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occurs between the onset of the edipse and its midpoint.
This agrees qualitatively with the work of Allais' with
a paraconical pendulum, where the change of azimuth
increased substantially in the 6rst half of the eclipse of
30 June 1954. Both these e6ects would seem to have a
gI'RvltRt1onRl bRsls which cannot- bc explained by
accepted classical theory.

Both our experimental 6ndings and those of Allais
cause one to question whether the classical laws of
gravitation hold without modi6cation.

CONCLUSION

Quantitative observations made with a precise torsion
pendulum show, in agreement with many earlier, less
precise recordings made at Harvard since 3.953, that

' Maurice F. C. Allais, Aerospace Kng. 18, 46 (1959).

the times required to traverse a 6xed. fraction of its
total angular path vary markedly during the hours
before the eclipse and during its 6rst half, i.e., up to its
midpoint. Also the signihcant changes in these times do
not coincide exactly with the astronomically determined.
onset, midpoint, and endpoint of the eclipse.

These variations are too great to be explained, on the
basis of classical gravitational theory, by the relative
change in position of the moon with respect to the earth
and sun. This leads to the same conclusion arrived. at by
Allais —that classical gravitational theory needs to be
modiaed to interpret his (and our) experimental results.
Moreover, the 6ndings with the torsion pendulum, the
sig~~~~~n™ ~~ ~~ ~~~~~ ~0~~~ perpendicularly to the
geogravitic vector, seem to indicate the possibility of a
6ne structure in these observations neither predicted
nor recorded using the orthodox methods of quasi-
stationary gravitational investigations.
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Upon de6ning vector spherical partial waves {Q ) as a basis, a matrix equation is derived describing
scattering for general incidence on objects of arbitrary shape. With no losses present, the scattering matrix
is then obtained in the symmetric, unitary form 8= —Q'~P, where (perfect conductor) Q is the Schmidt
orthogonalisation of Q„„=(k/v) J'de p(vXReg„)Xg".g, integration extending over the object surface.
For quadric (separable) surfaces, Q itself becomes symmetric, e fecting considerable simplihcation. A secu-
lar equation is given for constructing eigenfunctions of general objects. Finally, numerical results are pre-
sented and compared with experimental measurements.

INTRODUCTION
" 'N earlier work, a matrix description of acoustic
~ ~ scattering was given, based on the flj/ Helmholtz-
KirchhoG integral formula plus interior continuation
arguments. ' The present work constitutes the sequel
for the vector electromagnetic case. Close parallels
between the scalar and vector formalism are evident;
we have attempted to accentuate them by using the
same notation whenever possible.

Section I deals with derivation of the basic equations
for the transition matrix. Incident illumination is
constrained only to have no singularities in the interior
volume of the scatterer; both volume- and surface-type
scattering are considered for objects of general geom-
etry, the surface of which need not be smooth (i.e.,
have continuous-turning normal). In Sec. II the scatter-
ing matrix is de6ned, and symmetry and unitary
constraints are introduced into the original equation to

~ Work supported in part by the Advanced Research Projects
Agency, under contract No. AF19 (628}5165.' P. C. Waterman, J. Acoust. Soc. Am. 45, 1417 (1969}.

obtain the solution in exactly symmetric, unitary form
at any truncation. A secular equation is also discussed,
from which one could alternatively proceed by con-
structing eigenfunctions appropriate to the given
object. Our approach to the problem in terms of the
scattering matrix in a spherical-wave basis is not new,
incidentally, and has been described in some detail by
Newton, for example. ~

In Sec. III. a closer look is taken at matrix elements
required in the computation. Constraints arising from
the object geometry are discussed, and an important
reduction found for objects bounded by quadratic
surfaces, i.e., coordinate surfaces in one of the 11
systems in which the scalar Helmholtz equation is
separable. Finally, numerical' results are presented in
Sec. IV for bodies with rotational symmetry, and.
compared with experimental measurements, as well
Rs thc Raylclgh RIld gcomctI'1CRl-optics Rpploxlmatlons.

~R. G. Newton, ScaNering Theory of Races amE ParHcles
(Mcoraw-Hill, ¹w York, 1966), Chap. 2, pp. 101-104, pp.
189-190.
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I. MATRIX FORMULATION

We seek the scattering from an object bounded by
the closed surface 0-, as shown in Fig. j., upon illumina-
tion with a given incident electromagnetic field E', I'.
Only monochromatic waves are considered, with time
dependence e '"' suppressed throughout; both electric
and magnetic Gelds satisfy the vector Helmholtz
equation

BOUNDARY ~
QF QBJECT

Fxo. 1. Geometry of a scattering region bounded
by the closed surface a..

VX~7X Q
—keg=0 (k=s&/c).

Defining the total field E as the sum of the incident
and scattered waves, i.e., E=E'+E', and further
requiring that the scattered wave be outgoing at
infinity, the vector Huygen's principle states that"

E(r)
=E'(r)+V'X do'k(nXE~)g(kR)

0

In other related work in the literature, numerical
results have been obtained for conducting' ~ and
dielectric objects. A somewhat different approach to
the problem has been pursued by Mullin, ' Greenberg, "
and their co-workers, and, using perturbation tech-
niques, by Yeh" and Erma. "The characteristic modes,
or eigenfunctions, were considered by Garbacz. "The
key ingredient in all of this latter work was the assump-
tion that a representation of the scattered field in
spherical (or circular cylindrical) waves may be
employed directly on the surface of the object, in the
course of satisfying boundary conditions. Relative
merits of this assumption, versus the interior-region
approach employed herein, are discussed by Bates and
others. '4 Additional references to other techniques, e.g. ,
the variational method and the surface-integral-equa-
tion formulation, have been given elsewhere. '

3 N. ¹Govorun, Comp. Math. Math. Phys. 1, 779 (1961).
P. C. Waterman, Proc. IEEE 53, 805 (1965).' R. H. T. Bates, Proc. IEE (London) 115, 1443 (1968).

6 F. Gardner, Proc. IEEE 57, 844 (1969).' A. A. Avetisyan, Radiotekn i. Electron (USSR) 15, 3 (1970).
LRadio Eng. Electron. (USSR) 15, 1 (1970)g.

P. C. Waterman, Alta Frequenza 38 (Speciale), 348 (1969).
C. R. Mullin, R. Sandberg, and C. O. Velline, IEEK Trans.

Antennas Propagation 13, 141 (1965).
0 J. M. Greenberg, A. C. Lind, R. T. Wang, and L. F. Libelo in

ELectromagnetic Scattering, edited by R. L. Rowell and R. S.
Stein (Gordon and Breach, New York, 1967), pp. 3-53.

'C. Yeh, Phys. Rev. 135, A1193 (1964); J. Math. Phys. 6,
2008 (1965).

~ V. A. Erma, Phys. Rev. 173, 1243 (1968); 176, 1544 (1968);
179, 1238 (1969).

