=0 for some positive integer h.
L is semzsimple if L has no nonzero solvable ideal. Let L be semi-
simple. Then we may choose a basis (ei,eq, . . .} for L such that
Le;,eQ=if;;I,ef„-, where f;;I, is completely antisymmetric under
interchange of its indices. The order (or dimenszon) of an algebra
is the number of its linearly independent e; s. A real semisimple Lie
algebra L is compact if all eignevalues of gg —f;g,ff; I,l have the same
sign. Compactness implies the reality of the associated coupling
constants. All finite-dimensional Lie algebras can be realized in
matrix form. Sets of matrices of various dimensions can realize
the same Lie algebra and correspond to its diferent representa-
tzons. The dimensionalzty of the representation is the dimension
of the corresponding matrices. In this paper we. deal only with
finite-dimensional representations. Two representations are
ine(tui~alent if one set of matrices cannot be obtained from the
other by a Gxed similarity transformation. Representations of
diferent dimensionalities are necessarily inequivalent, but in-
equivalent representations may sometimes have the same dimen-
sionality. A representation of a semisimple Lie albegra isirreducible
if the corresponding matrices cannot be brought to block diagonal
form by a Gxed similarity transformation. The adjoint {orregulur)
representation, which we repeatedly use here, is realized by
matrices having dimensionality equal to the order of the algebra.

3 It is to be emphasized that our statement is one of necessity
only. The induction of the symmetry itself remains an open
question.

This statement, in which the choice of representation
fixes the algebraic type, may be compared to the usual
procedure in which a phenomenological choice is made
for both algebra and representation. 4

Though the existence of a set of conserved charges
leads very naturally to the supposition that a Lie
algebra is present, ' the effectively linear nature of the
constraints on amplitudes considered here' precludes
one from fixing u priori either the number of conserved
quantities (i.e., the rank of the associated a1gebra) or
the identity of the input representations. Our choice of
adjoietsiegjtet is therefore arbitrary and the final
result is consequently only mildly interesting. Z

The mathematical nub of our result is the fact, dis-
cussed in detail in Appendix A below, that in the
Clebsch-Gordan series for the direct product with itself
of the adjoint representation of an arbitrary, compact,
simple Lie algebra, adjoin/ appears only once, ant'isym-

metrically, for all such algebras, except for the algebras
SU(&s), where it appears twice, once symmetrica11y and
once antisymmetrically.

Another way of stating our result is as follows. In the
usual bootstrap approaches, one derives, among other
things, linear constraints on the pure particle pieces of

amplitudes (i.e., on the pole terms), and these are
equivalent to eigenvalue equations for the crossing

«See the review article of J. Mandula, J. Weyers, and G.
Zweig, Ann. Rev. Nucl. Sci. (to be published). The question of the
proper representations to choose in the presence of baryons is
subtle, dificult, and presently under dispute. I Compare, for
example, Mandula et al. with R. H. Capps, Phys. Rev. 185,
2008 (1969).j

~ Compare S. . Weinberg, University of California, Berkeley,
report, 1964 (unpublished). So far as is known to the authors,
general arguments with respect to the induction of symmetries in
bootstrap systems originate with the work of R. K. Cutkosky,
Phys. Rev. 131, 1888 (1963).

One must be careful to distinguish between linear constraints
on pole pieces of bootstrapped amplitudes, and the accompanying
nonlinear constraints on cut-plus-pole contributions which fix, for
example, absolute sizes of couplings. This will be discussed further
below.' To be fair, it should be pointed out that a&jfoi»&Q+si»glet may
possibly be unique, in the sense of being the self-consistent choice
with the smallest dimensionality. If this is true, our present result
becomes somewhat more interesting. This particular question
is now under investigation.
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operator. ' What we are asserting here is that assuming
the system possesses a particular internal symmetry and
that its particles have trilinear interactions which are
both symmetric and antisymmetric, an adjoietPsieglet
eigenvector, with eigenvalue one, of the crossing opera-
tor exists only for the Lie algebras SU(e) (e&3), be-
cause these are the only Lie algebras which allow a
symmetric trilinear coupling of the adjoint representa-
tion to itself.

Below, in Sec. I, we briefly summarize and review a
line of reasoning which boils the basic conjecture down
to the bare mathematics, using as an example spinless-
spiriless scattering. In Sec. II we list the Clebsch-
Gordan series for the Kronecker products for adjoi~t
adjoins over the entire Cartan classification, ' leaving
mathematical methods and' details to the appendices.

L BOOTSTRAP SYSTEMS

The equations of interest here are algebraic, linear
relations between bilinear combinations of coupling
constants. Such relations y,rise in bootstrap systems
based on Z=O field theories I E/D models, " models
using finite-energy sum rules, " and narrow-resonance
models. "One example of such a relation is provided by
the Jacobi identity satisfied by the structure constants
of a Lie algebra':

the system, the G's are proportional to the trilinear
vertices, the matrix V is to be evaluated in terms of
G's, and (1.2a) and (1.2c) are symbolic in the sense that
in general one will get sums over (GG) bilinears, each
term corresponding to a different particle or Regge
multiplet being exchanged. '4

In principle, having obtained (1.2), one would then
proceed to break these. equations into two sets: (a) re-
lations among the P. , alone and (b) relations between
(GG)'s, 8;;, and U;, bb. The form of the type-(a) relations
depends violently on which bootstrap approach one has
taken. " Type-(b) relations, from whatever starting
point, allow a symmetric solution" which, under the
assumption that all particles fall into adjoin/singlet,
turns out in the general case, as will be shown below, to
be SU'(I), with e)3.

To make all this clear, we will briefly remind the
reader of the procedure for obtaining (1.2) in the 6nite-
energy sum-rule approach, using the example of 2 —+ 2
scattering of spinless particles.

Provided an amplitude for the scattering of spinless
particles satisfies analyticity and crossing and has
Regge asymptotic behavior, its discontinuity D„(b,t) in
b = s (s—I) at fixed t satis6es

N

If one takes the subscripts to be particle labels, the
F's can be thought of as coupling constants and (1.1)
gives the sum of s-, t-, and e-channel exchanges of a
virtual multiplet of particles, in the scattering process
a+6 —+ c+d.

The four bootstrap approaches listed above yield
relations of one or more of the following generic forms:

GabsGabs' =~1~88' y

V bggGgg, ——XgG, b„

(1.2a)

(1.2b)

GabsGcda+GbeuGadu ~3Gea6bdt& (1 2c)

where the X;are functions of the masses and couplings of

8 See, for example, S. Mandelstam, Phys. Rev. 166, 1539
(1968). By crossing operator we mean the usual matrices which
take internal and 'ordinary spin amplitudes from channel to
channel, plus the correct interchanges of four-momenta,

E. Cartan, these, University of Paris, 2804, 2nd ed. (Vuibert,
Paris, 1933).Cartan s list of simple Lie algebras, to which we will
constantly refer below, contains the unitary algebras A & (SU&+I),
the odd-dimensional orthogonal algebras B~ (l&2), the symplectic
algebras C~ (l&3), the even-dimensional orthogonal algebras
DI, (l &4), and the "exceptional" algebras G2 P4p E6 E7,
E8. (The subscripts indicate the rank of the algebra and the
inequality conditions arise because of low-ra, nk isomorphism
among the various families. ) Note that dimensionality in general
does not uniquely identify a representation. A complete speci6ca-
tion will be given below in Appendix B."See P. Kaus and F. Zachariasen, Phys. Rev. 1VI, 1597 (1968)."R.E. Cutkosky, Phys. Rev. 131, 1888 (1963); H.-M. Chan,
P. C. DeCelles, and J.E. Paton, Phys. Rev. Letters 11,521 (1963).