"R. J. Garbacz, Proc. IEEE 53, 856 (1965). See also V. V.
Karnishin, V. V. Akindinov and V. V. Vishin, Radiotekn i Electron
(USSR) 15, 14 (1970). /Radio Eng. Electron. (USSR) 15, 10
(1970)j.' R. H. T. Bates, IEEE Trans. Microwave Theory Techniques
15, 185 (1967); Electron. Letters 3, 166 (1967); 5, 654 (1969).
M. L. Burrows, ibid. 5, 277 (1969); 5, 694 (1969). R. F. Millar,
ibid. 5, 416 (1969);R. F. Millar and R. H. T. Bates, IEKE Trans.
Microwave Theory Techniques 18, 325 (1970); M. Neviere,
Optics Commun. 2, 51 (1970).

outside cr

+&XV'X do.'i(n XH+)g(kR), r . (2)
lIlslde 0

In this equation, R=
~

r—r'L is, as usual, the distance
from source point to field point, g(kR) = (4irkR) ' e'"~
is the scalar Green's function, and the integrals rep-
resent surface distributions of magnetic and electric
dipoles, respectively. The corresponding amplitudes
nX E+ and n&H+ are unknowns to be determined.

In the exterior region (r outside o.), Eq. (2) gives a
prescription for evaluating the field by quadrature of
the surface currents. In the interior, on the other hand,
one sees that the fields expressed by surface integrals
must precisely cancel the incident wave. In order to
make use of this assertion, the set of outgoing spherical-
partial-wave solutions of Eq. (I) is introduced as a
basis, writing"

g„(r)=g,. „(r)
—=y „"'(k—' curl)'kri'. „„h„(kr)

in terms of the spherical Hankel functions of the first
kind h„.The scalar and vector spherical harmonics are
defined in terms of associated Legendre functions

"H. Honl, A. W. Maue, and K. Westpfahl in IIandbgch der
P'hysik, edited by S. Flugge, (Springer-Verlag, Berlin, 1961),Vol.
25/1, p. 240. The incident wave appears naturally in Eq. (2) in
the course of working out the details of the divergence theorem.
This term is absent in the Honl, Maue, and Westpfahl result
because they did not allow for sources of the total field in the
exterior. region.

"The Q, ~ and Q, s functions are, except for normalization,
the M and N functions given by P. M. Morse and H. Feshbach,
Methods of TheoreticaL Physics (McGraw-Hill, New York, 1953),
Chaps. 11 and 13. Our vector harmonics A, I and A, ~ correspond
similarly to the C and B functions.
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I'„as
F,„„(r)=cos~ P„(cos8),
1'.„„(r)=sin~ P„"(cosa),

conditions, a truesitioe matrix T can be defined which

computes the scattered wave from the incident wave

by f„=g T„„.a„, r1,=1, 2, . . .

Arrtaa(r") =
rV V.

„„ (r =2)

Vx(ry'.„.) (r=1)
(3b)

n'=1

or, in obvious matrix notation,

and the normalizing constants are

(2rs+ 1)(e—m)!
Vmn= &m

4rs(ts+1) (ts+m)!
(3c)

in terms of the Neumann factor eo ——1, e = 2 otherwise.
The indices r= 1, 2; o = e, o (even, odd); m= 0, . . . , e;
and m=1, 2, . . . have been collected into the single
index on Q ~ by the scheme (the functions having
om=o0 do not exist) romri=1e01, 2e01, 1e11, 2e11,
1011, ... . Note the interrelations

'thorns= (1/&)&X Qsrmn y

= (1/&)&X ttlt. ..
which in the far field become

(3d)

&2trmn, = &XA].o'mn y

~1@mn = ~X &2g mn y

(3e)

E'(r) =Q a„Re/„(r),r(r;„,

exhibiting the transverse nature of the wave functions
explicitly.

The Q„area complete set suitable to represent the
scattered wave everywhere outside of the spherical
surface circumscribing the object (Fig. 1), as will be
seen shortly. We also require the wave functions
(Re/ (r)) regular at the origin, obtained by taking
the real part of the Q (yielding Bessel rather than
Hankel function radial dependence). "

The incident and scattered waves are now written

Because the expansions of Eq. (4) may not be appro-
priate to use directly in satisfying boundary conditions,
we shall instead proceed by enforcing Eq. (2) in the
interior region (r inside a). One first rewrites the
integrand in the form

(~x E+)g(~z) = (~x E+) 3g(»)
(and similarly for the second integral), and observes
that the free-space Green's dyad may be written"

3g(uZ) = (i/~)P g.(r&) Req. (r&)
+ (irrotational terms) . (6)

This expansion is uniformly convergent for r & r', with

r&, r& respectively the greater and lesser of r, r'.
Substituting Kq. (6) in Eq. (2) and performing the

indicated curl operations (which eliminate the irrota-
tional terms), the scattered wave in the exterior region
is found precisely in the form given by Eq. (4), with
expansion coeKcients

k2f„=— do((ik) '[V'XRe(g„)J (ilxE+)

—Re(hatt„) (O'XH+)), n=1, 2, . . . . (7a)

On the other hand, for 6eld points inside the inscribed
sphere, the entire right-hand side of Eq. (2) takes the
form of an expansion in the regular functions Restt .
Because of orthogonality, each coeKcient must vanish
separately, giving

E'(r)=Z f 4 (r) ~&~m~ on o'

(4)
k2

a„=—— dot(ik) '(Vxg ) (ilXE+)

for Geld points inside the inscribed sphere, or outside
the circumscribed sphere, respectively, where the
incident wave has been assumed to have no sources in
the interior of the object."Assuming linear boundary

"We have indicated in Eqs. (4) the smallest region in each case
for which convergence of the spherical wave expansion is assured,
based essentially on Eq. (6). In specific cases convergence may
obtain over a larger region. For example, the inscribed sphere
shown in Fig. 1 is appropriate for an incident wave consisting of a
point electric dipole just outside the surface of the object, whereas
the incident plane-wave expansion is known to converge over the
entire space. For the scattered wave, which is physically well-
defined everywhere outside the object, there is no guarantee that
our representation of it in Eq. (4) will converge, and hence be
useful, in the annular volume between the object surface and the
circumscribing sphere. This is precisely the point discussed in
Ref. 14. Further pertinent discussions are also given by V. H.
Weston and W. M. Boerner, Can. J. Phys. 4V, 1177 (1969);and
R. Mittra and D. R. Wilton, Proc. IEEE 5'7, 2064 (1969).

—Q„(&XH+)g, rI=1, 2, . . . . (7b)

These last equations are necessary and suKcient
conditions for satisfaction of Eq. (2) within the in-

scribed sphere. Because of the continuation property
of solutions of elliptic partial differential equations, it
follows that Kq. (2) will in actuality be satisfied
throughout the interior of the object."Kquatioiis (7)
correspond, in more compact notation, to the moment
equations given previously for conducting4 and dielec-

The field we are dealing with is a solution of Eq. (1) with no
singularities anywhere in the interior volume. It may hence be
reexpanded in the functions Re/„about a new origin within the
inscribed sphere and shown to vanish within a new inscribed
sphere. By repetition of this process one can eventually cover the
entire interior volume.
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tric' bodies. The first set, Eqs. (7a), constitute a
quadrature rule for obtaining the scattering from
surface fields, while Eqs. (7b) represent ofse equation
for the two unknown surface fields. A second equation
must be obtained from the boundary conditions, now
to be specified.

The simplest case arises when the object is perfectly
conducting, whereupon

flXE+(r) =0, r on ~.

These functions are a complete set, and the expansion
of Eq. (9) approximates the surface current in mean-
square sense. "Introducing the matrix Q with elements

Q = — d4r L(V'XReg )XQ (10)

the result of substituting Eq. (8) and (9) in Kqs. (7)
may be written (Q' designates the transpose of Q)

f= i Re(Q')n, —
a=iQ'rr.

(11a)

(11b)

The latter equation may be solved for the surface
currents (cr) in terms of the incident field (a), the first
equation then yielding the scattered wave (f). Alterna-
tively, the surface currents may be eliminated to get
the scattered wave directly; i.e., f= —Re(Q')(Q') 'a.
Now by comparison with Kq. (5), the transition matrix
is seen to be determined by (assuming T symmetric;
see below)

QT= —ReQ. (12)

Equation (12) applies also to the general case of an
object with relative dielectric constant e, relative
permeability p, and conductivity a-, after appropriate
modification of Q. Boundary conditions now require
continuity of the tangential components of both E
and H, i.e.,

axE =AXE
r on. cr.

aXH+=eXH
(13)

We suppose the field inside the object to be represent-
able in regular wave functions of the interior wave

'9 The functions of Kq. (9) are a complete set for the representa-
tion of tangential vector fields over the surface cr, except at those
discrete eigenvalues of k corresponding to resonance frequencies of
the interior region. Proof is exactly analogous to that given in the
acoustic case (Ref. 1), and will not be repeated here. Note that
previous work for conducting objects (Ref. 3) employed outgoing
rather than regulur wave functions to represent surface currents.

In this event we choose to represent the induced
electric surface current 8&(H+ by expansion in regular
wave functions, writing

f1XH+(r) = (1/ik—) g n„f1X(V'XReg„(r)J, r on o. (9)

k @(k,k;) =g(k,k;) k;=0,
8(k k') =8'(—k' —k)

ding'*(k,

k~) @(k,k )+(4n'/k')R(k;, k )

(20a)

(20b)

=(2 /s&)ES(k', k'') —8'*(k'',k')j, (20c)
~0 The case of nonzero conductivity (k' complex) is included

wittiout introducing additional notation, by agreeing to read
Re/„as the "regular part of Q„,"meaning to take only the Bessel-
function portion (of complex argument) of the Hankel function.
For k' real this defmition reduces correctly to the real part of Q„.

"As noted earlier for dielectrics (Ref. 8) it is not necessary to
assume that the expansion of Kq. (14) (and its curl) converge
throughout the interior of cr. One can alternatively begin with
n&(E derived from Eq. (14), and the independent expansion
H =g AS„&XRe/„(k'rl to describe a&&H . By reformulating
Kq. (2) through application of the divergence theorem to the
interior region, it will then follow that P„—=o, ."D. S. Saxon, Phys. Rev. 100, 1771 (1955); see also Ref. 2.

equation, writing'0

E(r)=g cr Re/„(k'r), r inside o (14)

with interior propatation constant k = (k'fje+ ndpp p(T)"'.
In view of the relation H = (sky) 'VX E and the bound-
ary condition Eqs. (13), both surface fields appearing
in Eqs. (7) are expressible in terms of the expansion
coefficients n.s' Consequently Kqs. (11) and (12) again
apply, provided Q is replaced by the matrix Q with
elements

k
Q = — do f(1/fi)LVXReg„(k'r))Xg„.(kr)

—Re/„(k'r)XL V'Xg„.(kr) $) . (15)

Note that the perfectly conducting object could be
regarded as a limiting case of Eq. (15), obtained by
setting o =0, y = 1/e (so that k' =k), then letting e -+ oo,
whereupon pQ -+ Q.

Far-field behavior is conveniently described by
introducing the column array a(k) having components

a (k) = (i)" '+'y „"A„„„(k).(16)

Now from Eqs. (3a), (4), and (5), the scattered wave
becomes asymptotically

E'(r) ~ (e""/ikr)a'*(k) Trr, . (17)

In particular, for plane-wave incidence in the direction
k;, one can write"

E'(r) =ese'""=4es a'(k;) Re(g), (18)

where Re(Q) represents the column array with entries
Re(g ). It follows from this last equation, incidentally,
that a(—k) =fr*(k). Equation (17) may now be written

E'(r) —+ (e'"'/r)P(k, k ) es, (19a)

P(k,k;) = (4/ik) a'*(k)Ta(k, ) . (19b)

The dyadic amplitude Q is convenient in that it
allows one to discuss properties of the scattered field
without specifying polarization states involved, e.g.,
the linear polarization of Eq. (18). General properties
have been given by Saxon":
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where N is a dyadic characterizing dissipation due to
the obstacle. The first of these, transversality, is
satisfied for our representation, Kq. (19b), by inspec-
tion. The reciprocity condition (20b) is met provided 7.

'

is symmetric, i.e.,

By substitution of the definition Eq. (23) in Eqs. (12),
(21a) and (21b), S is seen to satisfy

(25a)

subject also to the constraints

(21a)

Finally, in the absence of any losses associated with the
obstacle, Eq. (20c) requires that

S'=S,
S'*S= j.

(25b)

(25c)

P~r= —Rev. (21b)

In the quantum theory of scattering, this equation is
known as the generalized optical theorem. '

The absorption, scattering, and extinction cross
sections (0,=0,+0,) for the incident wave of Eq.
(18) are given respectively by'2

of symmetry and unitarity. "
Now notice that if S could be constructed in the

form U'U, where U is unitary, then both constraints
would be satisfied by inspection. This suggests that
Eq. (25a) be solved by first associating Q with some
unitary matrix Q. This can be done (in truncation) by
Schmidt orthogonalization on the row vectors of Q,
starting at the bottom. In matrix form one has simply

0. =(4z'/k')eo Q(k;,k;) ep, (22a) Q= MQ, (26)

dfl 80 @'*(k,k') g(k,k;) ep

= (16'/k') eo a'*(k;)T'*Ta( k) 80, (22b)

0,=(4s./k) Imgeo Q(k;,k;) epg

=—(16z/k')eo a'~(k;) Re(T)a(k~) so. (22c)

The back-scattering or radar cross section, which is the
quantity most accessible to experimental measurement,
is given by

with M upper-triangular. The last (and only nonzero)
entry in the bottom row of 3/I normalizes the last
row vector of Q to unit length, the two elements of the
next-to-bottom row of M choose a (normalized) linear
combination of the next-to-last and last vector of Q
orthogonal to the latter, and so on. We also agree to
choose the diagonal elements of M to be real in the
course of this process, which can be done without

difhculty.

Premultiplying. Eq. (25a) by M, one has

o. i,=4n ~ep g(—k;, k;) co)'
=(6kr/k') ~Pp a'(k~)Ta(k;) eo~'. (2M)

and hence
QS = —MQ*= M3f~'Q, —

S=—Q'*(MAP' ')Q*. (27)
For the orthogonally polarized return, 0 b is obtained by
replacing one factor eo by k'X eo.

II. ROLE OF RECIPROCITY AND
ENERGY CONSERVATION

The matrix Eq. (12) can be solved numerically after
truncation, as will be shown. In the event that there are
no losses associated with the obstacle, however, a more
powerful procedure is available, consisting basically of
solving Eq. (12) subject to constraints of symmetry
and unitarity.

To begin with, one defines the scattering matrix S as

S=1+2T.

Note that T describes the total Geld in terms of incident
and scattered waves, i.e.,

E=a' Re(g)+a'TQ. (24a)

In terms of the scattering matrix, the field is alterna-
tively decomposed into iecomieg and oltgo&sg waves
to get

(24b)

Because 3f is upper-triangular with real diagonal
elements, it is easy to show that the product 3f3P' '
is unit upper-triangular (i.e., all diagonal elements
equal 1). Furthermore, in the limiting case of infinite
matrix size, symmetry of S applies, and this in turn
requires that 3fM* ' be symmetric, as readily seen from
Eq. (27). But then M3P' ' can only be the identity
matrix (that is to say, M is real). Using this limit in

the truncated Kqs. (27) gives a new sequence of
truncated solutions

S= —Q'*Q* (or T= —Q'* ReQ) (28)

which might be expected to converge more rapidly
than Eq. (27), because symmetry and unitarity are
now satisfied at each truncation. Numerical results
strongly bear this out.