"See Ref. 1 for a listing of early work on this subject.
'3 See the review article of D. Sivers and J. Yellin, Rev. Mod.

Phys. (to be published April 1971).

( Q + Q +background integral)
Regge poles Regge cuts

where e is'a positive integer, N is arbitrary, and we have
suppressed internal quantum numbers. If one drasti-
cally truncates the right-hand side of (1.3) leaving the

'4 For example, in the pseudoscalar-vector-tensor (PVT) ex-
ample considered in Ref. 1, there is a 6 for the antisymmetric
PPV coupling, and another G for the symmetric PPT coupling."It is important to distinguish between bootstraps of the erst
kind which Gx all observables up to a single arbitrary parameter,
which can be taken to be the scale of mass, and those of the second
kind which leave the scale of mass and the absolute size of coupling
strengths free. The E/D approach is of the first kind while the
narrow-resonance approach belongs to the second. The relations
of type (b) are crossing-symmetric, corresponding to the fact that
all the approaches treat poles in a crossing-symmetric way. The
differences between bootstraps of the 6rst and second kinds arise
from the treatment of cut contributions. For example, it is well
known that in any of the known approximation schemes the E/D
cut structure is incorrect t see A. W. Martin, Phys. Rev. 161,
1528 (1967; C. Cronstrom, Acta Phys. Acad. Sci. Hung. 26,
101 (1969)g and if one eliminates all cut structure the four
approaches become identical.' Evidently there are also symmetric solutions for (1.2) at
least for finite systems of self-consistent families of particles such
as those discussed in Ref. 1. What the general solution of the type
(b) equations is, and specifically whether a nonsymmetric solu-
tion is possible for in6nite families of Regge trajectories, remains
an open question. A closely related question is whether or not
bootstraps of the second kind (see Ref. 15) allow an adjustable
amount of symmetry breaking and also whether or not they are
stable under a weak external perturbation. In the classic boot-
strap of the erst kind the allowed solutions should form a discrete
set, and no such freedom would be allowed.
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N ~a; (t)+n+I

Regge-pole contribution only, one gets

(1.4)

possesses a symmetry therefore breaks (1.5) down to a
set of type-(b) relations purely between (GG)'s, and a
set of type-(a) relations purely between the I . The
type-(b) relations concern us here.

where u; and P; are the trajectory and residue of the ith
Regge pole.

To obtain equations of the form (1.2), we do two
more things. First we assume the integral on the left-
hand side of (1.4) can be saturated by narrow reso-
nances; second, we use (1.4) at f= (mass of any
resonance) '."

By standard arguments it is now straightforward to
reduce every term in (1.4) to a product of a coupling-
constant bilinear times a kinematic factor, so that we
are left with a relation of the generic form of (1.2c)":

Z I- (G. G.a +Gs-G a ) =2 L''(G-«s«)' (15)
s

where the primed and unprimed I.'s are kinematic
factors depending on masses and coupling ratios, and
the sums run over the various resonances included on
the left-hand side of (1.4) and the Regge trajectories
included on the right-hand side" of (1.4), respectively.

At this point we interpose our violently strong as-
sumptions that a Lie algebra is present and that all
particles are classi6able as adjoietsieglet under it.'
The G's must then be proportional to the appropriate
Clebsch-Gordan coeKcients, and provided the class of
particles included is large enough to possess both sym-
metric and antisymmetric trilinear couplings, '4 the Lie
algebra must be one of the family SU(tt) with n)3
since, as we will show in Appendix A below, these are the
only algebras which allow trilinear symmetric coupling
between adjoints. " The assumption that the system

'7 This procedure for using 6nite-energy sum rules at t&0 is by
no means universally accepted. For example, in Ref. 4 algebraic
relations of type (b) are obtained by using superconvergence
relations —equations like (1.4) with zero on the right-hand side—
near t =0. The appropriate way to proceed is under dispute. Near
t =0 some of the dynamic approximations look more reasonable,
but it is not clear whether one is relating coupling bilinears
(partial widths) or total widths. One of us (J.Y.}would like to
thank C. Schmid for a useful discussion of this point.

"The details are given in the Appendix of Ref. 1. Partial
veri6cations of the statement in the text may be instantly acquired
by recalling that, for elastic scattering, Breit-Wigner numerators,
entering on the left-hand side of (1.4), and Regge residues evalu-
ated on resonance, are both proportional to a Feynman diagram
for single-particle s- or m-channel exchange, while each term on the
right-hand side corresponds to the same in the t channel, provided
we sit on resonance in t.

'9 The form of (1.5) brings us very close to the narrow-resonance-
amplitude approach. By using the type-(a) relations for the L's
and L"s and inserting the infinite rising Regge-trajectory spec-
trum, it should be possible to obtain all coupling ratios and show,
provided we insist there are no ghosts with negative couplings
squared, that a simple narrow-resonance formula results.

2 For remarks in a related context see R. H. Capps, Phys. Rev.
171, 1591 (196g). For consideration of representations other than
adj oirIt, especially for G2, see Chan et el., Ref. 11.The reader may
ask why, even without adjoint contributions, singlet representa-
tions by themselves cannot saturate the symmetric parts pf
bootstrap equations. In adjoint-adjoint scattering this could
happen in two possible ways: (1)with singiets in all three channels;

II. MATHEMATICAL RESULTS

In this section we give the solution for the mathe-
matical problem of deciding which simple Lie algebras
allow symmetric trilinear couplings of their adjoint
representations X)'"" (to the trivial one-dimensional
representation). Our considerations are somewhat sim-

plified by the fact that the only possibilities turn out to
be the totally antisymmetric J-type coupling —pos-
sessed by every simple Lie algebra since the appropriate
Clebsch-Gordan coeKcients are just the structure con-
stants —and the totally symmetric D-type couplings" in
the case of SU(tt) (n&3). Trilinear couplings of mixed
symmetry are absent. To show that this is the case, we
take the straightforward route of computing the
Clebsch-Gordan series of S&"~)g S& ~& for every com-
pact, simple Lie algebra. "These series each contain a
symmetric and an antisymmetric part, and we want to
determine the number of times S&'~&~ appears in each
part. The calculations are discussed in detail in the
appendices below.