It may alternatively be profitable to view Eqs. (25)
as an eigenvalue problem. Although this approach has
not been pursued in detail, it is worth noting that in
consequence we can de6ne eigenfunctions of the

"The additional condition SS'*=1, which is required for
unitarity of infinite matrices, now follows from Eqs. (25b) and
(25c). Concerning this point, see also Ref. 22.
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ix'Pj (x)h +1(x) j—+l(x)h (x)j=1
and inspection of the angular integrations in Eq. (31b)
below, one hasSl&r'& =e'"Its&I& j=1 2, . . . . (29a)

conducting ellipsoid, prolate spheroid, and oblate Finally, from the Wronslcian relation (x=k»)
spheroid, all cases for which standard separation-of-
variables techniques fail. '6

The eigenvectors N~&) of the scattering matrix are
dehned by

The eigenvalues e'~j lie on the unit circle in the complex
plane, and the I&&) form a real, orthonormal set. '*'3

Substitution in Eq. (25a) thus leads to a real system
of equations

Re(Q)N&f&=tan(-,')&;) Im(Q)N&r& (29b)

for the e&&~, after solving the secular equation

I
ramnr~a'm'&n+1& = Qra'm'&n+1&r'amn 1 ra r ~ (30C)

These equations reduce the number of elements to be
evaluated to about three-eighths of the original, and
also provide useful consistency checks on numerical
cRlculRtlons.

Further reductions may occur depending on the
object geometry. Dehning scalar wave functions

( ReQ—tan (-', )&;) ImQ
~

=0 (29c) (r) =y "'F'.„„(»)h(k»),

Ol

Re(Q)e&r& =&r,~&r&

Im(Q)e&f& =P,N. &f&,

&1;/tf;= tan)&;.

(29b')

(29b")

In the acoustic case, eigenfunctions defined in the
manner of Eq. (2M) have been identified numerically
ln one lnstRlice as expRllslons of the MRthleu functions
(separation of variables) in circular wave functions. '

IIL STRUCTURE OF Q MATRIX

Using Glecli s second vcc'tol Identity, the Q matrix
for conducting bodies may be rewritten in the some-
what more symmetric form

Qnntc ss$nn. +——— do" L(QX Rett&n) XQn.
2~ —Reg„g(wyq„')j. (10')

By inspection the real part of Q is seen to be symmetric,
al.e.)

RCQramnr'a'm'n' =RCQr'a'm'n'ramn ~

Because the curl operation is equivalent to switching
the value of r Lsee Eq. (3d)j, we have also that

~ ysamnsa'm'n'= st&far'f&mm' f&nn' Qlamnla. 'm'n' ) (30b)

1crrln2orrn'n~ = 2a.m, nI&r»m, rn'
y

/
RCQramnr'amn=0 r rWr ~ (30d)

24 J. A. Stratton, Eleckomugnetic Theory (McGravr-Hill, New
York, 194j.), p. 250.

for the eigenvalues. The outgoing eigenfunctions are
6nally dehned as

fi (r)—=2 ~-"&0-(r).

In particular for spheroids and elhpsoids, Q is symmetric
(see Sec.III), and consequently ReQ and ImQ commute'
and must have common eigenvectors. It may then be
simpler to replace Eq. (29b) by either

the independent elements of Q in view of Eqs. (30b)
and (30c) may be written"

Q„„.=rsi5„„+— d&r

2'

( VL(» Rex„)„(»x„),—(kr) ' Re(x.)x„j
+2»» V'L(k»)'Re(X„)X„g},r=»'=1
k2

Q„..= — d~ »». LV(» Rex.)&&V(»x„,)j,
r= 1, r'=2 (31b).

In these equations do =r' singd8dg(» 8»&&/» &f&»e/— —
» sinf&), subscripts denote partial derivatives, V=»&)/&)»

+88/»88+&t&8/»sin88$, and» is set equal to»(8, $),
defining the object surface, cfire» the gradient operations
are performed. Now, if there is mirror symmetry across
the x= 0 plane (r&& =0, x), then by inspection

Q=O, (r+r'+&»+&I') odd. (32a)

Similarly for mirror symmetry across y= 0 (P= —',s., ssrr),

Q=O, (r+r'+o+o'+r&z+r&I') odd (32b)

and for the symmetry plane s=0 (8=-,'Ir),

Q=O, (r+r'+»»1+AD'+»1+AD') odd. (32c)

The order-of-magnitude behavior of elements of Q
is governed by the radial functions. For a given argu-
ment x, the Bessel functions j (x) decrease rapidly in

magnitude, and the Neumann functions n (x) increase,
roughly as soon as index e exceeds x. Thus the real
part of Q will eventually decrease rapidly in magnitude
as one proceeds out along any row or column. For the
imaginary part of Q, on the other hand, elements again
eventually decrease going down any column, but

» The 6rst of these forms is obtained from Kq. (10') by uniting
(1/k) VXlt&&amn= lt&r~n = r (kr)x, + (1/k) V (rx, )„andsimilarly
for VXReltI„„,then applying Stokes' 'theorem to the terms
containing the gradient. The second form follows from lt«, „

=V(rx, „)Xrandthevectoridentity (aXc)X(bXc)=cc.(aXb).
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increase going out any row. Normalization is such that
diagonal elements remain of orde~ unity.

The numerically dominant parts of the leading terms
above the diagonal in ImQ vanish upon integration,
however. For e, e' sufficiently large, and e'&n—in
the Rayleigh limit u/l terms above the diagonal —the
leading contribution (i.e., the lowest power of hr) comes
from the 6rst term in the integrand of Eq. (31a), and
is proportional to the gradient of

(hr)" "' 'F,„„(r)F.. .„.(r) .

The product of spherical harmonics can be expanded
in the form"

F. -(r) F- - - (r) =Z F------(r) (33)

with (o+o'+o") even, m"= ~m'am~, and n' —e(e"
&e'+e, (e+I'+e") even. Now the leading term in
Eq. (33), i.e., F, ~ .

~
. „&,would normally make the

largest contribution to Q because of undergoing fewer
oscillations in the course of integration; But using the
term in question, Eq. (31a) then calls for the integral
of the normal gradient of a potential function, and
consequently vanishes identically. This e6ect may
significantly improve the convergence of our solutions
for general bodies.

If the object is bounded by a quadric surface, i.e.,
a coordinate surface for which the scuhar Helmholtz
equation is separable, then a more detailed cancellation
occurs, leaving Q symmetric exactly as was found in
the acoustic case. ~

VVe sketch the proof for the ellipsoid

(*/o)'+ b/~)'+ (s/o)'=1,

which in spherical coordinates may be written schemat-
ically

Ll/r (H,qb) $'= 1+sin'8(1+cos2&)
=' F.oo+ F,o2+ F.22 .

First, form the di6erence

6nally take the form

I efm+m'ln" p

with 0&v"&e'—I—2. The corresponding contribution
of the spherical harmonics is given by Kq. (33).Because
there is no overlap in range of summation, the resulting
integral vanishes identically. For the remaining terms
in Eq. (31a) one can integrate by parts to remove ro, r~,
after using the identity

(xj.).(xh.).—xmj.h.= -;(xmj h.)..
,'t—n(—n+1)+n'(n'+1) jj„h„..

The analysis now proceeds as before. There is one
overlap term in the range of summation this time, but
this term constitutes the normal gradient of a potential
function and, as discussed above, always vanishes.

For Eq. (31b), the angular functions in the integrand
can be written as a scalar product of vector spherical
harmonics, but unfortunately the analog of the expan-
sion Eq. (33), for vector harmonics, does not appear to
exist in the literature. The symmetry proof can stilI
be carried out, however, by noting from Kq. (34) that

(1/x')'=' g cos2pg(sin8)",

then using the ldentlty

(2n+ 1)sin HP =P„q"+'—P q
+'

repeatedly to absorb the factors sin8 into the Legendre
functions, and finally using orthogonality to complete
the proof.

Symmetry of Q does not require choosing an origin
at the center of the ellipsoid, and indeed obtains for

any origin in the interior. For an origin translated by
ro from the original, with R= j.—ro, the wave functions

Q(R) in the new system are given by»

g(R) =Pg(r), V&& q(R) =ZW&& q(r), Z&r,

with I' a real matrix depending only on 1'0. Now from
Ql~mnla'm'n' Qle'm'Nliamn Kq. (10), Q(ro) in the new system is given by (sup-

from Kq. (31a), with o.+o', m+te' e+e' all even by pres d'" n " ' ")
mirror symmetry, Eqs. (32). Considering the last term k
in the integrand, the radial functions appear in the Q(r,)= — d (LV'&&Req(R))xq(R)'}
combination'~

x'Lj (x)h (x)—j„(x)h„(x)$='P (1/x)'&~» —', (35) k ~ &L&«R e()&X&()&')

with e' —e= 2s&0. Now taking the gradient, and
employing Kqs. (33) and (34), the radial functions

' A. Messiah, Qguntgm Mechanics, translated by J. Potter
(Wiley, New York, 1965) p. 1057. In Kq. (33) and subsequently,
we use the symbol "='" to indicate that only the functions (or
additive constants) required on the right-hand side are:shown. The
explicit expansion coeQicients in the sum are not germane, and for
simplicity have been omitted.

'~ G.¹Watson, Theory of J3essel Iienc@ons (Cambridge U. P.,
Cambridge, England, 1962), 2nd ed. , pp. 145-150.

=&Q(o)&',

and hence is symmetric by inspection.

(36)

~8 S. Stein, Quart. Appl. Math. 19, 15 (1961);0. R. Crugan,
jhow, .20, 33 (1962). Because of the restrictions on validity of P,
Kq. {36) as derived. is only valid for ro&~r;, , i.e., for an
origin translated no more than half the radius of the inscribed
sphere of Fig. 1.The process may then be repeated, however, so as
to anally locate the origin anywhere in the interior volume.
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TABLE I. Form of the matrix elements Q„„,, ~ for a
rotationally symmetric body (m, n, e' 6xed). If in addition there
is mirror symmetry normal to the axis of rotational symmetry,
then off-diagonal elements also vanish for (e+js') even, diagonal
elements vanish for iN+e') odd LEq. (32c)g.

1e
20
10
2e

A
8
0
0

20

I3
($8„„—A)

0
0

0
0
A—8

2e

0
0—8

(k~ —A).

In consequence of syrninetry, the problem is simplified
for objects in all 11 coordinate systems in which the
scalar Helmholtz equation is separable, computing Q
conveniently from

nnI — ngn& y (37)

Q=o, m~m'. (38)

Using Eqs. (30b), (30c), (32a), and (32b), the form of
the matrix elements is shown for fixed n, e' and m= m'

in Table I. Note that only two of the sixteen elements
are numerically independent. For each fixed m, we can
define a reduced matrix, say Q"', formed from the four
elements appearing in the upper left-hand corner of
Table L Again from Table I, Q"' suffices to describe
behavior of the (coupled) ro=1e and 2o modes. Pre-
forming the azimuthal integrations in Eq. (10), we
have explicitly

(2n—1) (2n' —1)
rot

2 (S)4n' Q (sn) (sn')

d8 sin8

X(f(Pn~)s(P ~)s+msPn~Pn ~/sin'e)(kr j„)'krh„.
+P„~(P„")()(kr)sN(rl+1)j„h„),(39a)

(2n) (2n' —1)
rot

—A —corot
(2n—1) (2n')

= —(y „y„„)"'md8(Pn Pn' )e(kr)sj„h„.(39b)

with e&, n& respectively the greater and lesser of e, e'.
Symmetry has been verified dii'ectly on the computer
for the spheroid and the sphere, the latter with dis-
placed origin. Numerical results are presented below
for prolate and oblate spheroids, using Eq. (37).

One final situation remains to be discussed. If the
object is rotationally symmetric about the s axis, then
r=r(e) and there is no coupling between different
azimuthal modes, i.e.,

where T" continues to satisfy the summetry and
unitary constraints of Kqs. (21a) and (21b). The real
part of Q' ' is always symmetric, Q n(n+1) Q (n+1)n,
and of course for quadric surfaces ImQ"' becomes
symmetric as well.

The remaining elements in Table I describe the
modes vo-=10, 2e, with no coupling to the previous
modes. By inspection the Q, matrix formed of these
elements differs by only a sign change in even rows
and columns; the corresponding transition matrix
thus has elements given trivially by

( 1)n+n'Trot

IV. NUMERICAL RESULTS

The equations have been programmed for solution
on the IBM 7030 computer for rotationally symmetric
conducting bodies; numerical aspects of the computa-
tion are described in detail elsewhere. 29 In brief, matrix
elements in Q"' are evaluated using Bode's rule for
numerical quadrature. ' Neumann and Legendre func-
tions are obtained by upward recursion (and Bessel
functions by downward recursion), upon specifying the
object shape r(0) analytically. Results given below
for spheroids were obtained by matrix inversion using
Eqs. (11) and (27); the cone-sphere and finite cylinder
results were obtained by Schmidt orthogonalization
using Eq. (28) to compute the transition matrix.

As a check on errors introduced by truncating the
infinite system of equations at finite size, a solution can
be recomputed using more equations and unknowns,
taking relative constancy of the results as a measure
of accuracy. Based on this criterion, it was generally
found that accuracy of four significant figures or better
was achieveable.

Although it is difficult to give an absolute fix on the
truncation size adequate for a given object, the follow-
ing estimates may be helpful, and clearly show the
superiority of orthogonalization LEq. (28)j over
matrix inversion Lusing either Eqs. (11) or Eq. (12),
found to be equivalent from the convergence view-
pointj. Define a as the radius of the smallest sphere
circumscribing the object, and let X define the trunca-
tion, such that Q"' and T~' in Eq. (12') are each 2X
by 21V. A convergent solution of Kq. (12') using matrix
inversion then generally requires lV/ka&2, whereas
solution by orthogonalization is possible with lV/ka 1.
In view of the O(1Vs) operations necessary in either case
for each fixed azimuthal mode value m, we conclude
that orthogonalization may be up to an order of mag-
nitude faster. Because of their special properties,
spheroids constitute an exceptional case for which both
methods are equally good, i.e., 1V/ka&1. By way of

The matrix equation for these modes becomes

rotr'rot Re/)rot (12')

'9 P. C. Waterman and C. V. McCarthy, MITRE Technical
Paper No. MTP-74, 1968 (unpublished).