In the formulas of this section the representations are
denoted by their dimensionalities; the syrrnnetric terms
are bracketed erst, antisymmetric terms second; and for
the higher members of the Cartan families' A ~ through
D~, the dimensionalities are expressed in terms of the
dimension e of the self-representation of the algebra,

(2) with singlets in two channels and an adjoint exchanged
antisymmetrically in the third. Case (1) never works for any Lie
algebra. This is because SU(2) is a subalgebra of any L; any
adjoint has an SU(2) decomposition containing at least one
isotriplet, and the w~ crossing matrix does not allow a solution
with singlets in all channels. (This is one way to see that the
Pomeranchon is not trivially crossing-symmetric. ) Case (2) in
fact works for SU(2) and for no other algebra. This is because the
SU(2) structure constants satisfy the particularly simple relation
f;;~f~l,=e;;f,c~~=b;„b,,—8; 8;~, which makes explicit the fact
that an SU(2) quartet, 3+1, is a self-consistent possibility. For
other algebras f;; f,f~q is more complicated and this kind of simple
crossing does not hold. The only role of the singlet representation
here is to provide enough freedom so that the symmetrically
coupled particles satisfy the crossing constraints for SU(e). Any
necessity for more detailed consideration of crossing matrices for
arbitrary algebras is obviated by the fantastically strong restric-
tions on trilinear couplings allowable for adjoints. When we pass
to the full minimal bootstrap problem (cf. Ref. 7) more detail. is
unavoidable. For example the representation 7 of G~ provides an
(antisymmetric) eigenvector, but it is physically unadmissible
because its eigenvalue is —1. t See Chan et af. (Ref. 11) and Y.
Ne'eman, Nuovo Cimento 33, 133 (1964)J. The reader can easily
check that adjoitttQ+sittglet is a proper eigenvector for SU(N) by
examining the relations for d;;I, and f;; I, given in Ref. 21."A convenient reference for information regarding the f;;f, and
dye of SU(n) is the Appendix of the paper of L. M. Kaplan and
M. Resniko8, J. Math. Phys. 8, 2194 (1967).

"The symbol Qx indicates the Kronecker or direct product and is
just the generalization of addition of vector angular momenta in
SU(2) to arbitrary algebras. The Kronecker-product representa-
tion is the direct sum, Q+, of irreducible representations. This
direct sum is called the Clebsch-Gorge series of the product
representation.
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i.e., the dimension of the corresponding unitary, orthog-
onal, or symplectic matrices.

For the unitary algebras" 2 i, with n=i+1,

n=2: {3)(3)=l {1)(5)(3)3"- (2.1a)

n=3: (8)(8)=[{1%(8){27)f8)
g (10)(10)*jsnt;s~, (2.1b)

n)4: fn' —1) fn' —1)
= [(1)8 (n' —1)8 (-,'n'(n —1)(n+3) )

g f-,'n'(n+ 1)(n —3)}].,
[(n'—1} {t(n' —1)(n' —4))

@(,' (n'-1)—(n' 4)—)*), t;,~ (2. .1c)

Finally, for the exceptional Lie algebras,

G2.

p4 ~

+8 ~

(14}8 (14)= [{1)8 f27}8 f77}2j;
63[f14)8 (77}tgsntist m y

(52}S(52}=[f 1)g {324}fEi {1053}j.~
8[{52}8{1274}j~tisymy

(78) f78) = L(1) (65o) (2430} jF-
[(78) (2925)js tsrmi

(133}8 f 133)= [(1) (1539) (7371)),„
8[(133)8 (8645}jantisrm s

f 248) 3 f248}=[(1}Qf3875}$3{27000}),~

8[(248)8 (30380)]nntisym

(2 4)

The asterisk after the last term in Eq. (2.1c) indicates
that it is the complex conjugate representation to the
term before it.

For the orthogonal algebras, '48t (t) 2) with n= 2l+1
and Dt (l&4) with n= 2l,

n=5, n&7: f-', n(n —1)}S(-',n(n —1)}
=L(1) {-'(n—1)(n+2))

8{—,',n(n+1) (n+2) (n —3))
g ((1/24)n(n —1) (n —2) (n —3))),
g [{-',n(n —1)}

(&in'(n 1) (n—+2) (n 3)}5—,„„,„(2.2. a)

For the orthogonal algebra D3 with m=6,

n=6: (15)(15)
=

I {1)(20) (84) {15}3"-
Lf 15)(45) (45}*l- '"- (2 2b)

This follows from (2.1c) since Dt is isomorphic to As.
D2 is not listed here since it is not a simple Lie algebra;
B~ and D~ are isomorphic to A i.

For the symplectic algebras" Ci (l&2) with n=21,

n&4 and even: (-',n(n+1)) {-', n(n+1))
=[{1}(-'( +1)( —2))

g (P,n (n 1) (n —2) (n+—3))
6 {(1/24)n(n+1) (n+2) (n+3) }$,
6[(-,'n(n+1))

(~~n(n+ 1) (n —2) (n+3))g,„„,r . (2.3)

This equation is exactly like (2.2a) except that all signs
in the dimensionality formulas are reversed.

'g Ag is the Lie algebra of traceless (3+1))&(l+1) Hermitian
matrices.

~Bi is the Lie algebra of real (2l+1)&((2l+1) matrices A;;
such that A;, = —A;;. Dq is the Lie algebra of real (2l)X(2l)
matrices such that A@=—A;;.» Cg is the Lie algebra of (2l) g (2l) Hermitian matrices

Note that despite the very large dimensionality of the
representations dealt with, there never appear more
than seven inequivalent representations in any of these
Clebsch-Gordan series.

It now becomes clear that adjoint representations
appear only once in the antisymmetric products. These
terms are directly associated with the structure con-
stants and thus correspond to totally antisymmetric
trilinear couplings of the adjoint representations to the
trivial representations. It also becomes clear that
S&'~&~ only appears once in the symmetric product for
the SU(n) algebras with n&3 and not at all in the
symmetric products for the other simple, compact Lie
algebras. For SU(n) we know from studying the
matrices d;;& that this corresponds to a totally sym-
metric trilinear coupling. "

Note added in ntanlscript. After the preparation of
this manuscript it was independently pointed out to us

by R. Roskies and M. %hippman that our mathematical
result follows from a theorem of J. Ginibre, J. Math.
Phys. 4, 720 (1963), on Kronecker products of an
adjoint representation with any arbitrary representa-
tion. For the case considered here, the theorem states
that the number of times the adjoint representation
appears in the Clebsch-Gordan series for its Kronecker
square, is the number of nonzero Dynkin indices needed
to specify the adjoint. This statement may be veriied
by inspection of Eqs. (86)—(810) below. We thank
Dr. Roskies and Dr. %hippman for their very helpful
communications.
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APPENDIX A
such that the transpose

—D C In order to compute the Clebsch-Gordan series for the
Kronecker squares of adjoint representations, we use a
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Inethod which applies to all semisimple Lie algebras and
which gives complete information as to which terms of
the Clebsch-Gordan series bel.ong to the symmetrized
Kronecker square and which to the antisymmetrized
square. The method is based on the Racah-Speiser
lemma, "which leans heavily on the concept of weight

diagrams.
In the present appendix we will outline the method

employed and briefly summarize the necessary back-
ground information, hopefully making our remarks self-
contained. In Appendix 8 we will implement the method
and derive the results of Sec. II.

Our method of computation of the Clebsch-Gordan
series is rather more general than is really required here,
since it applies to the decomposition of an arbitrary
Kronecker product. However, this generality will be
useful in the discussion of the minimal bootstrap~ "and
in preparation for that e8ort we give the full discussion.