'o Bandbook of j/Iathematical Functions, edited by M. Abramo-
witz and I. A. Stegun (U. S. Government Printing Of5ce, Wash-
ington, D. C., 1964), p. 886.
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with
o /,/sa'= [2./3M(1 M) 7—'( k)b4

b2

(40a)

comparison, the earlier work, 4 which employed outgoing
waves to represent surface current, generally required
A'/ka&4. These estimates are all in the "best" case,
i.e., objects not drastically dNerent from a sphere.
As the object becomes more elongated, for example,
E/ka will generally have to be increased.

The prolate spheroid geometry is shown in Fig. 2.
The direction of incidence makes an angle I with the
axis of rotational symmetry, while the spheroid is
characterized by semimajor and semiminor axes a, b

respectively (for the oblate spheroid, on the other hand,
one has c(b). For the incident polarizations E~~ and
EJ that are employed, because of rotational symmetry
there are no cross-polarized components backscattered.

Consider erst the low-frequency Rayleigh limit, for
which the backscattering cross section for axial inci-
dence (I=0) is given by"
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X8./75
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8.
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2:I OBLATE SPHEROID

2(a' —b') 2g(g2 b2) 1/2

-o+(g2 b2)1/2-

Xln
(a2 b2) 1/2

(40b)

For the case of a 2: 1 prolate spheroid, one obtains

o /,/n. a'= 0.4724(ko,)4 . (40c)

This case was run on the computer with ha=0. 1 to
obtain the result

o.g/1ra'= 0.4691(ku) 4. (40d)

FIG. 2. Geometry for scat-
tering by a prolate spheroid,
including the two orthogonal
incident polarizations.

—tnk

E~ (OUT OF PAGE )

"J.W. Strutt (Lord Rayleigh), Phil. Mag. 44, 28 (1897). See
also T. B. A. Senior:and P. L. E. Uslenghi, E/ectronsugnetic und
Acolstic Scattering by SAep/e Shapes, edited by J. J. Bowman,
T. B. A. Senior, and P. L. E. Uslenghi (North-Holland, Amster-
dam, 1969), pp. 462-466.

The discrepancy of somewhat less than 1% is probably
attributable to the next term of order (ka)' omitted in
the Rayleigh expansion, which would make a correction
of order 1% in Eq. (40c).

Moving into the higher ka region, the scattering cross
section has been evaluated versus aspect angle for
several 2:1 prolate and oblate spheroids, using Eq.
(22b). The alternative computation by the forward
amplitude theorem, Eq. (22c), was also carried out, and
generally found to agree to about seven significant
figures. Results are shown in Fig. 3 for incident electric
Geld both parallel and perpendicular to the plane of

0.4 I I

0 50 60
ASPECT ANGLE u (OEG)

FIG. 3. Computed values are shown for scattering cross section
(normalized by wu') versus incident aspect angle, for conducting
prolate and oblate spheroids with both incident polarizations. For
the larger bodies, results are seen to approach the geometrical
optics (G.o.) limiting curves.

incidence. It is interesting to riote that for all cases
shown, as one would probably expect, the total scatter-
ing is larger for that polarization having electric vector
more nearly parallel to the long dimension of the object.

In the high-frequency geometrical optics limit, the
scattering cross section is given simply by twice the
area dehned by projection of the object onto a plane
normal to the direction of incidence. " For spheroids
one thus gets, after elementary differential-geometry
considerations,

o,/sa'~ 2&((projected area)/sa'
= (2b/u) [sin'u+ (b/u)' cos'N7'/'. (41)

This equation has also been plotted in Fig. 3 (curves
labeled G.O.); computed values are seen to approach
this limit fairly uniformly with increasing ka.

Backscattering or radar cross section has been
evaluated from Eq. (22d). Computed results are shown
in Figs. 4—10 for 2:1 prolate spheroids (ku= 1, 5, 8.901,
20), a 5:1 prolate spheroid (ku=10), and 2:1 oblate
spheroids (ka=2.5, 8.175), respectively. The geomet-
rical optics limit in this case is given by ~EjE2, with R&
and R2 the principal radii of curvature at the "specular"
point on the object, i.e., that point on the surface
having unit normal pointing along the observation

'l~ M. Born and E. Wolf, I'rincip/es. of Optics (Pergamon, New
York, 1959), p. 656.
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Fze. 4. Computed backscattering or radar cross section shown
versus incident aspect angle, for two orthogonal polarizations
illuminating a relatively small prolate spheroid. Agreement with
the corresponding geometrical-optics prediction is seen to be poor,
as would be expected.
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Pro. 6. Theoretical (solid and dashed curves) and experimental
(small circles, Ref. 35} radar cross sections are shown versus
aspect angle, for a moderately large prolate spheroid. Experi-
mental E I, Eg shifted down 1.6 dB, 1.0 dS, respectively (see
text).
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FIG. 5. Computed radar cross section, and the corresponding
geometrical-optics limit, are shown as a function of direction of
incidence for a prolate spheroid well above the Rayleigh region.

ASPECT ANGLE u ( DEG)

FIG. 7. Theoretical (solid and dashed curves) and experimental
(small circles, Ref. 35) radar cross sections are plotted versus
aspect angle, for a prolate spheroid with-dimensions large com-
pared to wavelength. Agreement with. the geometrical-optics
limiting value (short dashed curve) is seen to be good. Experi-
mental ZI, 8J shifted up 0.6 dB, down 0.3 dB, respectively.
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direction. In particular, for spheroids one obtains"

o s/m us ~ 1/Lsinsts+ (a/b)s cos'I]'. (42)

Curves obtained from Eq. (42) are shown in Figs. 4—10,
and one observes that agreement of the computed
results with the geometrical-optics limit improves both
with increasing ku and at aspects for which the appro-
priate radii of curvature are both large compared with
wavelength. The latter effect is seen clearly for the
oblate spheroids (Figs. 9 and 10) at aspect angles near
end-on (i.e., I not too close to 90'). Note also the
relatively large fluctuations in radar cross section
associated with the. s:1 prolate spheroid of Fig. 8.
The geometrical optics approximation fails even in
order of magnitude to represent a peak in the vicinity
of I=3Q'. High-frequency approximations are of course
not appropriate in this instance; although the semimajor
axis is somewhat greater than the wavelength, the
semiminor axis is not (i.e., b=X/s).

An independent check exists for the computed curves
of Fig. 6. This case, the 2:1 prolate spheroid with
ka= 8.901, has been evaluated by Andreasen by
numerical solution of the integral equation for induced

"J.E. Burke and V. Twersky, J. Acoust. Soc. Am. 38, 589
(1965).

I I

0 50 60 90
ASPECT ANGLE u ( DEG)

FrG. 8. Theoretical radar cross section plotted as a function
of aspect angle for a 5:1 prolate spheroid. Here the semimajor and
semiminor axes are respectively greater and leis than wavelength.
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FIG. 10.Theoretical (solid and dashed curves) and experimental
(small circles, Ref. 35) radar cross sections are plotted versus
aspect angle for a 2:1 oblate spheroid. Both semiaxes are larger
than wavelength, and excellent agreement is seen to obtain with
the geometrical-optics limit (short dashed curve). Experimental
EJ shifted up 0.6 dB, Ett unshifted {see text).