LH;,H;j= 0,

PI;,E j=nQ

i, j= 1, 2, . . . , l (A1)

/=1, 2, . . . , l (A2)

where / is the rank' of the algebra. The subalgebra
spanned by the B's alone is known as the Cartart
subalgebra and in many physical applications these
mutually commuting H's are associated with additively
conserved quantities t e.g. , in SU(3), with hypercharge
and the third component of isospin]. We may regard the
number e; as the ith component of the root e, a vector in
an l-dimensional space called the root space. Since the
set of simultaneous eigenvalues for each E is distinct we
may use the vector e to label the E's.

The set of roots form a root Chugram which can be
shown to have the following two properties": (1) If n
and g are roots, then A—=2(n g)/(n n) is an integer"
and g

—An is a root. (2) If n&0 is a root, then An&0
cannot be a root unless k= &1.

The quantity (3
—An is the vector obtained by re-

fiecting g through a hyperplane, called a Wey/ p/ane,
~6 D. R. Speiser, Helv. Phys. Acta 38, 73 (1965); G. Racah, in

Group Theoretical Concepts and Methods In Elementary I'article
Physics, edited by F. Gursey (Gordon and Breach, New York,
1964). We follow the nomenclature of A. J. Macfarlane, L.
O'Raifeartaigh, and P. S. Rao, J. Math. Phys. 8, 536 (1967).The
latter reference contains a rather complete summary and bibliog-
raphy of mathematical investigations in this Geld through 1966.

"Compare R. C. Hwa and S. H. Patil, Phys. Rev. 138, B933
(1965).

'8 R. E. Behrends, J. Dreitlein, C. Fronsdal, and B. W. Lee,
Rev. Mod. Phys. 34, 1 (1962).

29 G. Racah, Ergeb. Exakt. Naturw. 37', 28 (1965).
30 The dot product is given as usual by 0. p=o;Ip&+0;2p2+

+o lP~.

General Remarks

In order to explain our operational procedure, we need
to use root and sleight diagrams, and for completeness,
we define these below.

It is well known" that a basis (with elements labeled
as H's and E's) of a finite-dimensional, simple Lie
algebra may be so chosen that

with E s&0. Similarly, [E,E „)is a linear combina-
tion of the H's, since the H, (i= 1, 2, . . . , l) may each
be thought of as having its root equal to zero.

To each diagram with properties (1) and (2) there
corresponds a unique, simple Lie algebra. The various
root diagrams are described in detail in Appendix B.

At this point we introduce two quantities which we
will need later. The vector 6 is de6ned by

&=I Zn,
a)0

(A4)

where the summation extends only over the positive
roots of the algebra, i.e., 0.'s whose erst nonzero com-
ponent is positive. The quantity $s is defined by

+1 if S&% is a rotation

—1 if S&% is a rotation-refiection.

We will also need the concept of the @eight diagrams.
To each unitary irreducible representation there corre-
sponds a unique weight diagram, i.e., a collection of
points (called weights) in an l-dimensional space, and a
positive integer called the multiplicity pM assigned to
each weight M. The t components of the weights may be
taken as the simultaneous eigenvalues of the m)&r/'

matrices which represent the H's. Thus if f is an n
component eigenvector of all the II; simultaneously,
then

(A5)

and the weight associated with f may be taken to be
M= (mi, m2, . . . ,mi). The multiplicity yM is the number
of linearly independent P's which have weight M."

The weight diagram of an irreducible representation
has the following properties: (1) It is invariant under
the Weyl group 'VP, so that yM ——ysM for any S&%.

~
¹ Jacobson, Lie Algebras (Interscience, New York, 1962),

p. 119.
3~ For example, in the octet (adjoint) representation of SU(3),

where the eight P's can be thought of as representing the usual
set of eight baryons, Z0 and h.0 both have weight (I„F)= (0,0),
and so the multiplicity of (0,0) is two. The general rule for adjoint
representations is that all weights have multiplicity one, except
for the central point (0,0, . . .,0), which has multiplicity l. This
follows directly from (A1)—(A3).

which passes through the origin and is normal to e. In
the particular case that n= g, we see that if n is a root,
then —n is also a root and the corresponding basis
vector is denoted by 8 . The finite group of rotations
and rotation-reflections in this t'-dimensional space
generated by reflections through Acyl planes is known
as the Wey/ group" V7. Property (1) states in part that
the root diagram is invariant under the action of '%.

Property (2) follows from (1) and from the statement
that if E and Es are basis vectors with roots n and g,
respectively, and if n+ g is also a root, then

(A3)
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(2) If A, is the highest weight+ of the representation, then
yp= 1. (3) The contracted weight dkagram'4 contains one
point only, namely, the point A. with multiplicity one.

By contraction we mean that each weight M, with
multiplicity yM, is replaced by a vector N=5(M+8) —6
with multiplicity y„=Psym, where SC'N is chosen so
that N is dominant. " If M=N for some SQ'W, then
that point is simply'discarded. Often several points M
may contract to the same point N, in which case yN is
the sum over the various Ps(M)ym. The contraction
process will be explicitly illustrated below in Ap-
pendix B.

The three properties above serve to determine all the
yM, given A., and to delineate the allowed values of A, .
A highest-weight A, in turn, uniquely labels the corre-
sponding irreducible representation. It turns out that
for each given algebra (of rank /) there exist / weights
A.~@ called flndamextal dominant weights such that for
any highest weight A., we have'

(The restriction to irreducible representations is only for
simplicity of discussion. ) Then the direct-product repre-
sentation X)(') X)('& has a Clebsch-Gordan series which
is, in eBect, its contracted weight diagram. We can
construct this diagram by the following technique. "
Shift all weights M in the weight diagram for S(') by the
highest weight A. for S&@ and thus obtain a new set of
multiplicities given by pM ——pM z('&, where the pw"&'s
are multiplicities for X)&'&. The resulting diagram is not
the weight diagram for the product representation
since, for example, it is not invariant under 'N. However,
it is much simpler than the full weight diagram, and its
contraction can be shown to be the contracted weight
diagram for the product representation.

The dimensionality E(A) of irreducible representa-
tions which appear in this diagram may be evaluated by
the use of Weyl's formula"

(A7)

(A6)

where the Dylkiri, indkces p; are non-negative integers.
(In fact, any such linear combination is the highest
weight of some representation. ) The set (pi,p2, . . . ,pi)
therefore specifies, just as the components of A. do, an
irreducible representation, and we will give in Appendix
B the final form of our results in terms of them. The p;
are unique up to ordering and are independent of the
coordinate system used for the weight space.

Reducible representations have weight diagrams
which are the sums, in the sense of adding multiplicities,
of weight diagrams (with centers superimposed) for
irreducible representations. The contraction of the
weight diagram for a reducible representation yields a
set of points which are the highest weights of the
representations which it is a direct sum of (cf. property
(3) above j.The multiplicity of each such highest weight
is the number of times the corresponding representation
appears in the direct sum, and this makes the con-
traction process particularly convenient for actual
computation.

Kronecker Products

We are now ready to state the method for determining
the Clebsch-Gordan series for an arbitrary Kronecker
product representation.

Let S&" and S'2) be finite-dimensional unitary
irreducible representations of a semisimple Lie algebra.

"A weight M is said to be higher than a weight M' if the first
nonvanishing component of M —M is a positive number. M is
said to be positive if M is higher than zero. A weight M is said to
be equivalent to a weight M' if there exists an SgVP such that
M'=SM. A dominant zoeight is the highest weight of a set of
equivalent weights. The highest weight of a representation is the
dominant weight which is higher than any other dominant weight.

'40ur contracted diagrams correspond directly to the girdle
diagrams of Ref. 28. However, each one of our points corresponds
to many points there.

where the product extends only over positive roots" and
A. is the highest weight of the irreducible representation;
or indirectly by Freudenthal's' or Kostant's formula"
for the multiplicities ' of the weights. The dimen-
sionality of any representation is simply the sum over
the multiplicities of all its weights.

The results for the case X)("= X)"&= X)&'~&) are given in
Sec. II. They are presented in terms of the dimen-
sionalities of the relevant irreducible representations.

Symmetrization

By adopting specific coordinate systems and by
applying the procedure just outlined to the adjoint
representations, one can arrive at all the results
presented in Sec. II except for the assignments of the
various representations to the symmetric or the anti-
symmetric part of the Kronecker square K)X). In
many cases this partitioning of the Clebsch-Gordan

3~ This procedure is the analog of multiplying the character
y(~) of S(') by the girdle &(2) of $&~) to obtain the girdle of the
product representation as discussed in Ref. 28. An alternative
method of construction is given by D. Radhakrishnan, J. Math.
Phys. 9, 2061 (1968). See also B. Gruber, ibid. 11, 1783 (1970).
Remarks regarding the general mathematical situation will be
found in the latter work and in Macfarlane et al. , Ref. 26. In the
important special case of the unitary algebras A ~, Foung shapes
can be utilized and this results in considerably less work than with
the method discussed in the present paper. Furthermore there
exist diagrammatic rules (cf. Ref. 42) which help in the partition-
ing of Kronecker squares into symmetric and antisymmetric
parts /see R. C. King, ibid. 11, 280 (1970)j."H. Weyl, Math. Z. 24, 377 (1926), in particular, p. 389.

'7N. Jacobson, Ref. 31, p. 247; H. Freudenthal, Ned. Akad.
Wetenich. Indag. Math. 57, 369 (1954).

'8 N. Jacobson, Ref. 31, p. 261:B.Kostant, Transac. Am. Math.
Soc. 93, 53 (1959).' See J. G. Belinfante and B. Kolman, SIAM Rev. 11, 510
(1969), for a discussion of all three formulas. Do not confuse the
"internal" multiplicity of the weights with the mu)tiplicity of a
particular irreducible representation in a Kronecker product, the
so-called "external" multiplicity. The two are related but not
identical. See Macfarlane et al. , Ref. 26.
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series can be simply accomplished by examining the
dimensionalities of the various representations. How-
ever, occasionally two inequivalent representations with
the same dimensionality will appear in the series, or
there will otherwise be more than one way of satisfying
the dimensionality requirements. We therefore need to
invoke a more general method for the partitioning.
/Examples of two inequivalent representations of the
same dimensionality appearing in the same Clebsch-
Gordan series occur for S&' '& S&'~» in B~ ( C~) and
G2.j In any case, an explicit calculation of this par-
titioning is not at all dB5cult and provides a useful
check on the work. We now discuss the method for
accomplishing this.

In group theory a representation is uniquely labeled
by the functional form of its character function" X or
by its weight diagram. Operations on characters thus
should have corresponding operations on weight dia-
grams. Now we know that the characters for the sym-
metric and antisymmetric Kronecker squares of a repre-
sentation S are given in terms of the character x(r),
where r is a group element, by"

x ()=-'Lx'()+x(')j
x„(r)= -'LX'(r) —x(r')j. (Ag)

These formulas need to be translated into the corre-
sponding operations on weight diagrams, which opera-
tions will then be applicable to Lie algebras. We have
already discussed how to Gnd the contracted weight
diagram for the Kronecker-square representation, that
is for the analog of X'; now we discuss the same pro-
cedure for x& where x, (r) =—x(r'). x2 has a diagram which
is simply the weight diagram for X except that the
coordinates for each weight are doubled. ~ The multi-
plicities are left unchanged. To properly include sym-
metrization, we simply contract the diagram for X2,
add it to (or subtract it from) the contracted diagram
for X.', and then divide all multiplicities by 2; this
yields the contracted weight diagram corresponding to
xs (or x~). (Addition and subtraction here refer to the
addition or subtraction of the multiplicities of points
with the same coordinates. ) The contracted diagram for
X2, unlike those for X and X2, will in general have nega-
tive multiplicities as well as positive ones. The Clebsch-
Gordan series for the symmetrized and antisymmetrized
Kronecker squares are given by the contracted weight

40 The character x(r) of the group element r is given by x(r)=trD(r), where D(r) is the matrix representing r. In terms of the
algebraic language employed here, the character function can be
computed by use of Weyl's character formula:

L(8']ga&B+ii/ p [t 'EBB
~CPS

where the sum runs over the Weyl group, P is as defined above,
and A. is as above the highest weight of the representation of inter-
est. For explicit examples and discussion see Secs. III and IV of
Ref. 28.

4~ M. Hamermesh, Group Theory arid Its 2pplicatiorl, to Physical
Problems (Addison-Wesley, Reading, Mass. , 1962), p. 134.

4' C. M. Andersen, J. Math. Phys. 8, 988 (1967).

diagrams for Xg and X~. Explicit examples are given in
a previous paper42 by one of us and below in Appendix B.

APPENDIX 8
Using the rather abstract rules given in Appendix A,

we now want to derive the results of Sec. II. Because we
are dealing with adjoint representations, we have the
immense simplification that their weight diagrams are
identical to the root diagrams for the algebras. Further-
more, from (A1) and (A2) we see that the multiplicity
of the point at the origin in the root diagram is l, and all
other points have multiplicity one.

Our calculations will proceed in two steps. First we
pick for each algebra a convenient coordinate system in
which to describe the root diagram, the vector 5, and
the operations of the Weyl group. Any results we now
obtain will be dependent on our choice of coordinate
system. Later we will proceed to transform to the unique
(up to ordering) specification (pi,p2, . . . ,pi) using the
Dynkin indices of (AS).

We let the basis in each case be a system of orthogonal
unit vectors e;. In Table I we list for each algebra of the
Cartan classi6cation the nonzero roots as given by
Racah" and the vector 6 in terms of the e;. For the
algebras A ~, G2, 86, and E7, the l-dimensional root and
weight diagrams are imbedded in an (/+1)-dimensional
space" and a constraint is introduced among the l+1
components of any root or weight. For 2 ~, 62, and E7,
the constraint is that the sum of all the components of
any root or weight is zero; for E6 the sum over the last
six components is zero. This imbedding is purely for
convenience in specifying the components of the weights
and in performing the operations of the Weyl group. In
Table I the ~ signs are to be taken independent of one
another unless otherwise specified. Thus for 8 g we have
roots t;i+e2, ei—e2, —ei+e2, —ei—e2, ei+e~, etc. Since
the origin has weight l, the number t plus the number of
roots listed in column 3 equals in each case the dimen-
sionality of the adjoint representation as listed in
column 2.