'4 M. G. Andreasen, IREE Trans. Antennas and Propagation 13,
303 (1965); 14, 659 (1966). This author has also discussed two-
dimensional problems, in IREE Trans. Antennas and Propagation
12, 746 (1964).

FIG. 9. Computed radar cross section shown versus aspect
angle for a 2:1 oblate spheroid with both axes somewhat less than
wavelength. For this case, set b=2u in Fig. 2.

surface current. "The theoretical procedure used was
altogether different from ours; the resulting curves
for radar cross section are graphically indistinguishable
from those of Fig. 6. (Closer examination reveals
numerical agreement between the two computed
results within 0.1 dB.ss)
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Fze. 11.A cross-section view
of three 6nite cylinders chosen
to test the theory in the pres-
ence of edges: (i) right cir-
cular cylinder, {ii) finite cir-
cular cylinder with spherical
endcaps (sphere radius equals
twice cylinder radius), (iii)
smooth circular cylinder with
hemispherical end caps.

Experimental measurements of radar cross section
were made for two of the prolate spheroids, and the
larger oblate spheroid; resulting values are shown by
the small circles in Figs. 6, 7, and 10. The models
themselves, including also the 6nite cylinders described
below, were machined at MITRE from solid aluminum
stock, holding a tolerance of about 0.001 in. Microwave
scattering measurements were then performed at the
RCA laboratories in Moorestown, N. J., at a frequency
of 9.930 GHz (X=3.019 cm), using for calibration a
secondary standard consisting of a finite cylinder of
known broadside radar cross section. "

Slight inconsistencies were apparent in the measure-
ments themselves (e.g. , different experimental values

for the two polarizations at end-on incidence, m=0,
when theoretically they should be identical by sym-
metry). Because of this, we have decided for clarity
to shift the experimental results so as to match theory
and experiment at the peak value of radar cross section,
where both should be most accurate. In these instances,
the amount of shift, in dB, is noted in the figure
captions. The resulting agreement between theory and
experiment for spheroids is seen to be reasonably good,
the worst discrepancy of about 1 dB occurring with the
smaller prolate spheroid of Fig. 6.

Consider next the finite cylinders shown (in section)
in Fig. 11. Dimensions for the right circular cylinder
are shown in Fig. 11(i).Keeping the basic dimensions
fixed, the shape is then modihed to the finite cylinder
of Fig. 11(ii) by adding spherically bounded ends, with
radii of curvature equal to twice the cylinder radius b.
Finally, the smooth 6nite cylinder of Fig. 11(iii) is
obtained by adding hemispherical ends (radii of
curvature equal to cylinder radius).

The cylinders were evaluated for 60 aspect angles
in- the interval 0'&I&90', using Schmidt orthogonal-
ization to first compute the transition matrix from
Eq. (28) in terms of Q"'. Values obtained for radar
cross section are shown as small circles in Figs. 12 and
13 for the two cylinders having edges. Experimentally
measured values" are shown by the solid lines. Agree-
ment between theory and experiment is seen to be