For each algebra, the Weyl group contains the permu-
tations of the root or weight components labeled
1, 2, 3, . . .. To.see this we note that any such permuta-
tion is the result of successive transpositions of two
components at a time, and it is easily seen that transpo-
sition of the ith and jth components corresponds to
reQection in the Weyl plane normal to e;—e;. Since, as
seen in Table I, all the algebras contain roots of the
form e;—e;,i, j= 1, 2, . . ., the above statement follows.
Note, however, that the algebra E6 does not contain
roots of the form &(e;—eo). Thus permutations in-
volving the zeroth component of a weight are not
elements of the Weyl group for E6. For A E permutations
of the weight components generate the entire Weyl
group.

For the algebras 8& and C& the Weyl group contains,
in addition to the permutations discussed above, the
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TABLE I. List of the algebras of the Cartan classi6cation, their dimensionalities, and their nonzero roots. The vector 5 is de6ned
as one-half the sum over the positive roots (Ref. 32). If an expression contains more than one set of ~ signs, they are independent of
one another unless a Iestriction is speci6ed.

Dimen-
Algebra sionality

l (l+2)
l(2l+a)
l(2l+1)
/(2/ —1)

52
78

248

Nonzero roots

8;—8j (i, j=i, 2, . . ., /+1 buti/'j)
+8;+8;, &8; (i, j=i, 2, . . ., l buti/ j)
+S;ae;, W2e; (/, j=1, 2, . . ., /but~~j)
+S,~S, (i, j=1,2, .. ., /but/Aj)
8;—8;; +(28;—8;—8k) (i, j, k=1, 2, 3 but i&j/k/i)
+8;+8; (i, j=1, 2, 3, 4 but i/ j); $(+8&+82+83+84)
8;—8; (i, j=1, 2, . . ., 6 but i4j); &%8oI

$(+428o&81+82+83+84+85+86) with 3 plus signs and
3 minus signs on last six terms

8;—8; (i, j=1,2, . .., 8buti/j);
g (~81~82~83+84~85~86~87+88) with 4 plus Qgns
and 4 minus signs

&8,&8, (i, j=1,2, . . ., 8buti& j);
& (+8I&82&83&84+85+86&8q+88) with even number of
plus signs and even number of minus signs

-', l81+ ~ (l—2)8P+ —~~ (l—2)8g——,'l8g+I

(l—k)~I+(l—8)~2+. +P~-I.+8~
l81+ (l—1)82+ .+28~ I+BI
(l—1)8I+(l~2)8P+ ~ +8g I
381—82—283

~2'81+ Ps+$83+k84
(11/v2)&0+mel+s&R+k 4+4's4+fA+I

(49/4) sg+ (5/4) 82+4xsl —~~84—('//4) 81—(11/4)eg
—(15j4)87—(17j4)88

2381+682+583+484+385+280+8v

. T~sx,E II. Steps used to calculate the Clebsch-Gordan series for the Kronecker square of the octet representation
of SU (3). See explanation in text.

L2j(0 0,0)
(1, —1, 0)
(1, 0, —1)
(0, 1, —1)
(—1, 1, 0)
(—1, 0, 1)
(0, —1, 1)

P2)(2, 0, —2}
(3, —1, —2)
(3, 0, —3)
(2, 1, —3)
(1, 1, —2)
(1, 0, —1)
(2 -1 -1)

L2)(2, 0, —2)
(3 -1 -2)
(3, 0, —3)
(2, 1, —3}

~ ~ ~

(1, 0, —1)

L2j(1, 0, —1)
(2, —1, —1)
(2, 0, —2)
(1, 1, -2)

0 0 ~

(0,0,0)

TABLE III. Steps used to obtain the contracted weight diagram for g~ for the octet representation of SU(3). The symmetrized and
antisymmetrized Kronecker squares are found by combining the terms in the fourth column here with the terms in the fourth column
of Table II.

L2j (0,0,0)
(2, -2, 0)
(2, 0, —2)
(0, 2, —2)

(—2, 2, 0)
(—2, 0, 2)
(0, —2, 2)

f23(1, 0, —1)
(3, —2, —1)
(3, 0, -3)
(1, 2, —3)
(—1, 2, —1)
(—1, 0, 1)
(1, —2, 1)

$2)(1, 0, -1)
P—1j(3, —1, —2)

(3, 0, —3)
C-tj(2) 4 -3)

4 0

P—1j(1,0, —1)
~ 1 ~

s(M'+6) —8

L2)(0,0,0)
P—1)(2, —1, —1)

(2, 0, -2)
L
—13(1, 1, —2)

~ ~ ~

6—G(08,0)

operation of replacing any number of components by
their negatives. Replacing the ith component by its
negative is the result of reQection in the Acyl plane
normal to e;. The %'eyl group for E6 includes replacing
the zeroth component by its negative.

For the algebras D~, F4, and E8, the generators of the
Weyl group include replacing pairs of coordinates by
their negatives. ReRection in the Acyl plane normal to
e,+8; followed by reRection in the Acyl plane normal to
e;—e; results in changing the sign of the ith and jth
components.

For G2 the Acyl group has j.2 elements, the six
permutations of the three components and these six
permutations combined with inversion, whereby the
sign of all three components is changed. For the other
exceptional algebras F4, E6, EY, and Es, additional
generators are required as can be seen from Table I.

Let us illustrate the procedures of Appendix A by
calculating the Clebsch-Gordan series for X)&~~j' X)&'d»

for the algebra A~. Here the highest weight of the
ad joint (octet) representation is given by A.= 5
= (1, 0, —1). In the first column of Table II we list the
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weights M of the adjoint representation. The entries in
square brackets indicate multiplicities; where there is no
such entry unit multiplicity is implied. We need to shift
the entries in column 1 by A. & ~~) and then contract.
However, since the first step of the contraction process
is to shift by 8, we show in column 2 the weights of
column 1 shifted bye.+S. In the next step we discard
those weights which now lie on the Weyl planes. We are
also instructed to perform Weyl reRections (in this case
permutations of the weight components) until all
weights are dominant, which in the case of the unitary
algebras means that each component is smaller than the
preceding one. However, for this particular calculation
no permutations are needed. The Anal step of the
contraction process is to shift back by —S. The terms
of the Clebsch-Gordan series appear in column 4 of
Table II. Interpreted in terms of dimensionalities Lcf.
Eq. (A7)], they yield the familiar result

{8}{8}=2{8)$3{10}@{27){10}+{1). (81)

The second part of the procedure given iri Appendix A
will enable us to partition the Clebsch-Gordan series
just obtained into its symmetric and antisymmetric
parts. In column 1 of Table III we list weights of the
diagram for X2. Their components are double those of
the corresponding weights of the adjoint representation
as given in column 1 of Table II. We perform the
contraction procedure in three steps. We shift the
weights of X2 by 5 to get the terms of column 2 of
Table III. We obtain column 3 by performing Weyl
rejections and changing the signs of the multiplicity
whenever the permutation of the components is odd.
Again we drop those weights which lie on Weyl planes.
Finally we shift back by —6 to obtain column 4.
Referring to Eq. (AS) we find that the contracted
weight diagram for Xs contains (1, 0, —1), (0,0,0), and
(2, 0; —2), while the corresponding diagram for X~ con-
tains (1, 0, —1), (2, —1, —1), and (1, 1, —2). By re-

ferring to Eq. (A7) we find

{g}{g)= L{1) {g){27)]"-
eL{g) {10} {10)']-4'.- (B2)

Now let us illustrate the procedure of Appendix A on
a somewhat more complicated example. We calculate
the Clebsch-Gordan series for the Kronecker square of
the adjoint representation of 86. The coordinate sys-
tems of Table I can always be trivially modified so that
the entire calculation for any given representation may
be performed with integers only. This could be ac-
complished in the case of E6 by using different changes
of scale for the zeroth component and for the remaining
six components. However, for simplicity of discussion
we will not do that here. Table IV is the counterpart of
Table II in the discussion above. However in column
1 we have listed only some of the weights of the ad-
joint representation. The 61 omitted weights when
shifted by xi+5 lie on Weyl planes and thus do not
contribute. The same is true for the last two entries of
column 2. The first of these lies on a Weyl plane
normal to 85—e6, and the last entry lies on a Weyl plane
normal to the root (—2 'i'; i~, —'„—',, ——'„—i~, —2).

In Table V we show the calculations for the second
part of the problem, 6nding the symmetric and antisym-
metric terms. This table is constructed in the same
manner as Table III. Just as in Table IV we have left
out many weights which do not contribute to column
3. Those terms which appear with positive (nega-
tive) multiplicity in column 4 of Table V belong to
the symmetrized (antisymmetrized) Kronecker square.
In column 4 of Tables IV and V we have collected
like terms, and combined with the top entry.

In this manner we obtain the Clebsch-Gordan series
for the Kronecker squares of the adjoint representations
in terms of the coordinates of the highest weights of the
irreducible representations (we list the terms here in the
same order as they are given in Sec. II; however, for
brevity we have left out the special low-rank cases):

A i, t)4: (1, 0, . . . , 0, —1) (1, 0, . . . , 0, —1)
= L(0, . . . ,0)g (1, o, . . ., o, —1)g (2, o, . . ., o, —2)g (1, 1, o, . . . , o, —1, —1)]„

g3 P(1, 0, . . . , 0, —1)g3 (2, 0, . . . , 0, —1, —1)Q (1, 1, 0, . . . , 0, —2)], i;,~
Bi and Di, l&4: (1,1,0, . . . ,0)(1, 1,0, . . .,0)

= ((0,. . . ,0) fP (2,0, . . . ,0)g (2,2,0, . . . ,0)g (1,1,1,1,0, . . . ,0)],
8L(1,1,0, . . . ,0)8 (2,1,1,0, . . .,0)],„q;,

Cr& l&3: (2,0, . . . ,0)8(2,0, . . . ,0)
= L (0,0,0, . . . ,0)g (1,1,0, . . . ,0) fP (2,2,0, . . . ,0) (4,0,0, . . . ,0)].r

L(2,0,0i . ,0) (3i 1io, ,o)]-~'"-,
G: (2, —1, —1) (2, —1, —1)= P(0,0,0)g (2, 0, —2) (4, —2, —2)],

L(2, —1, —1)g (3, 0, —3)],„g„
F4: (1i1ioio) (1i1ioi0) = L(oioioio) (2ioioio) 63 (2i2ioio)]8~~~9 L(1i1ioio) 63 (2i1i1i0)]~~ii~r~ i

Eg . (V2; 0,0,0,0,0,0) (v2; 0,0,0,0,0,0)
= ((0; 0,0,0,0,0,0) Q (K2; 1, 0, 0, 0, 0, —1)g3 (2%2; 0,0,0,0,0,0)],~

Q3L(%2' 0 0 0 0 0 0)8 (3/K2' g g 2 2 2 2)]autiay''
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TABLE VI. List of highest weights and dimensionalities for the fundamental irreducible representations A.(», k= 1, . . ., l for the
simple Lie aIgebras. For A&, 8&, C&, and D&, the entry in the square bracket on the right gives the general formula for the dimension-
ality of A.(~&, with the dimensionality of spinor representations of 8& and D& listed separately. A bar over the dimensionality of a rep-
resentation indicates that that representation is the complex conjugate of the representation listed above it.

Algebra

A)

Fundamental representation

~ ~ ~

l —1 —1 —1)~o)=
l+1 1+1 l+1 1+1j

(1—1 l—1 —2 —2))
A(&) =

),1+1 1+1 l+1 1+1)

~ ~ ~

2 2 2 —l+1 —l—1
+(i—» =

l+1 l+1 l+1 l+1 l+1

~ ~ ~

1 1 1 1 1))—
(0=

l+1 l+1 l+1 l+1 l+1j

l (l+1)

l(l+1}

Dimensionality Formula for dimensionality

(l+1)!
; (k = 1, 2, , l)

k!(l+1—k) 1

C)

D)

A&'& = (1,0,0, . . .,0,0)
~('& = {1,1,0, .. .,0,0)

A.(' '& = (1,i,i). ..,1,0)

A. ('& = (1,0,0, . . .,0,0)
A.&2& = (1,1,0, . . .,0,0)

A.('& = (1,0,0, . . .,0,0,0)
A. (2& = {1,1,0, . . .,0,0,0)

A.(' '& = (1,1,1,. . .,1,0,0)

~('&=(1, 0, —1)
~(»=(2, —1, —1)
~('& = (1,0,0,0)
~&'& = (1,1,0,0)

~(4& = (2,1,1,0)

= (7/4

A.('& = (2, 0, 0, 0, 0, 0, —1, —1)

~&'& = {1,1,0,0,0,0,0,0)
~(» = (2,0,0,0,0,0,0,0}

~('& = (4,1,1,1,1,0,0,0)
(s& (5 1 1 1 1 1 0 0}

2l+1
l (2l+1)

(2l+1)!

(l—1)!{l+2)!.
Ql

2'

(2l+1) (l—1)

2(2l+1)!

l!(l+2)!
2l

l (2l—1)

(2l)!

(l—2)!{l+2}!.
2l-1
2l—j.

7
14

26
52

273
1274

27
2l
78

351
38i

2925

7X8
7X19
24X3X19
34X 19
5X7X»X 19
24X7X13X19
2X5'X7X11X19
2'X31
5sx31
2'X 5X7'X31
2X5sX 19X31
2'X 5X 13X19X31
2'X3'X 5'X31
2X3X5X7'X 13'X19X31
2'XBX7'X 11'X17X23X31

{2l+1)!
; (k=1, 2, . . ., l—1)

ki(2l+1-k) f.

2l

(2l+1)!(2l+2—2k)
; (k=1, 2, . . ., l)

k!(2l+2—k)!

2l

{2l)!
; (k=1, 2, . . ., l—2)

k!(2l—k)!