', RGHT CIRCULAR CYLINDER
ka = l7. I5
b/a = 0.4 IZ I

~~~ THEO.
EXP.

EII

~
I

~ I

~ l. jlI)'

'

~
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FIG. 12. Theoretical and experimental
(Ref. 85) radar cross sections are shown
versus aspect angle for the right circular
cylinder of Fig. 11(i).Jobe structure near
broadside (N=O deg) and end-on (m=90
deg) incidence is quite accurately pre-
dicted by the physical optics approxima-
tion. Experimental S~~, EJ shifted up
1.2 dB, 1.9 dB, respectively (see text).
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&' D. P. Malloy and H. Spiegel (private communication).
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Ff NITE CIRCULAR CYLINDER
ka = l7. I5
b/a = O.4I2l~~~ THEO

-- EX

Fro. 13. Theoretical and experimental
(Ref. 35) radar cross sections are plotted
as a function of aspect angle for the
6nite circular cylinder of Fig. 11(ii).
Whereas the return near broadside
(1=90') is virtually unchanged from
that of the right circular cylinder (Fig.
12), the return in the vicinity of end-on
incidence (I=0deg) is radically different,
and strongly dependent on polarization.
Experimental measurements have been
shifted up 0.2 dB for both polarizations
(see text).
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remarkably good, especially when one notes that the
scale of the 6gures in each case encompasses about Ave
orders of magnitude.

The sharp lobe structure seen in the 6gures in the
vicinity of broadside (st=90 ) for both cylinders can
be 6t fairly well by the physical-optics approximation
(Kirchhoff approximation for surface field), which
gives"

o/traz=b sine sin'(2ka cose)/trka' cos'e. (43)

Similarly for near-axial incidence (e= 0'), the main lobe
exhibited in the radar cross section of the right circular
cylinder, Fig. 12, is describable by the approximate
formu] as 6

a/sras= (b/a)' cot'eJis(2kb sine) (44)

(Jt=Bessel function) for backscattering by circular
plates. Such is not the case for near-axial incidence on
the 6nite cylinder of Fig. 13, however; a more sophis-
ticated approach would be required, capable of disting-
uishing between the two incident polarizations.

A similar computation was attempted for the smooth,
6nite cylinder of Fig. 11(iii), after increasing matrix
size slightly to allow for the increased over-all cylinder
length. '~ Rather to our surprise, in view of the fact
that this was the only cylinder considered zeithoQt

edges, no agreement with experiment was achieved,

"J. R. Mentzer, Scatters'ng and Dt'tfractsort of RaCho Wows
(Pergamon, London, 1955) pp. 108 and 131.

"Truncation at X=24, 26, 28 was used for the three cylinders
of Fig. 11, respectively.

and we conclude that the computation failed in this
instance. Failure is tentatively ascribed to the numerical
quadratures used to obtain elements of Q""; we defer
comment until after the next example, where the
same situation recurs.

The final case of interest consists of a 15' half-angle
cone, joined smoothly to a sphere of radius a. The
geometry is shown in Fig. 14. For this case the object
does not possess mirror symmetry normal to the
rotational symmetry axis, and scattered Geld quantities
must be evaluated over the full range of aspects
0'& Q& 180'.

Measurements for the cone-sphere were made on
the microwave scattering. range at Avco Corporation,
Wilmington, Mass." Again using a target machined
out of aluminum, continuous backscattering measure-
ments were made over the full 360' range of aspects for
each polarization, at a frequency of 34.25 6Hz (ka
=3.66). Discrepancies between the two 180' passes,
shown by the two light curves in Figs. 15 and 16 for

Fzo. 14. Geometry of a smoothly joined. cone-sphere is shown.
For the computations, the cone tip was rounded off to a radius
5=0.1u, changing the dimensions negligibly in comparison with
wavelength, as can be seen.

38 N. E. Pedersen (private communication).
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FIG. 15. Theoretical (heavy curve) and experimental (light
curves, Ref. 38} radar cross sections of' the cone-sphere plotted
versus aspect angle over the full range 0&+&180 deg for E~)
polarization. The large peak at u 75 deg is due to a specular
"glint" from the cone section.
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Fxo. 16. Theoretical (heavy curve) and experimental (light
curves, Ref. 38} radar cross sections of the cone-sphere shorn as
in Fig. 15, but for 8J polarization. Curves for the thoro polariza-
tions diger considerably, except for the specular glint at zc—75',
@which is virtually unchanged.

0

each of the polarizations, give a measure of experi-
mental error, which is seen to be extremely good, almost
without exception in the range ~—, dB. The calibration
target was an aluminum sphere of known radar cross
section.

The first attempt at computation, using Schmidt
orthogonalization, again. failed. This time, however,
the trouble could be traced to the numerical quadratures
used to obtain elements of Q"" from Eqs. (39). Values
obtained for many of the elements refused to settle
down, with decreasing step size, beyond two or three
significant figures (as contrasted with eight or ten

significant figures usually readily achievable).
The computation was then modi6ed by rounding off

the cone tip to a spherical radius b=o. ia. As can be
seen from Fig. 14, the resulting dimensional changes

are quite small in comparison with wavelength. The
coordinate origin was also shifted to the right, so as
to remain centered on the long dimension of the (sphere)
cone-sphere. Slightly better convergence was obtained,
resulting in the heavy curves shown in the figures.
Good correlation is seen between theory and experiment
for both number and location of peaks, with numerical
agreement generally good to within 3 dB.

Computational difhculties encountered with the
cone-sphere, as well as the finite cylinder of Fig. 11(iii),
can now be explained as follows: In numerically
integrating oner the spkerica/ porlsoN only of the cone-
sphere, the function r(8) appearing in the integrand
becomes singular at an angle slightly beyond the upper
elld polllt of lil'teglatloil (that poillt where the radius
vector is tangent to the continuation of the sphere).
Consequently the error term in Bode's rule, which is
proportional to the sixth derivative of the integrand, "
although not infinite can become extremely large.
Shifting of the origin, in the course of rounding oG the
cone tip, served to move the singularity slightly further
beyond the range of integration, alleviating the di%-
culty just enough that results could be obtained.
Note that exactly the same situation arises with the
smooth cylinder (but not the other two cylinders) of
Fig. 11. Although we have not attempted to do so, it
would appear that these numerical quadrature diffi-
culties could be avoided completely by changing over
to integration with respect to arc length in Eqs. (39).

Some comment on the computer runs is of interest.
The cone-sphere results shown in Figs. 15 and 16
required about 5~ min of computer time. The first
seven azimuthal modes (0(vs&6) were employed, in
each case truncating at %=14, or a full matrix size
of 28& 28 complex. "

For larger bodies, computation time increases roughly
proportional to (ka)'; of this, one factor 1P (ku)' is
due to the number of matrix elements of Q"' required,
another factor proportional to ka arises from the
number of points employed in numerical quadrature,
a final factor, also proportional to ka, accounts for the
number of azimuthal modes which must be included.
Experience indicates that the subsequent arithmetic
operations involved in matrix processing (inversion or
orthogonahzation, multiplication), which are also
O(ka)', represent an insigni6cant fraction of the total
computation time. Mirror symmetry (e.g., the 6nite
cylinders) reduces the computation by a factor of 4;
half of the elements of Q"' vahish, the remainder may
be evaluated by integrating over the reduced range
0&8&-'sir in Eqs. (39). A further reduction of 33%%u~

obtains for spheroids, because elements of ImQ'" above
the diagonal need not be evaluated.

» In the absence of numerical quadrature digiculties, ~e esti-
mate that E j.0, and perhaps 50 integration intervals, rather
than the abnormally large 500 intervals actually used, vrould
have suKced. If so, computation time vrould be reduced by a
factor of about 20.
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V. DISCUSSION be orthogonal, and Eq. (36) may be rewritten as

Some of the basic features underlying a matrix
formulation of electromagnetic scattering have been
presented, together with sufficient numerical results to
suggest that the method is ideally suited for digital
computation for bodies with and without edges,
especially if quadrature problems can be resolved. As
has already been noted in the Introduction, the present
work is closely interwined with an earlier paper giving
the scalar formulation for acoustic scattering. ' The
reader is advised to look therein for a more detailed
discussion of eigenfunctions and their application, and
a completeness proof for regular wave functions
restricted to a surface. By the same token, the result
that symmetry of Q, for quadric surfaces, is invariant
to coordinate translation, and the approach using
Schmidt orthogonalization, apply also in the scalar
case, without chamge of rtotatiort

The main unfinished business in the theory is con-
cerned with rigorous convergence proofs, and con-
sequent error bounds, associated with truncation of
infinite-dimensional matrices. Although some empirical
error bounds have been noted in the discussion of
numerical results, the convergence question is clearly
far from fully answered.

In conclusion, several additional research questions
come to mind, as follows.

1. The surface currents, which were eliminated from
the equations in the present work, are nevertheless of
interest in their own right. They may be obtained from
Eqs. (9) and (11b), using expansion coefFicients

n= —i(Q') 'a,

or perhaps more conveniently in consequence of Kq.
(26)

Results would appropriately be compared with the
work of Andreasen, 34 in which surface currents are the
primary unknown. Bodies with edges (e.g., the finite
cylinders of Fig. 11) are of special interest; it would be
instructive to examine in detail the manner in which
the expansion of Eq. (9) approximates the nonanalytic
behavior of the surface currents known to arise in the
vicinity of edges.

2. The matrix P(rp), which served to reexpress the
spherical wave functions about a new origin, maps one
orthonormal basis onto another. Consequently P must

"We expect, because of symmetry of Q I Eq. (37)g and the
behavior of the spherical Bessel and Neumann functions for index
large compared with argument, that the convergence question is
easily resolvable for ellipsoids. Indeed, for both scalar and vector
problems concerned with ellipsoids, including cases where standard
separation of variables techniques can also be used, the present
method may well be optimum whenever hard. numerical results

.are desired. This comment is based on the fact that only in
spherical (or circular cylindrical) coordinates are there simple
recursion relations for generating the wave-functions.

Q(ro)P (ro) =P(r )Q(o) .
In particular, if Q is defined for a spherical surface of
radius a&2ro, centered about the original origin, then
Q(0)=A, is diagonal with explicitly known elements,
while Q(rp) —=Q is a symmetric matrix defined by Eqs.
(10) and (37), and

Q,P(rp) =P(rp)A. .
That is to say, the colstrrtris of P are eigenpectors of Q,
hattitsg kmowe eigenpalues (entries of A,). Furthermore,
P is real, and both the real and imaginary parts of the
above equation must hold separately. This definition of
P in terms of an eigenvalue problem is quite unrelated
to the earlier procedure in the literature"; comparison
of the two approaches would be of theoretical interest,
and might well give new insight to the structure of P.

3. In the low-frequency limit, terms in the Rayleigh
expansion may be obtained systematically from Q
for both conducting and dielectric ellipsoids, following
a procedure outlined in the acoustic case. ' It would be
of interest to carry out these calculations, making
comparison with the work of Stevenson. 4'

4. It should be possible to obtain the Q matrix for a
conducting elliptic disk as a limiting case of the oblate
ellipsoid, in close analogy to the earlier treatment of
the strip as the limit of an elliptic cylinder. ' Vector
eigenfunctions of the disc could then be defined, and
compared with the classic work of Meixner and
Andrejewski for the special case of the circular disk. 4'

5. For plane-wave incidence along the symmetry
axis of a conducting paraboloid of revolution, Schensted
has shown that the geometrical optics approximation in
fact constitutes the exact, closed form solution for the
scattering. 4' Study should confirm that this result
follows also in the present context. Schensted's work
was carried out in a geometrical optics framework,
and restricted to axial incidence in order that no
shadow boundaries be present on the paraboloid.
Such a constraint is quite irrelevant to us, however.
Thus, knowing a solution for axial incidence, it may be
possible to infer a solution for general direction of
incidence.
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