2l—1

2l-1
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Eg . (1, 0, 0, 0, 0, 0, 0, —1) (1, 0, 0, 0, 0, 0, 0, —1)

Q [(2, 0, 0, 0, 0, 0, 0, —2) (P (1, 0, 0, 0, 0, 0, 0, —1)fP (2, 0, 0, 0, 0, 0, —1, —1)7,„g;,~

Es: (1,1,0,0,0,0,0,0)8 (1,1,0,0,0,0,0,0)
= [(0,0,0,0,0,0,0,0)Q &2,0,0,0,0,0,0,0)g (2,2,0,0,0,0,0,0)j,„

[(1,1,0,0,0,0,0,0)g (2,1,1,0,0,0,0,0)j,„g;,~ . (B3)

This description of the Clebsch-Gordan series for
Kronecker squares conveys much more information
than the formulas of Sec. III, which give only the
dimensionalities of the representations. Though ade-

quate from the point of view of proving the conjecture,
it is not a unique description as the choice of coordinate
system is arbitrary. A somewhat better description is in

terms of the coef5cients (p&,p2, . . . ,p&) of Eq. (A6) which

are unique except for ordering.

In order to write Eqs. (B3) in terms of (p&,p&, . . . ,p&),
we need to know the components of the fundamental
domiriant weights in the coordinate systems we have
been using. This information is given in Table VI.
Important checks on the entries of this table are that
the vectors A&'& (i=1, . . . , l) be linearly independent
and that the relation

+1
Q A.;=0. (BS)

The highest weights for 8g, Cg, and Dg have / indepen-
dent components.

We now write the equations of Sec. II in their 6nal
form keeping the same ordering of terms:

P A&'&=a (B4)
i~l

holds. For A &, 8&, and C& it is particularly simple to go
from the components of a highest weight A. to the
coeKcients p; of A.&'& in Eq. &A6) since we have p;= A;
—A.,~g, i=1, . . . , /ford), p, =h.;—h.;+g, i=1, . . . , I—1
and pq=2hq for Bq, and p, =A,—A;+~, i=1, . . . , /—
and pq= Aq for Cq. In Table VI the highest weights for
representations of A~ have 1+1 components and are
restricted by

For Ag,

1=2:
l=3:
t&4.

(1)(1) = [&o)&2)7"- D1)j- '"-
(1,1)(1, 1)= [(0,0)Q(1,1)g (2,2)]g [(1,1)g(3,0)Q(0,3)], g;,„
(1,0,1)(1, 0,1)= [(00,0)6(1,0,1)$(2,0,2)$(0,2,0)j, [(1,0,1)$(2,1,0)(0, 1,2)$, „,
(1,0, . . .,0,1)(1, 0, . . .,0,1)

= [(0,. . .,0)$(1,0, . . . ,0,1)g (2,0, . . . ,0,2)g (0,1,0, . . . ,0,1,0)7,~~~
e [(1,0, . . .,0,1)g(Z, O, . . . ,O, 1,0)g(O, 1,0, . . . ,0,2)j,„„„..

(B6)

For B~ and Dg for l&4,

l&4: (0,1,0, . . .,0)(0, 1,0, . . .,0)
= [(0,0, . . .,0)$(2,0, . . .,0)Q (0,2,0, . . .,0)g (0,0,0,1,0, . . .,0)7,

g3 [(0,1,0, . . .,0)Q3(1,0,1,0, . . . ,0)g,„„,„
The special cases are

Bg'. (0,2)(0, 2)=[(0,0)g(2,0)(0, 4)g(1,0)j[(0, 2)g(1,2)j, g,~

8, : (0,1,0)3(0,1,0)=[(0,0,0)(2, 0,0)(0, 2,0)g(00,2)j, Q[(0,1,0)(1, 0,2)g, „,
D, : (0,1,1)(0, 1,1)= [(0,0,0)Q3(2,0,0)(0, 2,2)(0, 1,1)7,„ [(0,1,1)g (1,2,0)Q(1,0,2)j, „,

For C],

f=2: (2,0) (2,0)= [(0,0)(0, 1)(0, 2)(4, 0)3 D2,0) (2,1)j,„„,„
i)3: (2,0, . . . ,0)(2, 0, . . . ,0)

= [(0,0, . . .,0)fEN(0, 1,0, . . .,0)g (0,2,0, . . . ,0)(4, 0, . . . ,0)j,~

6 [(2,0, . . .,0)g(2, 1,0, . . .,0)j..„....

(B7)

(B8)

(B9)
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For the exceptional algebras,

+8 ~

(0,1)8(0,1)= [(0,0)Q(2,0)(0, 2)7,~ Q [(0,1)(3, 0)],„2;,2

(0,1,0,0)8 (0,1,0,0)= [(0,0,0,0)Q3 (2,0,0,0)g (0,2,0,0)].„, 63 [(0,1,0,0)9(1,0,1,0)], 2;.

(0,0,1,0,0,0)8 (0,0,1,0,0,0)
= [(0,0,0,0,0,0)$(0,0,2,0,0,0)$(1,1,0,0,0,0)].~ 6[(0,0,1,0,0,0)63(0,0,0,0,0,1)], 2;,2

(0,1,0,0,0,0,0)8(0,1,0,0,0,0,0)
= [(0,0,0,0,0,0,0)Q3(0,0,0,1,0,0,0)Q(0, 2,0,0,0,0,0)],2 Q [(0,1,0,0,0,0,0)Q3(0,0,0,0,1,0,0)], 2;,2

(1,0,0,0,0,0,0,0)8(1,0,0,0,0,0,0,0)
= [(0,0,0,0,0,0,0,0) (0,1,0,0,0,0,0,0)g (2,0,0,0,0,0,0,0)],2

[(1,0,0,0,0,0,0,0)Q (0,0,1,0,0,0,0,0)],„2;,2

(310)
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Relativistic Hydrodynamics in One Dimension*
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Hydrodynamic equations for one-dimensional motion, of interest in supernova explosions, are integrated in
the relativistic limit. A simple solution is found for free expansion into a vacuum. The propagation of a
shock into a medium of decreasing density is determined, and the solution for the subsequent Row behind
the shock is also obtained.

I. INTRODUCTION

EXTREME relativistic motions of a Quid can occur
~ in supernova explosions as the result of a strong

shock propagating through the outermost mantle of the
star. It has been proposed that cosmic radiation is
matter ejected from the surface of the star in this
manner. '

In this paper the hydrodynamic equations for one-
dimensional motion are integrated in the relativistic
limit. A simple solution is found for free expansion into
a vacuum. The propagation of a shock into a medium
of decreasing density is also determined, and the solu=

tion for the subsequent Qow behind the shock front is
obtained.

P+P'~ ~ P(P+~)l1+ —i=0,
c/2: 1—P' c/C/.

' 1—P' )

~ p(p+&)» F+p'p
=o.

a2: 1—p' i ac/, 1—p'
(2)

There is also a conservation law for the nucleon num-

ber density,

of the energy-momentum tensor equal to zero. ' Let p
be the pressure, E the proper energy density, c the
speed of light, and Pc the fluid speed. For one-dimen-
sional motion in the x direction, the vanishing of the
divergence gives

IL HYDRODYNAMIC EQUATIONS

The equations for the motion of a Quid in the absence
of external forces are obtained by setting the divergence

c/ 22p c/ 22

+
gg (1 P2)1/2 gc) (I P2)1/2

=0 (3)
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where e is the nucleon number density in the proper
frame of reference. In the nonrelativistic limit, (1)—(3)
reduce to the classical forms of momentum, energy, and
mass conservation.

L. D. Landau and E. M. Lifschitz, Fluid Mechanics (Addison-
Wesley, Reading, Mass. , 1959).


